Math 880 Grassmannians and Schubert Cells Fall 2023

The Grassmannian $\operatorname{Gr}(d, F^n)$ is the parameter space whose points correspond to d-dimensional subspaces V in the n-dimensional vector space F^n over a given field F. We specify a subspace $V = \operatorname{Span}_F(v_1, \ldots, v_d)$ by a $d \times n$ matrix of row vectors, with change-of-basis symmetry group $\operatorname{GL}_d(F)$. This matrix can be normalized by making a given $d \times d$ submatrix into the identity, in columns $I = \{i_1 < \cdots < i_d\} \subset [n]$, provided the determinant of this submatrix is nonzero:

$$V = \operatorname{GL}_d \mathbb{C} \left[\begin{array}{c} \underbrace{ & & v_1 & & \\ & & v_2 & & \\ & & \vdots & \\ & & & v_d & & \\ \end{array} \right] = \left[\begin{array}{c} * * \cdots 1 \cdots 0 \cdots 0 \cdots * * \\ * * \cdots 0 \cdots 1 \cdots 0 \cdots * * \\ \vdots \\ * * \cdots 0 \cdots 0 \cdots 1 \cdots * * \end{array} \right]$$

The *'s denote d(n-d) free parameters in F defining a coordinate chart U_I of the Grassmannian, making it into an F-manifold: $\operatorname{Gr}(d, F^n) = \bigcup_I U_I$.

We define the Schubert cell decomposition $\operatorname{Gr}(d, F^n) = \prod_I X_I$ by letting X_I consist of those $V \in U_I$ which have no *'s to the right of any 1 (row-echelon form). We can define X_I geometrically in terms of the standard basis $\{e_1, \ldots, e_n\}$ of F^n and the standard coordinate subspaces $E_r = \operatorname{Span}(e_1, \ldots, e_r)$; then $V \in X_I$ whenever $\dim(V \cap E_r) = \#(I \cap [r])$ for $r = 1, \ldots, n$. That is, I = [d] forces $V = E_d$, and larger I makes $V \in X_I$ stick out further from the standard subspaces, until $I = \{n-d+1, \ldots, n\}$ corresponds to generic V's in the open set $X_I = U_I$. The topological closure \overline{X}_I is given by: $\dim(V \cap E_r) \ge \#(I \cap [r])$ for $r = 1, \ldots, n$. We keep track of how the cells fit together using the Bruhat degeneration order: we define $I \le J$ to mean $X_I \subset \overline{X}_J$, or equivalently $\overline{X}_I \subset \overline{X}_J$.

EXAMPLE: For $Gr(2, F^4)$, we have:

$$U_{34} = X_{34} = \begin{bmatrix} * & * & 1 & 0 \\ * & * & 0 & 1 \end{bmatrix} = \{V \mid V \cap E_2 = 0, \dim(V \cap E_3) = 1\},\$$
$$U_{14} = \begin{bmatrix} 1 & * & * & 0 \\ 0 & * & * & 1 \end{bmatrix}, \qquad X_{14} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & * & * & 1 \end{bmatrix} = \{V \mid E_1 \subset V \not\subset E_3\}.$$

Here are the cell closures with defining conditions, height indicating Bruhat order:

$$X_{34} = \operatorname{Gr}(2, F^4)$$
$$\overline{X}_{24} = (\dim(V \cap E_2) \ge 1)$$
$$\overline{X}_{23} = (V \subset E_3) \qquad \overline{X}_{14} = (E_1 \subset V)$$
$$\overline{X}_{13} = (E_1 \subset V \subset E_3)$$
$$\overline{X}_{12} = (V = E_2)$$

The Bruhat order relations $\overline{X}_I \subset \overline{X}_J$ are evident from the defining conditions on V. To verify in coordinates that $\{1,3\} \leq \{1,4\}$, we show that any plane $V_{\circ} \in X_{13}$ is approached by planes in X_{14} : we find a continuous family $\mathcal{V} : F \to \operatorname{Gr}(2, F^4)$ with $\mathcal{V}(t) \in X_{14}$ for $t \neq 0$, and $\mathcal{V}(0) = V_{\circ}$:

$$V_{\circ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 1 & 0 \end{bmatrix}, \qquad \mathcal{V}(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 1 & t \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & a/t & 1/t & 1 \end{bmatrix} \text{ for } t \neq 0.$$

Similarly, the flag manifold $Fl(F^n)$ is the parameter space of flags

$$V_{\bullet} = (0 \subset V_1 \subset \cdots \subset V_{n-1} \subset F^n), \quad \dim(V_d) = d.$$

We specify V_{\bullet} by a basis $\{v_1, \ldots, v_n\}$ of F^n , with $V_d = \operatorname{Span}(v_1, \ldots, v_d)$; the basis forms an $n \times n$ matrix of row vectors. The change-of-basis symmetry group B of V_{\bullet} consists of all lower-triangular matrices (with non-zero diagonal entries) in $\operatorname{GL}_n(F)$, since we can add a multiple of v_i only to a later basis vector to leave each V_d invariant. We get a Schubert cell decomposition indexed by permutations $w \in S_n$: $\operatorname{Fl}(F^n) = \coprod_w X_w$, where X_w consists of V_{\bullet} whose B-reduced form is a permutation matrix w, plus * coordinates in the positions of the Röthe diagram $D(w) = \{(i, j) \mid j < w(i), i < w^{-1}(j)\}$. Thus $\dim(X_w) = \#D(w) = \operatorname{inv}(w)$.