The Grassmannian $\operatorname{Gr}\left(d, F^{n}\right)$ is the parameter space whose points correspond to d-dimensional subspaces V in the n-dimensional vector space F^{n} over a given field F. We specify a subspace $V=\operatorname{Span}_{F}\left(v_{1}, \ldots, v_{d}\right)$ by a $d \times n$ matrix of row vectors, with change-of-basis symmetry group $\mathrm{GL}_{d}(F)$. This matrix can be normalized by making a given $d \times d$ submatrix into the identity, in columns $I=\left\{i_{1}<\cdots<i_{d}\right\} \subset[n]$, provided the determinant of this submatrix is nonzero:

The *'s denote $d(n-d)$ free parameters in F defining a coordinate chart U_{I} of the Grassmannian, making it into an F-manifold: $\operatorname{Gr}\left(d, F^{n}\right)=\bigcup_{I} U_{I}$.

We define the Schubert cell decomposition $\operatorname{Gr}\left(d, F^{n}\right)=\coprod_{I} X_{I}$ by letting X_{I} consist of those $V \in U_{I}$ which have no *'s to the right of any 1 (row-echelon form). We can define X_{I} geometrically in terms of the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of F^{n} and the standard coordinate subspaces $E_{r}=\operatorname{Span}\left(e_{1}, \ldots, e_{r}\right)$; then $V \in X_{I}$ whenever $\operatorname{dim}\left(V \cap E_{r}\right)=\#(I \cap[r])$ for $r=1, \ldots, n$. That is, $I=[d]$ forces $V=E_{d}$, and larger I makes $V \in X_{I}$ stick out further from the standard subspaces, until $I=\{n-d+1, \ldots, n\}$ corresponds to generic V 's in the open set $X_{I}=U_{I}$. The topological closure \bar{X}_{I} is given by: $\operatorname{dim}\left(V \cap E_{r}\right) \geqslant \#(I \cap[r])$ for $r=1, \ldots, n$. We keep track of how the cells fit together using the Bruhat degeneration order: we define $I \leqslant J$ to mean $X_{I} \subset \bar{X}_{J}$, or equivalently $\bar{X}_{I} \subset \bar{X}_{J}$.

Example: For $\operatorname{Gr}\left(2, F^{4}\right)$, we have:

$$
\begin{gathered}
U_{34}=X_{34}=\left[\begin{array}{llll}
* & * & 1 & 0 \\
* & * & 0 & 1
\end{array}\right]=\left\{V \mid V \cap E_{2}=0, \operatorname{dim}\left(V \cap E_{3}\right)=1\right\}, \\
U_{14}=\left[\begin{array}{llll}
1 & * & * & 0 \\
0 & * & * & 1
\end{array}\right], \quad X_{14}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & * & * & 1
\end{array}\right]=\left\{V \mid E_{1} \subset V \notin E_{3}\right\} .
\end{gathered}
$$

Here are the cell closures with defining conditions, height indicating Bruhat order:

$$
\begin{gathered}
\bar{X}_{34}=\operatorname{Gr}\left(2, F^{4}\right) \\
\bar{X}_{24}=\left(\operatorname{dim}\left(V \cap E_{2}\right) \geqslant 1\right) \\
\bar{X}_{23}=\left(V \subset E_{3}\right) \quad \bar{X}_{14}=\left(E_{1} \subset V\right) \\
\bar{X}_{13}=\left(E_{1} \subset V \subset E_{3}\right) \\
\bar{X}_{12}=\left(V=E_{2}\right)
\end{gathered}
$$

The Bruhat order relations $\bar{X}_{I} \subset \bar{X}_{J}$ are evident from the defining conditions on V. To verify in coordinates that $\{1,3\} \leqslant\{1,4\}$, we show that any plane $V_{\circ} \in X_{13}$ is approached by planes in X_{14} : we find a continuous family $\mathcal{V}: F \rightarrow \operatorname{Gr}\left(2, F^{4}\right)$ with $\mathcal{V}(t) \in X_{14}$ for $t \neq 0$, and $\mathcal{V}(0)=V_{0}$:

$$
V_{\circ}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & a & 1 & 0
\end{array}\right], \quad \mathcal{V}(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & a & 1 & t
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a / t & 1 / t & 1
\end{array}\right] \text { for } t \neq 0 .
$$

Similarly, the flag manifold $\operatorname{Fl}\left(F^{n}\right)$ is the parameter space of flags

$$
V_{\bullet}=\left(0 \subset V_{1} \subset \cdots \subset V_{n-1} \subset F^{n}\right), \quad \operatorname{dim}\left(V_{d}\right)=d
$$

We specify V_{\bullet} by a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of F^{n}, with $V_{d}=\operatorname{Span}\left(v_{1}, \ldots, v_{d}\right)$; the basis forms an $n \times n$ matrix of row vectors. The change-of-basis symmetry group B of V_{\bullet} consists of all lower-triangular matrices (with non-zero diagonal entries) in $\mathrm{GL}_{n}(F)$, since we can add a multiple of v_{i} only to a later basis vector to leave each V_{d} invariant. We get a Schubert cell decomposition indexed by permutations $w \in S_{n}: \operatorname{Fl}\left(F^{n}\right)=\coprod_{w} X_{w}$, where X_{w} consists of V_{\bullet} whose B-reduced form is a permutation matrix w, plus * coordinates in the positions of the Röthe diagram $D(w)=\left\{(i, j) \mid j<w(i), i<w^{-1}(j)\right\}$. Thus $\operatorname{dim}\left(X_{w}\right)=\# D(w)=\operatorname{inv}(w)$.

