
Math 880 Homework 4 Fall 2023

Feel free to discuss homework problems with other students, and to learn from
references, but please do not look up specific answers. Write out solutions in your
own words, and give explicit credit for any significant help.

Notes. For a poset (P ,≤) with minimal element 0̂, we define the incidence algebra:

I(P) = {α : Int(P)→ C} ∼=
⊕

a≤bC[a, b],

functions on Int(P), the set of intervals [a, b] with a ≤ b, under convolution product:

(α · β)[a, b] =
∑
a≤c≤b

α[a, c] β[c, b], [a, b] · [c, d] =

{
[a, d] if b = c

0 otherwise.

We can realize I(P) inside upper-triangular matrices in Mn×n(C), where n = #P .
Our posets are often semi-infinite, and contain standard elements 0̂, 1̂, 2̂, . . .,

and there is a natural equivalence relation [a, b] ∼ [c, d] which splits Int(P) into
equivalence classes 0̄, 1̄, 2̄, . . ., where n̄ is the equivalence class of [0̂, n̂]. We define
the reduced incidence algebra:

R(P) = {α ∈ I(P) with α[a, b] = α[c, d] for [a, b] ∼ [c, d] } =
∞⊕
n=0

Cn.

We may identify an element α ∈ R(P) with a function ᾱ : P → C with ᾱ(a) = α(n̄)
where [0̂, a] ∼ n̄. Indeed, we can denote α as a kind of generating function for the
sequence an = α(n̄) = ᾱ(n̂):

α = a00̄ + a11̄ + a22̄ + · · · .

R(P) contains the identity or delta-function δ[a, a] = 1, δ[a, b] = 0 for a < b; the
zeta function ζ[a, b] = 1, or ζ =

∑∞
n=0 n; and the Möbius function µ = ζ−1.

For a binomial poset, a ranked poset with 0̂ <· 1̂ <· 2̂ <· · · · , such that every
interval [a, b] with length rk(b) − rk(a) = n has B(n) maximal chains, the algebra
R(P) is isomorphic to the formal power series ring C[[x]], with n̄ ∼= xn/B(n), so we
can write functions as α ∼= a0 + a1x+ a2

x2

B(2)
+ a3

x3

B(3)
+ · · · for an = α(n̄).

For a finite field F = Fq, consider the poset Bn(q) of linear subspaces V ⊂ F n

ordered by inclusion, a q-analog of the Boolean poset Bn ∼= ℘[n] of subsets I ⊂ [n].
The union of these spaces via the inclusions 0 ⊂ F 1 ⊂ F 2 ⊂ · · · is the binomial
poset P = B(q), with standard elements n̂ = F n. The factorial function is:

B(n) = #Flag(F n) = [n]!q = [n]q[n−1]q · · · [1]q , [n]q = #P(F n) = qn−1
q−1

= 1+q+· · ·+qn−1.

The reduced incidence algebra R(P) corresponds to Eulerian generating functions:

f(x) =
∑
n≥0

an
xn

[n]!q
= a0 + a1x+ a2

x2

1+q
+ a3

x3

(1+q+q2)(1+q)
+ · · · .



Problems

1. The formula ζ·µ = δ is equivalent to the equations: µ[a, a] = 1 and
∑

a≤c≤b µ[a, c] =
0 for a < b. The direct product of two posets is P×Q, with (p, q) ≤ (p′, q′) whenever
p ≤ p′ and q ≤ q′. Prove that the Möbius function of the product is the product of
the individual Möbius functions of P ,Q:

µP×Q[(p, q), (p′, q′)] = µP [p, p′] µQ[q, q′].

2. For the poset P = D18, the 6-element poset of divisors of 18 = 2 · 32 ordered by
divisibility, work out the Möbius function µ[a, b] in several ways:

a. Write a 6×6 matrix Z corresponding to ζ[a, b] = 1 for all a ≤ b, and invert by
Gaussian elimination: write a double matrix [Z | I ], then row reduce to the form
[ I |M ], so that M = Z−1.

b. Write Z = I +N , for identity I and strictly upper-triangular N , nilpotent with
N6 = 0. By computer, expand geometric series M = (I+N)−1 = I−N +N2−· · · .
c. For each a ∈ P , draw a copy of the Hasse diagram (a 2 × 3 rectangle). Mark
µ[a, a] = 1, then work upwards computing µ[a, b] using the recurrence µ[a, b] =
−
∑

a≤c<b µ[a, c].

d. Apply the product formula of #1 above to D18
∼= [2]×[3], the direct product of

two chains. Match this with Mobius’ original description: µ[d, n] = (−1)k if n/d
is the product of k distinct primes, and µ[d, n] = 0 if n/d is divisible by a square
number.

e. Evaluate Phillip Hall’s Formula: µ[a, b] = ĉ0 − ĉ1 + ĉ2 − · · · , where ĉd is the
number of chains of length d from a to b in P , starting with ĉ0 = 0, ĉ1 = 1.

f. Consider P = Q t {0̂, 1̂}, where Q = {a ∈ P with 0̂ < a < 1̂}, and form the
simplicial complex ∆(Q) whose elements are all chains in Q. Draw a picture of the
corresponding topological space: one-simplexes glued at their endpoints.

Hall’s Formula says µ[0̂, 1̂] = χ̃(∆(Q)), the reduced Euler characteristic of the
above topological space, the alternating sum of the number of simplexes of each
dimension, minus 1. Compute χ̃(∆(Q)) from this definition. Also, find the simplest
triangulation of this space, and compute χ̃ from that.



3. The posetsDn of divisors of n have the semi-infinite union P = D∞ = {1, 2, 3, . . .}
ordered by divisibility. This has standard elements n̂ = n, and the equivalence
of intervals [a, b] ∼ [c, d] whenever b/a = d/c, which induces equivalence classes
n̄ = [1, n], making a basis of the reduced algebra R(P) =

⊕
n≥1 C n̄. We have

n̄m̄ = nm, so R(P) embeds in the ring of complex functions via n̄ ∼= n−s, and

α ∈ R(P) corresponds to a Dirichlet series
∑

n≥1
α(n̄)
ns , where s is a complex variable.

Now recall how we count necklaces of n beads chosen from k colors, orbits of the
cyclic symmetry group G = Cn. Since G has φ(n/d) permutations with d cycles,
Burnside’s Theorem gives the number of orbits as the necklace polynomial:

Nn(k) = 1
#G

∑
π∈G

kcyc(π) = 1
n

∑
d|n

φ(n/d) kd.

a. The Moreau polynomialMn(k) couts the aperiodic necklaces, those with no cyclic
symmetry, so that their orbit has size n. First show the convolution formula:

kn =
∑
d|n

dMd(k).

That is, if we consider α(n) = kn and β(n) = nMn(k) as elements of R(P), we have
α = β · ζ. Now give a summation formula for Mn(k) via Mobius inversion.

b. Similarly, give a formula for Mn(k) as a summation in terms of Nd(k).

4. The zeta function of the q-Boolean poset P = B(q) is ζ = expq(x) =
∑

n≥0
xn

[n]!q
.

Theorem: The reciprocal of ζ = expq(x) is the power series

µ =
∑
n≥0

(−1)nq(
n
2) x

n

[n]!q
.

a. Consider the bigraded combinatorial class E containing pairs (λ, n), where λ =
(λ1 ≥ · · · ≥ λn ≥ 0) is an integer partition of length n and size |λ| =

∑
λj .

Find bijections to write the generating function E(q, x) =
∑

(λ,n)∈E q
|λ|xn as:

E(q, x) =
∏
i≥0

1

1− qix
=
∑
n≥0

xn

(q)n
,

where (q)n = (1−q)(1−q2) · · · (1−qn) is the q-Pochhammer symbol.

Hint: For the product expression, write partitions in terms of multiplicities mi =
#{j | λj = i}. For the sum expression, consider the Young diagram of λ with rows
of length λ1 ≥ . . . ≥ λn ≥ 0 and columns of length n ≥ λ′1 ≥ λ′2 ≥ · · · > 0.

b. Prove the following identity in close analogy to part (a):

F (q, x) =
∏
i≥0

(1− qix) =
∑
n≥0

(−1)nq(
n
2) x

n

(q)n
.

c. Use the above identities to prove the Theorem about 1
expq(x)

.

d. Determine the Mobius function µ[U, V ] for any U ⊂ V in B(q).


