Let T_{n} be the number of rooted, unlabelled trees with n vertices: $T_{0}=0, T_{1}=T_{2}=1$, $T_{3}=2, T_{4}=4$. For $n=4$, the tree can be either: a linear path rooted at an end or an internal vertex; or a star rooted at the center or at a leaf; giving $T_{4}=4$ distinct choices.

The combinatorial specification $\mathcal{T}=\{\bullet\} \times \operatorname{MSEt}(\mathcal{T})$ gives the following equation involving the generating function $T(x)=\sum_{n \geq 1} T_{n} x^{n}$:

$$
T(x)=x \prod_{j \geq 1} \frac{1}{\left(1-x^{j}\right)^{T_{j}}}
$$

We will apply logarithmic differentiation to obtain an amazing recurrence for T_{n}. Writing out the equation as:

$$
\sum_{n \geq 0} T_{n+1} x^{n}=\prod_{j \geq 1}\left(1-x^{j}\right)^{-T_{j}},
$$

we apply the operation $x \frac{d}{d x} \log$ to both sides. On the left side, the identity $x \frac{d}{d x} \log f(x)=$ $x f^{\prime}(x) / f(x)$ implies:

$$
x \frac{d}{d x} \log \sum_{n \geq 0} T_{n+1} x^{n}=\frac{\sum_{n \geq 1} n T_{n+1} x^{n}}{\sum_{m \geq 0} T_{m+1} x^{m}} .
$$

On the right side, we use $\log (a b)=\log a+\log b$ and $\log \left(a^{b}\right)=b \log a$ to get:

$$
\begin{aligned}
& x \frac{d}{d x} \log \prod_{j \geq 1}\left(1-x^{j}\right)^{-T_{j}}=\sum_{j \geq 1}-T_{j} x \frac{d}{d x} \log \left(1-x^{j}\right) \\
& =\sum_{j \geq 1} T_{j} \frac{j x^{j}}{1-x^{j}}=\sum_{j \geq 1} \sum_{i \geq 1} j T_{j} x^{i j}=\sum_{k \geq 1}\left(\sum_{j \mid k} j T_{j}\right) x^{k} .
\end{aligned}
$$

where in the last equality we substitute $k=i j$, and $j \mid k$ means j divides k.
Now equating the two sides, clearing the denominator, and collecting x^{n} terms, we get:

$$
\sum_{n \geq 1} n T_{n+1} x^{n}=\sum_{k \geq 1}\left(\sum_{j \mid k} j T_{j}\right) x^{k} \cdot \sum_{m \geq 0} T_{m+1} x^{m}=\sum_{n \geq 1}\left(\sum_{k=1}^{n} \sum_{j \mid k} j T_{j} T_{n-k+1}\right) x^{n}
$$

where in the second equality we substitute $n=k+m$, so that $m+1=n-k+1$. We conclude:

$$
T_{n+1}=\frac{1}{n} \sum_{k=1}^{n} \sum_{j \mid k} j T_{j} T_{n-k+1},
$$

where the right side involves only T_{1}, \ldots, T_{n}. This recurrence has no combinatorial explanation, but it is fairly efficient computationally.
example: To compute T_{5}, we sum over $k=1,2,3,4$ and j running over all divisors of k : that is, $(j, k)=(1,1),(1,2),(2,2),(1,3),(3,3),(1,4),(2,4),(4,4)$, so that:

$$
\begin{aligned}
T_{5} & =\frac{1}{4}\left(T_{1} T_{4}+T_{1} T_{3}+2 T_{2} T_{3}+T_{1} T_{2}+3 T_{3} T_{2}+T_{1} T_{1}+2 T_{2} T_{1}+4 T_{4} T_{1}\right) \\
& =\frac{1}{4}(4+2+4+1+6+1+2+16)=9 .
\end{aligned}
$$

