Following Flajolet-Sedgewick Ch. II, a labeled graded combinatorial class $\tilde{\mathcal{A}}=\coprod_{k \geq 0} \tilde{\mathcal{A}}_{k}$ comprises elements $a \in \tilde{\mathcal{A}}_{k}$ each having k atoms labeled with a permutation of $[k]=\{1,2, \ldots, k\}$. For a set $S=\left\{s_{1}<\cdots<s_{k}\right\}$, we define a_{S} to be a with each atom label i replaced with s_{i}.

For labeled classes $\tilde{\mathcal{A}}, \tilde{\mathcal{B}}$, the labeled product is the labeled class:

$$
\tilde{\mathcal{C}}=\tilde{\mathcal{A}} \star \tilde{\mathcal{B}}=\left\{\begin{array}{l|l}
\left(a_{S}, b_{T}\right) & \begin{array}{c}
a \in \tilde{\mathcal{A}}_{i}, b \in \tilde{\mathcal{B}}_{j} \\
|S|=i,|T|=j \\
S \sqcup T=[i+j]
\end{array}
\end{array}\right\} .
$$

In the ordered pair $\left(a_{S}, b_{T}\right)$, the label set $[i+j]$ is distributed among the atoms of a and b. As usual, the size function is $\left|\left(a_{S}, b_{T}\right)\right|=|a|+|b|$. Denoting the counting sequence $C_{k}=\# \tilde{\mathcal{C}_{k}}$, etc., we get:

$$
C_{k}=\sum_{i=0}^{k}\binom{k}{i} A_{i} B_{k-i}=k!\sum_{i=0}^{n} \frac{A_{i}}{i!} \frac{B_{k-i}}{(k-i)!},
$$

and the generating function:

$$
\tilde{C}(x)=\sum_{k \geq 0} \frac{C_{k}}{k!} x^{k}=\sum_{k \geq 0} \sum_{i=0}^{k} \frac{A_{i}}{i!} \frac{B_{k-i}}{(k-i)!} x^{k}=\tilde{A}(x) \tilde{B}(x) .
$$

Next we define the directed labeled product [FS II.6.3, p. 139]:

$$
\tilde{\mathcal{D}}=\tilde{\mathcal{A}}^{\min } \star \tilde{\mathcal{B}}=\left\{\left(a_{S}, b_{T}\right) \in \tilde{\mathcal{A}} \star \tilde{\mathcal{B}} \mid 1 \in S\right\},
$$

restricting to those relabelings where the minimum label 1 appears in the first component a_{S}. (We can analogously define $\tilde{\mathcal{A}} \star \tilde{\mathcal{B}}^{\text {min }}, \tilde{\mathcal{A}}^{\max } \star \tilde{\mathcal{B}}$, etc.) The number of ways to choose $S \sqcup T=[k]$ with $|S|=i$ and $1 \in S$ is $\binom{k-1}{i-1}$, so we have the counting sequence:

$$
D_{k}=\sum_{i=0}^{k}\binom{k-1}{i-1} A_{i} B_{k-i}=\sum_{i=0}^{k} \frac{i}{k}\binom{k}{i} A_{i} B_{k-i}=\frac{k!}{i} \sum_{i=0}^{k} \frac{i A_{i}}{i!} \frac{B_{k-i}}{(k-i)!} .
$$

Recall the formal derivative and integral operations (inverses of each other) on $F(x)=$ $\sum_{k \geq 0} F_{k} x^{k} \in \mathbb{C} \llbracket x \rrbracket:$

$$
x F^{\prime}(x)=\sum_{k \geq 0} k F_{k} x^{k} \quad, \quad \int \frac{1}{x} F(x) d x=\sum_{k \geq 1} \frac{1}{k} F_{k} x^{k} .
$$

Then we get the generating function:

$$
x \tilde{D}^{\prime}(x)=\sum_{k \geq 0} k \frac{D_{k}}{k!} x^{k}=\sum_{k \geq 0} \sum_{i=0}^{k} \frac{i A_{i}}{i!} \frac{B_{k-i}}{(k-i)!} x^{k}=x \tilde{A}^{\prime}(x) \tilde{B}(x),
$$

and:

$$
\tilde{D}(x)=\int \frac{1}{x} x \tilde{A}^{\prime}(x) \tilde{B}(x) d x=\int \tilde{A}^{\prime}(z) \tilde{B}(z) d z
$$

Similarly the generating function of $\tilde{\mathcal{A}} \star \tilde{\mathcal{B}}^{\text {min }}$ is $\int \tilde{A}(x) \tilde{B}^{\prime}(x) d x$, and the integration by parts formula:

$$
\int \tilde{A}^{\prime}(x) \tilde{B}(x) d x=\tilde{A}(x) \tilde{B}(x)-\int \tilde{A}(x) \tilde{B}^{\prime}(x) d x
$$

can be interpreted combinatorially as saying the label 1 is in the first component exactly when it is not in the second component.

A construction like $[1]^{\text {min }} \star \tilde{\mathcal{B}}$ is useful for describing a Deletion Transform in which we remove the atom with the minimum label 1 (or similarly, the maximum label k).

