Unlabeled constructions. A graded class $\mathcal{A}=\coprod_{k \geq 0} \mathcal{A}_{k}$ is a set of combinatorial objects with size function $|a|=k \in \mathbb{N}$, and $\mathcal{A}_{k}=\{a \in \mathcal{A}$ with $|a|=k\}$. It has the counting sequence $A_{k}=\# \mathcal{A}_{k}$ and the ordinary generating function $A(x)=\sum_{a \in \mathcal{A}} x^{|a|}=\sum_{k \geq 0} A_{k} x^{k}$. The most important construction to combine classes is the Cartesian product $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ graded by $|(a, b)| \stackrel{\text { def }}{=}|a|+|b|$, and having generating function $C(x)=A(x) B(x)$.

We also have the power construction, provided $\mathcal{A}_{0}=\{ \}$:

$$
\mathcal{C}=\mathcal{B}^{\mathcal{A}}=\left\{\text { functions } f: \mathcal{A} \rightarrow \mathcal{B} \text { with }|f| \stackrel{\text { def }}{=} \sum_{a \in A}|a||f(a)|<\infty\right\}, \quad C(x)=\prod_{i \geq 1} B\left(x^{i}\right)^{A_{i}}
$$

These result in the following standard constructions:

$$
\begin{array}{ll}
\mathcal{C}=\mathcal{A} \sqcup \mathcal{B}, \quad C(x)=A(x)+B(x) & \mathcal{C}=\mathcal{A} \times \mathcal{B}, \quad C(x)=A(x) B(x) \\
\mathcal{C}=\operatorname{SEQ}_{n} \mathcal{A}, \quad C(x)=A(x)^{n} & \mathcal{C}=\operatorname{SeQ} \mathcal{A}, \quad C(x)=1 /(1-A(x)) \\
\mathcal{C}=\operatorname{SET} \mathcal{A}, \quad C(x)=\prod_{i \geq 1}\left(1+x^{i}\right)^{A_{i}} & \\
\mathcal{C}=\operatorname{MSET} \mathcal{A}, \quad C(x)=\prod_{i \geq 1}\left(1-x^{i}\right)^{-A_{i}}
\end{array}
$$

The formulas on the last line are derived using the Multiplicity Transform, which realizes a set or multiset S of elements from \mathcal{A} as a multiplicity function $m: \mathcal{A} \rightarrow \mathbb{N}$, where $m(a)$ is the number of times a appears in S. Here $n \in \mathbb{N}$ has size $|n|=n$, giving graded bijections $\operatorname{SET} \mathcal{A} \cong\{0,1\}^{\mathcal{A}}$ and MSET $\mathcal{A} \cong \mathbb{N}^{\mathcal{A}}$.

To indicate size, we place the marker x^{k} next to each element a with $|a|=k$: thus, $\mathbb{N}=\{0,1,2, \ldots\}=\left\{0,1 x, 2 x^{2}, \ldots\right\}$ with generating function $N(x)=\sum_{k \geq 0} x^{k}=(1-x)^{-1}$.
ExAMPLE: Binomial coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$ are the counting sequence of $\operatorname{SET}([n] x)$, the class of subsets of $[n]=\{1, \ldots, n\}$ with all $|j|=1$, denoted $[n] x=\{1 x, \ldots, n x\}$ so that $|S|=\# S$. Hence the generating function is $\prod_{j \geq 0}\left(1+x^{j}\right)^{A_{j}}=(1+x)^{n}$, and Taylor's coefficient formula gives $\binom{n}{k}=n \underline{\underline{k}} / k$!, where $n^{\underline{k}}=n(n-1) \cdots(n-k+1)$. The identity $(1+x)^{n}=$ $(1+x)(1+x)^{n-1}$ is equivalent to the Pascal's Triangle recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, which can be proved bijectively by a Deletion Transform taking $S \subset[n]$ with $|S|=k$ on the left to $S^{\prime}=S \backslash\{n\} \subset[n-1]$ on the right, with $\left|S^{\prime}\right|=k$ or $k-1$.
Multi-choose numbers $\binom{n}{k}$ count $\operatorname{MSET}([n] x)$, multisets of k elements from $[n]$, unordered with repeats allowed, having generating function $(1-x)^{-n}$ and Taylor coefficients $\left.\binom{n}{k}\right)=$ $n^{\bar{k}} / k$! where $n^{\bar{k}}=n(n+1) \cdots(n+k-1)$. The Accordion Transform shows $\binom{n}{k}=\left(\binom{n-k+1}{k}\right)$, taking $S=\left\{s_{1}<s_{2}<\cdots<s_{k}\right\} \subset[n]$ to a multiset $S^{\downarrow}=\left\{s_{1} \leq s_{2}-1 \leq \cdots \leq s_{k}-k+1\right\}$ from $[n-k+1]$. This is a bijection, which proves the identity.
Example: Fibonacci numbers are defined by the recurrence $F_{k}=F_{k-1}+F_{k-2}$ starting from $F_{0}=0, F_{1}=1$. This implies the generating function equation:

$$
F(x)=\sum_{k \geq 0} F_{k} x^{k}=x+\sum_{k \geq 2} F_{k-1} x^{k}+\sum_{k \geq 2} F_{k-2} x^{k}=x+x F(x)+x^{2} F(x)
$$

which can be solved for $F(x)=\frac{x}{1-x-x^{2}}$. Thus $\frac{1}{x} F(x)=\sum_{k \geq 0} F_{k+1} x^{k}=\frac{1}{1-\left(x+x^{2}\right)}$ is clearly the generating function of $\mathcal{A}=\operatorname{SEQ}\left\{1 x, 2 x^{2}\right\}$, so that:

$$
F_{k+1}=\# \mathcal{A}_{k}=\#\left\{\left(a_{1}, \ldots, a_{n}\right) \text { with } n \geq 0, a_{j}=1 \text { or } 2, \text { and } a_{1}+\cdots+a_{n}=k\right\}
$$

the number of compositions of k into parts equal to 1 or 2 .

The partial fraction decomposition gives Binet's formula:

$$
F(x)=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi x}-\frac{1}{1+\psi x}\right) \quad \Longrightarrow \quad F_{k}=\frac{1}{\sqrt{5}}\left(\phi^{k}-(-\psi)^{k}\right)
$$

for the golden ratio $\phi=\frac{\sqrt{5}+1}{2} \approx 1.6, \psi=\frac{\sqrt{5}-1}{2} \approx 0.6$. The singularity $x=1 / \phi=\psi$ is closest to the center of the power series $x=0$, and thus gives the asymptotically largest term: $F_{k} \sim \frac{1}{\sqrt{5}} \phi^{k}$ as $k \rightarrow \infty$; in fact the error $\pm \frac{1}{\sqrt{5}} \psi^{k}$ goes to zero, so $F_{k}=\left\lfloor\frac{1}{\sqrt{5}} \phi^{k}\right\rceil$, the integer rounding of the approximation.

Labeled constructions. A labeled graded class $\tilde{\mathcal{A}}$ has objects a with a structure of $|a|=k$ atoms labeled by a bijection with $[k]=\{1,2, \ldots, k\}$. (Example: graphs on the vertex set $V=[k]$.) Relabeling the atoms gives an action of the symmetric group \mathfrak{S}_{k} on $\tilde{\mathcal{A}}_{k}$. The exponential generating function is $\tilde{A}(x)=\sum_{a \in \mathcal{A}} \frac{x^{|a|}}{|a|!}=\sum_{k \geq 0} \tilde{A}_{k} \frac{x^{k}}{k!}$.

For $a \in \tilde{\mathcal{A}}_{k}$ and a set of labels $J=\left\{j_{1}<\cdots<j_{k}\right\}$, define a_{J} to be a relabeled version of a with each atom label i replaced with j_{i}. We combine labeled classes \tilde{A}, \tilde{B} into the labeled product $\tilde{\mathcal{A}} * \tilde{\mathcal{B}}$, consisting of pairs (a_{J}, b_{K}) of size $k=|a|+|b|$ in which the label set is partitioned as $[k]=J \sqcup K$ in all possible ways. We also have the directed labeled product $\tilde{\mathcal{A}}^{\text {min }} * \tilde{\mathcal{B}}$, whose elements are $\left(a_{J}, b_{K}\right)$ with the requirement $1 \in J$. Standard constructions:

$$
\begin{array}{ll}
\tilde{\mathcal{C}}=\tilde{\mathcal{A}} * \tilde{\mathcal{B}}, & \tilde{C}(x)=\tilde{A}(x) \tilde{B}(x) \\
\tilde{\mathcal{C}}=\operatorname{SEQ}_{n}^{\sim} \tilde{\mathcal{A}}, \tilde{C}(x)=\tilde{\mathcal{C}}=\tilde{\mathcal{A}}^{\min } * \tilde{\mathcal{B}}, \tilde{C}(x)^{n} & \tilde{\mathcal{C}}=\operatorname{SEQ}^{\sim} \tilde{\mathcal{A}}, \tilde{C}(x)=1 /(1-\tilde{A}(x)) \\
\tilde{\mathcal{C}}=\operatorname{SET}_{n}^{\sim} \tilde{\mathcal{A}}, \tilde{C}(x)=\tilde{A}(x)^{n} / n! & \tilde{\mathcal{C}}=\operatorname{SET}^{\sim} \tilde{\mathcal{A}}, \tilde{C}(x)=\exp \tilde{A}(x) \\
\tilde{\mathcal{C}}=\operatorname{CYC}_{n}^{\tilde{\mathcal{A}}}, \tilde{C}(x)=\tilde{A}(x)^{n} / n & \tilde{\mathcal{C}}=\operatorname{CYC}^{\sim} \tilde{\mathcal{A}}, \tilde{C}(x)=-\log (1-\tilde{A}(x))
\end{array}
$$

There are no labeled multisets: distinct labels prevent repeated parts within an object.
Example: Bell numbers B_{k} count the class $\tilde{\mathcal{B}}_{k}$ whose elements are sets $\left\{J_{1}, J_{2}, \ldots,\right\}$ which partition $[k]=J_{1} \sqcup J_{2} \sqcup \cdots$ into any number of non-empty subsets $J_{i} \neq \varnothing$. They are the counting numbers of the class $\tilde{\mathcal{B}}=\operatorname{SET}^{\sim}\left(\operatorname{SET}_{\geq 1}^{\sim}([1] x)\right)$, so $\tilde{B}(x)=\exp \left(e^{x}-1\right)=\frac{1}{e} \sum_{n \geq 0} e^{n x}$, giving Dobinski's formula $B_{k}=\frac{1}{e} \sum_{n \geq 0} \frac{n^{k}}{n!}$.
Stirling partition numbers $\left\{\begin{array}{l}k \\ n\end{array}\right\}$ count partitions of $[k]$ into n non-empty subsets, composing the class $\tilde{\mathcal{B}}^{(n)}=\operatorname{SET}_{n}^{\sim}\left(\operatorname{SET}_{\geq}^{\sim} 1([1] x)\right)$ with $\tilde{B}^{(n)}(x)=\frac{1}{n!}\left(e^{x}-1\right)^{n}=\frac{1}{n!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} e^{j x}$:

$$
\left\{\begin{array}{l}
k \\
n
\end{array}\right\}=\frac{1}{n!}\left(n^{k}-\binom{n}{1}(n-1)^{k}+\binom{n}{2}(n-2)^{k}-\cdots+(-1)^{n-1}\binom{n}{n-1} 1^{k}\right) .
$$

Example: Derangement numbers D_{k} count the class $\tilde{\mathcal{D}}_{k}$ of derangement permutations $\pi \in \mathfrak{S}_{k}$ with $\pi(i) \neq i$ for all i, meaning the cycle decomposition of π has no 1-cycles. This can be constructed as $\tilde{\mathcal{D}}=\operatorname{SET}^{\sim}\left(\operatorname{CYC}_{\geq 2}([1] x)\right)$, so $\tilde{D}(x)=\exp (-\log (1-x)-x)=\frac{e^{-x}}{1-x}$, and the derangement number is $D_{k}=k!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{k} \frac{1}{k!}\right) \approx k!e^{-1}$. If k objects are sorted randomly, the chance of no object returning to its former position is about 37%.
Example: Euler numbers E_{k} count permutations $\pi \in \mathfrak{S}_{k}$ satisfying the alternating condition: $\pi(1)>\pi(2)<\pi(3)>\cdots$. Let $\tilde{\mathcal{J}}=\coprod_{\ell>0} \tilde{\mathcal{J}}_{2 \ell+1}$ be the class of alternating permutations with odd length $k=2 \ell+1$. A Deletion Transform cuts $\pi=(\pi(1), \ldots, \pi(k))$ at the position j where $\pi(j)=1$, leaving two smaller odd-length alternating permutations left and right of the cut. This implies the Deletion Recurrence:

$$
\tilde{\mathcal{J}} \cong \tilde{\mathcal{J}} *[1] x^{\min } * \tilde{\mathcal{J}} \sqcup[1] x, \quad \tilde{J}(x)=\int \tilde{J}(x) \frac{d}{d x}(x) \tilde{J}(x) d x+x
$$

equivalent to a separable differential equation which integrates to $\tilde{J}(x)=\tan (x)$. That is, the Taylor coefficients of tangent are the odd Euler numbers over $k!$. Similarly, the evenlength alternating permutations $\tilde{\mathcal{K}}$ satisfy $\tilde{\mathcal{K}} \cong \tilde{\mathcal{J}} *[1] x^{\min } * \tilde{\mathcal{K}} \sqcup\{\varnothing\}$, and $\tilde{K}(x)=\sec (x)$.
Example: Cayley trees are rooted labeled trees, meaning connected acyclic simple graphs on vertices $V=[k]$, with a distinguished root vertex, composing a labeled class \tilde{T}_{k}. Removing the root gives a Deletion Recurrence:

$$
\tilde{\mathcal{T}} \cong[1] x * \operatorname{SET}^{\sim}(\tilde{\mathcal{T}}), \quad \tilde{T}(x)=x \exp \tilde{T}(x)
$$

That is, $\tilde{T}(x) / \exp \tilde{T}(x)=x$, so $\tilde{T}(x)$ is the inverse function of $A(x)=x / \exp (x)$. The Lagrange Inversion Formula states that if $B(x)=x+B_{2} x^{2}+B_{3} x^{3}+\cdots$ is the inverse function of $A(x)=x+A_{2} x^{2}+A_{3} x^{3}+\cdots$, so that $A(B(x))=x$ as formal power series, then $B_{k}=\frac{1}{k}\left[x^{-1}\right] A(x)^{-k}$, where $\left[x^{-1}\right]$ is the operation which extracts the x^{-1} residue coefficient of a Laurent series. So $\tilde{T}_{k} / k!=\frac{1}{k}\left[x^{-1}\right](x / \exp (x))^{-k}=\frac{1}{k}\left[x^{-1}\right] x^{-k} \exp (k x)$, and $\tilde{T}_{k}=k^{k-1}$.

This gives Cayley's Theorem that the number of free (non-rooted) trees on k labeled vertices is k^{k-2}. This can also be proved bijectively by Prüfer's bijection, which takes a free tree T on vertices $V=[k]$, and removes its minimal-label leaf vertex ℓ_{1}, while recording ℓ_{1} 's unique neighbor vertex a_{1}; repeating recursively gives the Prüfer sequence $\left(a_{1}, \ldots, a_{n-2}\right) \in$ $[k]^{k-2}$, from which T can be reconstructed via $\ell_{1}=\min \left([k] \backslash\left\{a_{1}, \ldots, a_{n-2}\right\}\right)$, etc. Alternatively, Joyal's bijection takes a birooted tree (T, u, v) for $u, v \in V=[k]$, with a unique "spine" path $u=b_{1}^{\prime}-b_{2}^{\prime}-\cdots-b_{m}^{\prime}=v$, and orders these vertices as $B=$ $\left\{b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}=\left\{b_{1}<\cdots<b_{m}\right\}$; it also orients each non-spine edge toward the spine, $w \rightarrow w^{\prime}$ for $w \notin B$; then it defines a function $f:[k] \rightarrow[k]$ by $f\left(b_{i}\right)=b_{i}^{\prime}$, viewing the spine as a permutation of B in one-line notation, and $f(w)=w^{\prime}$ for $w \notin B$. Then (T, u, v) is equivalent to f, and the number of birooted trees is k^{k}.

Bigraded constructions. A bigraded class \mathcal{A} is a class whose objects are given two measures of magnitude, size $|a|=k$ and weight $\operatorname{wt}(a)=n$, with counting numbers $A_{k}^{(n)}=\#\{a \in \mathcal{A}$ with $|a|=k, \operatorname{wt}(a)=n\}$ and bivariate generating function $\mathcal{A}(x, y)=$ $\sum_{a \in \mathcal{A}} x^{|a|} y^{\mathrm{wt}(a)}=\sum_{k, n \geq 0} A_{k}^{(n)} x^{k} y^{n}$. In a labeled bigraded class $\tilde{\mathcal{A}}$, each object with $|a|=k$ is labeled with $[k]$, and the permutation action of \mathfrak{S}_{k} preserves both $|a|$ and $\operatorname{wt}(a)$. We have the exponential bivariate generating function $\tilde{A}(x, y)=\sum_{a \in \tilde{\mathcal{A}}} \frac{x^{|a|}}{|a|!} y^{\mathrm{wt}(a)}=\sum_{n, k \geq 0} \tilde{A}_{k}^{(n)} \frac{x^{k}}{k!} y^{n}$.

The constructions for unlabeled and labeled graded classes extend to the bigraded case. We again indicate magnitudes on the resulting class by inserting markers: x^{k} for unlabeled size, $\frac{x^{k}}{k!}$ for labeled size, and y^{n} for unlabeled weight:

$$
\tilde{\mathcal{A}}_{k} \frac{x^{k}}{k!}, \quad \tilde{\mathcal{A}}(x)=\coprod_{k \geq 0} \tilde{\mathcal{A}}_{k} \frac{x^{k}}{k!}, \quad \mathcal{B}_{n} y^{n}, \quad \mathcal{B}(y)=\coprod_{n \geq 0} \mathcal{B}_{n} y^{n}, \quad \text { etc. }
$$

Thus $\tilde{\mathcal{C}}(x, y)=\tilde{\mathcal{A}}(x) \times \mathcal{B}(y)$ means the bigraded class of (a, b) with a labeled, b unlabeled, size $|(a, b)|=|a|=k$, weight $\operatorname{wt}(a, b)=|b|=n$, and $\tilde{C}(x, y)=\tilde{A}(x) B(y)$. A different product is $\tilde{\mathcal{A}}(x, y) * \tilde{\mathcal{B}}(x, y)$, meaning relabeled pairs $\left(a_{J}, b_{K}\right)$ with $\left|\left(a_{J}, b_{K}\right)\right|=|a|+|b|$ and $\mathrm{wt}\left(a_{J}, b_{K}\right)=\mathrm{wt}(a)+\mathrm{wt}(b)$, giving the generating function $\tilde{A}(x, y) \tilde{B}(x, y)$.

We also have the atomic function construction from $\tilde{\mathcal{A}}$ to \mathcal{B}, the class of functions from the atoms of some $[k]$-labeled $a \in \tilde{\mathcal{A}}$ to \mathcal{B} :

$$
\tilde{\mathcal{C}}(x, y)=\operatorname{AFun}(\tilde{\mathcal{A}}(x), \mathcal{B}(y))=\{(a, f) \text { with } a \in \mathcal{A}, f:[k] \rightarrow \mathcal{B}\}, \quad \tilde{C}(x, y)=\tilde{A}(x \mathcal{B}(y)) ;
$$

here $|(a, f)|=|a|=k$ is marked by $\frac{x^{k}}{k!}$, and $\operatorname{wt}(a, f)=\sum_{i=1}^{k}|f(i)|=n$ is marked by y^{n}.

Example: Binomial coefficient identities. Consider the unlabeled bigraded class of subsets inside an integer interval, pairs $(S \subset[n])$, with size function $|(S \subset[n])|=\# S=k$ marked by x^{k}, and weight function $\operatorname{wt}(S \subset[n])=n$ marked by y^{n}. Its bivariate generating function is:

$$
A(x, y)=\sum_{n, k \geq 0}\binom{n}{k} x^{k} y^{n}=\sum_{n \geq 0} y^{n}(1+x)^{n}=\frac{1}{1-y(1+x)}=\sum_{k \geq 0} A_{k}(y) x^{k},
$$

where $A_{k}(y)=\sum_{n \geq 0}\binom{n}{k} y^{n}$. Applying Taylor's coefficient formula to the variable x gives $A_{k}(y)=\left.\frac{\partial^{k}}{\partial x^{k}} A(x, y)\right|_{x=0}=\frac{y^{k}}{(1-y)^{k+1}}$. The algebraic identity $\frac{1}{1-y} A_{k}(y)=\frac{1}{y} A_{k+1}(y)$ is equivalent to the combinatorial identity:

$$
\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1} .
$$

This can be proved bijectively by a Deletion Transform which takes a ($k+1$)-element subset $S \subset[n+1]$ on the right side to the k-element subset $S^{\prime}=S \backslash\{m\} \subset[m-1]$ on the left side, where and $m=\max (S)$.

Furthermore, substituting $x=z, y=z$ reduces to the single grading $\|(S \subset[n])\|=$ $\# S+n=\ell$ marked by z^{ℓ}. This has generating function $A(z, z)=\frac{1}{1-z(1+z)}=\frac{1}{1-z-z^{2}}$, which we recognize as the Fibonacci generating function $\sum_{\ell \geq 0} F_{\ell+1} z^{\ell}$. This shows:

$$
F_{\ell+1}=\sum_{n+k=\ell}\binom{n}{k}=\binom{\ell}{0}+\binom{\ell-1}{1}+\binom{\ell-2}{2}+\cdots .
$$

To prove bijectively: let $F_{\ell+1}=\#\left\{a=\left(a_{1}, \ldots, a_{n}\right) \mid n \geq 0, a_{i}=1\right.$ or $\left.2, \sum_{i=1}^{n} a_{i}=\ell\right\}$, and transform the composition a to the set $S=[\ell] \backslash\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+\cdots+a_{n}\right\} \subset[\ell-1]$, then apply the Accordion Transform to get $S^{\downarrow} \subset[n]$, with $\left|S^{\downarrow}\right|=\ell-n$.

The bigraded class of multisets with k elements from $[n]$ has generating function:

$$
\left.B(x, y)=\sum_{n, k \geq 0}\binom{n}{k}\right) x^{k} y^{n}=\sum_{n \geq 0} \frac{1}{(1-x)^{n}} y^{n}=\frac{1}{1-\frac{y}{1-x}}=1+\frac{y}{1-x-y} .
$$

The algebraic identity $A(x, y)=\frac{1}{y}(B(x y, y)-1)$ means that $\binom{n}{k}=\binom{m}{k}$ for $n=m+k-1$, recovering the Accordion Transformation identity $\left.\binom{n}{k}=\binom{n+k-1}{k}\right)$.
Example: Stirling cycle numbers. Let $\tilde{\mathcal{S}}(x)$ be the union of the finite symmetric groups $\tilde{\mathcal{S}}_{k}=\mathfrak{S}_{k}$ for $k \geq 1$ and $\tilde{S}_{0}=\{\varnothing\}$, thought of as the labeled class of all permutations $\pi:[k] \xrightarrow{\sim}[k]$, with size function $|\pi|=k$. This is constructed as $\tilde{\mathcal{S}}(x)=\operatorname{SEQ}^{\sim}([1] x)$ with generating function $\tilde{S}(x)=(1-x)^{-1}$. But permutations are also sets of labeled cycles, so we enrich this to a bigraded labeled class $\tilde{\mathcal{S}}(x, y)$ with $\mathrm{wt}(\pi)=\operatorname{cyc}(\pi)=n$, the number of disjoint cycles composing π, marked by y^{n}. The counting numbers are Stirling cycle numbers:

$$
\left[\begin{array}{c}
k \\
n
\end{array}\right]=\tilde{S}_{k}^{(n)}=\#\left\{\pi \in \mathfrak{S}_{k} \text { with } \operatorname{cyc}(\pi)=n\right\} .
$$

We construct:

$$
\tilde{\mathcal{S}}(x, y)=\operatorname{SET}^{\sim}\left(y \operatorname{CYC}^{\sim}([1] x)\right), \quad \tilde{S}(x, y)=\exp (-y \log (1-x))=(1-x)^{-y} .
$$

Setting $y=1$ recovers $\tilde{S}(x)=\left.\tilde{S}(x, y)\right|_{y=1}$. Taking the coefficient of $\frac{x^{k}}{k!}$ in $\tilde{S}(x, y)$:

$$
S_{k}(y)=\sum_{n=1}^{k}\left[\begin{array}{l}
k \\
n
\end{array}\right] y^{n}=\left.\frac{\partial^{k}}{\partial x^{k}} \tilde{S}(x, y)\right|_{x=0}=y^{\bar{k}} .
$$

Substituting $y \mapsto-y$ turns this into $\sum_{n=1}^{k}(-1)^{k-n}\left[\begin{array}{l}k \\ n\end{array}\right] y^{n}=y^{\underline{k}}$.
The average number of $\operatorname{cycles} \operatorname{cyc}(\pi)$ of a permutation $\pi \in \mathfrak{S}_{k}$ is a Harmonic number:

$$
\begin{aligned}
\frac{1}{k!} \sum_{n=1}^{k}\left[\begin{array}{l}
k \\
n
\end{array}\right] n & =\left.\frac{1}{k!} \frac{\partial}{\partial y} S_{k}(y)\right|_{y=1}=\left.\left[x^{k}\right] \frac{\partial}{\partial y} S(x, y)\right|_{y=1}=\left.\left[x^{k}\right] \frac{\partial}{\partial y}(1-x)^{-y}\right|_{y=1} \\
& =\left[x^{k}\right] \frac{\log (1-x)}{1-x}=\left[x^{k}\right]\left(\sum_{i \geq 1} \frac{x^{i}}{i} \sum_{j \geq 0} x^{j}\right)=\sum_{j=1}^{k} \frac{1}{j} \approx \log (k),
\end{aligned}
$$

where $\left[x^{k}\right]$ is the operation which extracts the x^{k} coefficient of a power series. It can also be shown that the standard deviation of $\operatorname{cyc}(\pi)$ approaches $\sqrt{\log (k)}$, so for large k, almost all permutations in \mathfrak{S}_{k} have approximately $\log (k)$ cycles.

The other one-variable generating function is:

$$
\tilde{S}^{(n)}(x)=\sum_{k \geq 1}\left[\begin{array}{l}
k \\
n
\end{array}\right] \frac{x^{k}}{k!}=\log ^{n}\left(\frac{1}{1-x}\right) .
$$

This does not give an explicit formula for the coefficients, but complex analytic methods can produce the asymptotic approximation: $\left[\begin{array}{c}k \\ n\end{array}\right] \sim \frac{(k-1)!}{(n-1)!}(\log k)^{n-1}$ as $k \rightarrow \infty$. Thus for large k and fixed n, the fraction of k-permutations with n cycles is very close to $\frac{(\log k)^{n-1}}{k(n-1)!}$.
Example: Partition numbers. A partition of k is a set of non-negative integers

$$
\lambda=\left\{\lambda_{1} \geq \cdots \geq \lambda_{n}\right\} \quad \text { with } \quad|\lambda|=\lambda_{1}+\cdots+\lambda_{n}=k,
$$

allowing $\lambda_{i}=0$. Its length is $\ell(\lambda)=n$. By tradition, $|\lambda|=k$ is marked by q^{k}, while $\ell(\lambda)=n$ is marked by x^{n}, making an unlabeled bigraded class ${ }^{\circ} \mathcal{P}(q, x)$ whose counting sequence is denoted $p_{n}(k)={ }^{\circ} P_{k}^{(n)}$. The ${ }^{\circ}$ superscript indicates that we allow zero parts $\lambda_{i}=0$; the subclass with all $\lambda_{i} \geq 1$ is denoted $\mathcal{P}(q, x)$.

The Multiplicity Transform turns λ into $m:\left\{0,1 q, 2 q^{2}, \ldots\right\} \rightarrow\left\{0,1 q x, 2 q^{2} x^{2}, \ldots\right\}$ with $m(j)=\#\left\{i\right.$ with $\left.\lambda_{i}=j\right\}$, so that $|\lambda|=\sum_{j \geq 0} j m(j)$ and $\ell(\lambda)=\sum_{j \geq 0} m(j)$. This gives the generating function, often written in terms of the q-Pochhammer symbol $(x ; q)_{n}=$ $(1-x)(1-q x)\left(1-q^{2} x\right) \cdots\left(1-q^{n-1} x\right)$:

$$
{ }^{\circ} P(q, x)=\sum_{k, n \geq 0} p_{n}(k) q^{k} x^{n}=\prod_{j \geq 0} \frac{1}{1-q^{j} x}=\frac{1}{(x ; q)_{\infty}} .
$$

Another picture of λ is its Ferrars diagram: n left-justified rows of spaced dots, with successive row lengths $\lambda_{1}, \ldots, \lambda_{n}$. Reflecting across the main diagonal gives the Transpose Transform $\lambda \mapsto \lambda^{\prime}$ defined by $\lambda_{j}^{\prime}=\#\left\{i\right.$ with $\left.\lambda_{i} \geq j\right\}=m(j)+m(j+1)+\cdots$, with $\left|\lambda^{\prime}\right|=|\lambda|$ and indeterminate $\ell\left(\lambda^{\prime}\right)$. This gives a bijection between all λ with $\ell(\lambda)=n$ parts and all λ^{\prime} with each part $\lambda_{j}^{\prime} \leq n$ and indeterminate $\ell\left(\lambda^{\prime}\right)$. Counting $m\left(\lambda^{\prime}\right)$ over $\lambda \in{ }^{\circ} \mathcal{P}^{(n)}(q)$ gives:

$$
{ }^{\circ} P(q, x)=e_{q}(x) \stackrel{\text { def }}{=} \sum_{n \geq 0} \frac{x^{n}}{(q)_{n}} \quad \text { where } \quad(q)_{n}=(q ; q)_{n}=(1-q) \cdots\left(1-q^{n}\right) .
$$

This is one version of the q-Binomial Theorem. The notation $e_{q}(x)$ is meant to suggest a q analog of the exponential function: indeed, $\lim _{q \rightarrow 1}(q)_{n} /(1-q)^{n}=n$!, and $\lim _{q \rightarrow 1} e_{q}((1-q) x)=$ $\sum_{n \geq 0} \frac{x^{n}}{n!}=\exp (x)$.

An important subclass ${ }^{\circ} \mathcal{Q}(q, x) \subset{ }^{\circ} \mathcal{P}(q, x)$ comprises partitions with distinct parts: $\mu=\left\{\mu_{1}>\cdots>\mu_{n}\right\}$. Counting $m(\mu)$ gives ${ }^{\circ} Q(q, x)=\prod_{j \geq 0}\left(1+q^{j} x\right)$. The Accordion Transform $\mu \mapsto{ }^{\downarrow} \mu$ takes μ with n distinct parts to a general partition $\lambda=\left\{\lambda_{1} \geq \cdots \geq \lambda_{n}\right\}$:

$$
\lambda={ }^{\downarrow} \mu=\left\{\mu_{1}-n+1 \geq \mu_{2}-n+2 \geq \cdots \geq \mu_{n-1}-1 \geq \mu_{n}\right\},
$$

reducing $|\mu|$ by $(n-1)+(n-2)+\cdots+1=\binom{n}{2}$. Counting $m\left(\lambda^{\prime}\right)=m\left({ }^{\downarrow} \mu^{\prime}\right)$ for each n gives:

$$
{ }^{\circ} Q(q, x)=\prod_{j \geq 0}\left(1+q^{j} x\right)=E_{q}(x) \stackrel{\text { def }}{=} \sum_{n \geq 0} q^{\binom{n}{2}} \frac{x^{n}}{(q)_{n}} .
$$

Note the algebraic identities $e_{q}(x) E_{q}(-x)=1$ and $E_{q}(x)=e_{1 / q}(-x / q) .{ }^{*}$
If we forget the number of parts in ${ }^{\circ} \mathcal{P}(q, x)$, the q^{k} coefficients become infinite, so we must allow only partitions with positive parts, $\lambda \in \mathcal{P}(q)$ with counting sequence $p(k)=$ $p_{k}(k)$ and generating function $P(q)=\left.(1-x) P(q, x)\right|_{x=1}$. Similarly for \mathcal{Q}, the partitions with distinct parts. Thus:

$$
P(q)=\prod_{j \geq 1} \frac{1}{1-q^{j}}, \quad Q(q)=\prod_{j \geq 1}\left(1+q^{j}\right)=\frac{1}{P(-q)} .
$$

This produces Dedekind's eta function using $q=e^{2 \pi i \tau}$, the nome: $\eta(\tau)=q^{1 / 24} / P(q)=$ $q^{1 / 24} Q(-q)$ is a weight $\frac{1}{2}$ modular form with $\eta(\tau+1)=\eta(\tau)$ and $\eta(-1 / \tau)=-\sqrt{i \tau} \eta(\tau)$.

There is no closed combinatorial formula to compute $p(k)$, but complex analysis applied to $P(q)$, which is singular at every complex root of unity, yields the celebrated HardyRamanujan asymptotic $p(k) \sim \frac{1}{4 k \sqrt{3}} \exp (\pi \sqrt{2 k / 3})$.

Signed constructions. A signed graded class $\mathcal{A}=\mathcal{A}^{+} \sqcup \mathcal{A}^{-}$is a class with a function $\operatorname{sgn}: \mathcal{A} \rightarrow\{ \pm 1\}$, counted by $A_{k}^{+}=\# \mathcal{A}_{k}^{+}, A_{k}^{-}=\# \mathcal{A}_{k}^{-}$, and signed generating function:

$$
A^{ \pm}(x)=\sum_{a \in A} \operatorname{sgn}(a) x^{|a|}=\sum_{k \geq 0}\left(A_{k}^{+}-A_{k}^{-}\right) x^{k}
$$

Suppose we have an involution, $I: \mathcal{A} \rightarrow \mathcal{A}$ with $I^{-1}=I$, which preserves size, $|I(a)|=|a|$, and which reverses sign: $\operatorname{sgn}(I(a))=-\operatorname{sgn}(a)$, except when $I(a)=a$.
Involution Priniciple: The signed generating function of \mathcal{A} is equal to that of the fixed point set $\mathcal{F}=\mathcal{A}^{I}=\{a \in \mathcal{A} \mid I(a)=a\}$, since each non-fixed a is canceled by $I(a)$:

$$
\mathcal{F}=\mathcal{A}^{I} \quad \Longrightarrow \quad F^{ \pm}(x)=A^{ \pm}(x) .
$$

Example: The Principle of Inclusion-Exclusion results from a Max-Transfer Involution. Given a class \mathcal{A} and $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n} \subset \mathcal{A}$, let $\mathcal{C}=\left\{(J, a) \in \operatorname{Set}[n] \times \mathcal{A}: a \in \mathcal{B}_{J}\right\}$, where $\mathcal{B}_{J}=\cap_{j \in J} \mathcal{B}_{j}$ and $\mathcal{B}_{\varnothing}=\mathcal{A}$. Let $|(J, a)|=|a|$ and $\operatorname{sgn}(J, a)=(-1)^{\# J}$. For $j(a)=\max \{j \in$ $\left.[n]: a \in \mathcal{B}_{j}\right\}$, define an involution by:

$$
I(J, a)=\left(J^{\prime}, a\right) \quad \text { where } \quad J^{\prime}=\left\{\begin{array}{cl}
J \backslash\{j(a)\} & \text { if } j(a) \in J, \\
J \cup\{j(a)\} & \text { if } j(a) \notin J, \\
J=\varnothing & \text { if } \nexists j(a) \text { since } a \notin \mathcal{B}_{j} \text { for all } j .
\end{array}\right.
$$

This involution gives the Principle of Inclusion-Exclusion:

$$
\mathcal{G} \stackrel{\text { def }}{=} \mathcal{A} \backslash \cup_{j=1}^{n} \mathcal{B}_{j} \cong\left(\mathcal{C}^{ \pm}\right)^{I}, \quad G(x)=C^{ \pm}(x)=\sum_{J \subset[n]}(-1)^{\# J} B_{J}(x) .
$$

If \mathcal{A} is finite, we get the usual formula: $\#\left(\mathcal{A} \backslash \cup_{j=1}^{n} \mathcal{B}_{j}\right)=\sum_{J \subset[n]}(-1)^{\# J} \#\left(\cap_{j \in J} \mathcal{B}_{j}\right)$.

[^0]Example: Euler's Pentagonal Number Theorem. This expands the product formula for $Q(q)$, the generating function of partitions with distinct parts:

$$
Q(-q)=\frac{1}{P(q)}=\prod_{j \geq 1}\left(1-q^{j}\right)=1+\sum_{n \geq 1}(-1)^{n}\left(q^{n(3 n-1) / 2}+q^{n(3 n+1) / 2}\right)
$$

Then $P(q) Q(-q)=1$ is equivalent to the weird recurrence:

$$
p(k)=\sum_{n \geq 1}(-1)^{n-1}\left(p\left(k-\frac{1}{2} n(3 n-1)\right)+p\left(k-\frac{1}{2} n(3 n+1)\right),\right.
$$

where we take $p(0)=1$ and $p(k)=0$ for $k<0$.
The theorem can be proved using Franklin's Involution, a kind of Min-Diagonal Transfer. The left side $Q(-q)$ is the signed generating function for $\mu_{1}>\cdots>\mu_{n}>0$ endowed with $\operatorname{sgn}(\mu)=(-1)^{n}$, the parity of the number of positive parts. In the Ferrars diagram of μ, let $\ell=\mu_{n}$ be the length of the lowest row, and $d=\max \left\{i \mid \mu_{i}=\mu_{1}-i+1\right\}$ the length of the diagonal of slope -1 along the top right edge of the diagram. Define a sign-reversing, size-preserving involution:

$$
I\left(\mu_{1}, \ldots, \mu_{n}\right)=\left\{\begin{array}{cl}
\left(\mu_{1}, \ldots, \mu_{n}\right) & \text { if } \mu \text { is a pentagonal partition, } \\
\left(\mu_{1}+1, \ldots, \mu_{\ell}+1, \mu_{\ell+1}, \ldots, \mu_{n-1}\right) & \text { otherwise if } \ell \leq d \\
\left(\mu_{1}-1, \ldots, \mu_{d}-1, \mu_{d+1}, \ldots, \mu_{n}, d\right) & \text { otherwise if } \ell>d .
\end{array}\right.
$$

The pentagonal partitions are of the form $\mu=(2 n-1,2 n-2, \ldots, n)$ with $|\mu|=\frac{1}{2} n(3 n-1)$, and $\mu=(2 n, 2 n-1, \ldots, n+1)$ with $|\mu|=\frac{1}{2} n(3 n+1)$, the only μ for which the manipulations on the second or third lines will not yield a valid partition. The involution I matches pairs of partitions which cancel in the signed generating function, leaving only the pentagonal partitions uncanceled on the right side of the equation, proving its validity.

Example: Catalan numbers C_{k} count the class \mathcal{C} of Dyck paths, which are sequences $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{2 k}\right)$ with all $\epsilon_{i}= \pm 1, \epsilon_{1}+\cdots+\epsilon_{i} \geq 0$, and $\epsilon_{1}+\cdots+\epsilon_{2 k}=0$. We may think of ϵ as the win/loss record of $2 k$ unit bets, with the requirements that cumulative winnings never dip into bankruptcy and break even at the end. We can split ϵ by removing $\epsilon_{1}=1$ and the first step $\epsilon_{2 i}=-1$ with $\epsilon_{1}+\cdots+\epsilon_{2 i}=0$. This breaks $\epsilon \in \mathcal{C}_{k}$ into left and right parts $\mathcal{C}_{i-1} \times \mathcal{C}_{k-i}$, leading to the Deletion Recurrence $\mathcal{C} \cong \mathcal{C} \times\{\bullet\} \times \mathcal{C} \quad \sqcup\{\varnothing\}$ and the generating function identity $C(x)=x C(x)^{2}+1$, giving $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$. We see $x C(x)$ is the inverse function of $A(x)=x(1-x)$, so Lagrange Inversion gives: $C_{k+1}=$ $\left.\frac{1}{k}\left[x^{-1}\right] A(x)^{-k}=\frac{1}{k}\left[x^{k-1}\right](1-x)^{-k}=\frac{1}{k}\binom{k}{k-1}\right)=\frac{1}{k}\binom{2 k-2}{k-1}$, so $C_{k}=\frac{1}{k+1}\binom{2 k}{k}$.

We get another formla for C_{k} using a Path Reflection Involution. Let

$$
\mathcal{B}_{k}^{+}=\left\{\epsilon \in\{ \pm 1\}^{2 k} \mid \sum_{i=1}^{2 k} \epsilon_{i}=0\right\}, \quad \mathcal{B}_{k}^{-}=\left\{\epsilon \in\{ \pm 1\}^{2 k} \mid \sum_{i=1}^{2 k} \epsilon_{i}=-2\right\}
$$

For $\epsilon \in \mathcal{C}_{k} \subset \mathcal{B}_{k}^{+}$, define $I(\epsilon)=\epsilon$; any other $\epsilon \in \mathcal{B}_{k}^{ \pm}$has a minimal i with $\sum_{j=1}^{i} \epsilon_{j}=-1$, and we define $I(\epsilon)=\left(\epsilon_{1}, \ldots, \epsilon_{i},-\epsilon_{i+1}, \ldots,-\epsilon_{2 k}\right)$. This pairs $\mathcal{B}_{k}^{+} \backslash \mathcal{C}_{k}$ with \mathcal{B}_{k}^{-}, showing that $C_{k}=B_{k}^{+}-B_{k}^{-}=\binom{2 k}{k}-\binom{2 k}{k-1}$.
Example: Stirling numbers and Lonely/Crowded Involution. The formulas

$$
\sum_{n=1}^{k}\left\{\begin{array}{l}
k \\
n
\end{array}\right\} y^{\underline{n}}=y^{k}, \quad \sum_{n=1}^{k}(-1)^{k-n}\left[\begin{array}{l}
k \\
n
\end{array}\right] y^{n}=y^{\underline{k}}
$$

express that the Stirling partition and cycle numbers are change-of-basis coefficients for the polynomial ring $\mathbb{C}[y]$, between the standard basis $\left\{y^{k}\right\}_{k \geq 0}$ and the falling-power basis $\left\{y^{\underline{k}}\right\}_{k \geq 0}$. This implies the infinite lower-triangular matrices $M_{1}=\left[\left\{\begin{array}{l}k \\ n\end{array}\right\}\right]_{k, n \geq 1}$ and $M_{2}=$ $\left[(-1)^{k-n}\left[\begin{array}{c}k \\ n\end{array}\right]\right]_{k, n \geq 1}$ are inverse to each other: $M_{1} \cdot M_{2}=\mathrm{Id}$. That is, for all $k, n \geq 1$,

$$
\sum_{j \geq 1}(-1)^{j-n}\left\{\begin{array}{l}
k \\
j
\end{array}\right\}\left[\begin{array}{l}
j \\
n
\end{array}\right]= \begin{cases}1 & \text { if } k=n \\
0 & \text { if } k \neq n\end{cases}
$$

This formula can be proved combinatorially using the Lonely/Crowded Involution. The left side counts permuted set partitions (S, π) : an unordered partition $S=\left\{S_{1}, \ldots, S_{j}\right\}$ with $S_{1} \sqcup \cdots \sqcup S_{j}=[k]$ and $S_{i} \neq \varnothing$, numbered lexicographically so that $\min \left(S_{1}\right)<\cdots<\min \left(S_{j}\right)$, along with a permutation $\pi \in \mathfrak{S}_{j}$ with n cycles. Also $\operatorname{sgn}(S, \pi)=(-1)^{j-n}$. In the signed count $\sum_{j \geq 0}(-1)^{j-n}\left\{\begin{array}{c}k \\ j\end{array}\right\}\left[\begin{array}{l}j \\ n\end{array}\right]$, the involution I will pair up and cancel all terms except a single fixed point, giving the right side.

The involution will define $I(S, \pi)=\left(S^{\prime}, \pi^{\prime}\right)$. For $\ell \in[n]$, form the union of the cycle of sets $S(\ell) \stackrel{\text { def }}{=} S_{i} \cup S_{\pi(i)} \cup S_{\pi(\pi(i))} \cup \cdots$, where $\ell \in S_{i}$. Take the smallest ℓ such that $\# S(\ell) \geq 2$. If $S_{i}=\{\ell\}$ is a singleton, then join it with the next set on its cycle: $S_{i}^{\prime}=S_{i} \cup S_{\pi(i)}$ and $\pi^{\prime}(i)=\pi(\pi(i))$. If S_{i} is not a singleton, split it into two sets along the same cycle: $S_{i}^{\prime}=\{\ell\}$ and $S_{\pi^{\prime}(i)}^{\prime}=S_{i}-\{\ell\}$, with $\pi^{\prime}\left(\pi^{\prime}(i)\right)=\pi(i)$. This changes the sign $(-1)^{j-n}$ by incrementing/decrementing j while leaving k, n fixed. If there is no such ℓ, then this is the unique fixed point with k singleton sets $S=\{\{1\}, \ldots,\{k\}\}$ and $\pi=\mathrm{id}$.

Quotient constructions. We say that a group G acts on a set \mathcal{A} if each $g \in G$ gives a bijection $g: \mathcal{A} \xrightarrow{\sim} \mathcal{A}$, and $g(h(a))=(g \cdot h)(a)$ for all $g, h \in G$. An orbit is a set $G(a)=\{g(a) \mid g \in G\}$.
Burnside Theorem: For a group G acting on a finite set \mathcal{A}, the set of orbits

$$
\overline{\mathcal{A}}=\mathcal{A} / G \stackrel{\text { def }}{=}\{G(a) \mid a \in \mathcal{A}\}
$$

is counted by the average number of fixed points $\mathcal{A}^{g}=\{a \in \mathcal{A} \mid g(a)=a\}$:

$$
\# \overline{\mathcal{A}}=\frac{1}{\# G} \sum_{g \in G} \# \mathcal{A}^{g}
$$

Proof: The size of an orbit is $\# G(a)=\# G / \# \operatorname{Stab}(a)$, where $\operatorname{Stab}(a)=\{g \in G \mid g(a)=a\}$. Let $\mathcal{S}=\{(g, a) \in G \times \mathcal{A} \mid g(a)=a\}$, counting $\# \mathcal{S}=\sum_{a \in \mathcal{A}} \# \operatorname{Stab}(a)=\sum_{g \in G} \# \mathcal{A}^{g}$. Thus:

$$
\# \overline{\mathcal{A}}=\sum_{a \in \mathcal{A}} \frac{1}{\# G(a)}=\sum_{a \in \mathcal{A}} \frac{\# \operatorname{Stab}(a)}{\# G}=\frac{\# \mathcal{S}}{\# G}=\frac{1}{\# G} \sum_{g \in G} \# \mathcal{A}^{g}
$$

If \mathcal{A} is graded and the same G acts on each \mathcal{A}_{k}, we get the generating function formula:

$$
\bar{A}(x)=\frac{1}{\# G} \sum_{g \in G} A^{g}(x)
$$

Example: Necklace polynomials. Consider the class of colored necklaces $\mathcal{N}=\{f:[k] \rightarrow$ $[n]\}$; we picture f as a string of k beads chosen from n colors, with the action of the cyclic
symmetry group $G=C_{k} \subset \mathfrak{S}_{k}$ generated by the rotation $\rho=(12 \cdots k)$. A function $f \in \mathcal{N}$ is a fixed point of π if it has a constant value $f(i)$ for all i within a cycle of π. The rotation $\pi=\rho^{j}$ has $d=\operatorname{gcd}(j, k)$ cycles of length k / d, and each cycle has choice of n colors, so $\# \mathcal{N}^{\pi}=n^{d}$. Since there are $\varphi(k / d)$ such rotations, where φ is Euler's totient function, the orbits (distinct necklaces) are counted by the necklace polynomial:

$$
N_{k}(n)=\#\left(\mathcal{N} / C_{k}\right)=\frac{1}{k} \sum_{\pi \in \mathcal{C}_{k}} \# \mathcal{N}^{\pi}=\frac{1}{k} \sum_{d \mid k} \varphi(k / d) n^{d} .
$$

This has a remarkable alternative meaning. In the finite field \mathbb{F}_{q} for a prime power $q=p^{k}$, the Galois group over the prime field \mathbb{F}_{p} is the cyclic group C_{k} generated by the Frobenius automorphism $\Phi(\alpha)=\alpha^{p}$. Writing field elements in terms of a Galois normal basis $B=\left\{\gamma, \Phi(\gamma), \ldots, \Phi^{k-1}(\gamma)\right\}$ over the prime field \mathbb{F}_{p} makes each element of \mathbb{F}_{q} correspond to a coefficient function $f: B \rightarrow \mathbb{F}_{p}$, equivalent to $f:[k] \rightarrow[p]$ with the cyclic C_{k} action. Hence the number of distinct necklaces $N_{k}(p)$ is equal to the number Galois orbits on \mathbb{F}_{q}, which Galois theory shows to be the number of irreducible monic polynomials in $\mathbb{F}_{p}[x]$ of all degrees d dividing k. For example, $N_{3}(n)=\frac{1}{3}\left(n^{3}+2 n\right)$, and in $\mathbb{F}_{2}[x]$ there are $N_{3}(2)=4$ irreducible monic polynomials of degree 3 or $1: x^{3}+x+1, x^{3}+x^{2}+1, x, x+1$.

Polya's Method. We refine the above to keep track of the number of beads with each of the n colors, marking them with variables y_{1}, \ldots, y_{n}. Thus we consider a multi-graded class of functions having n weight measures:

$$
\mathcal{F}(\vec{y})=\mathcal{F}\left(y_{1}, \ldots, y_{n}\right)=\{f:[k] \rightarrow[n]\}, \quad \operatorname{wt}_{1}(f)=\# f^{-1}(1), \ldots, \mathrm{wt}_{n}(f)=\# f^{-1}(n) .
$$

This has multivariate generating function:

$$
F(\vec{y})=\sum_{f \in \mathcal{F}} y_{1}^{\operatorname{wt}_{1}(f)} \cdots y_{n}^{\operatorname{wt}_{n}(f)}=\sum_{k_{1}+\cdots+k_{n}=k} F_{k_{1}, \ldots, k_{n}} y_{1}^{k_{1}} \cdots y_{n}^{k_{n}} .
$$

A permutation group $G \subset \mathfrak{S}_{k}$ induces an action on $f \in \mathcal{F}$ by $\pi(f)(i)=f\left(\pi^{-1}(i)\right)$, where the inverse π^{-1} is needed to get $\pi_{1}\left(\pi_{2}(f)\right)=\left(\pi_{1} \cdot \pi_{2}\right)(f)$. The quotient class of orbits $\overline{\mathcal{F}}=\mathcal{F} / G$ has generating function $\bar{F}(\vec{y})$, called Polya's pattern inventory polynomial $P_{G}(\vec{y})$.

To apply Burnside's Theorem, we must count the fixed class \mathcal{F}^{π}, consisting of the functions which are constant on each cycle of π. For such functions, each i-cycle of π contributes a choice of i identical colors with generating function $p_{i}(\vec{y})=y_{1}^{i}+\cdots+y_{n}^{i}$. So:

$$
F^{\pi}(\vec{y})=p_{1}(\vec{y})^{\operatorname{cyc}_{1}(\pi)} \cdots p_{k}(\vec{y})^{\operatorname{cyc}_{k}(\pi)},
$$

where $\operatorname{cyc}_{i}(\pi)=\# i$-cycles of π acting on $[k]$. Then Burnside's Theorem gives:

$$
\bar{F}(\vec{y})=\frac{1}{\# G} \sum_{\pi} \bar{F}^{\pi}(\vec{y})=\frac{1}{\# G} \sum_{\pi \in G} p_{1}(\vec{y})^{\operatorname{cyc}_{1}(\pi)} \cdots p_{k}(\vec{y})^{\operatorname{cyc}_{k}(\pi)} .
$$

In Polya's notation: $\bar{F}(\vec{y})=P_{G}(\vec{y})=\frac{1}{\# G} Z_{G}\left(p_{1}(\vec{y}), \ldots, p_{k}(\vec{y})\right)$, where

$$
Z_{G}\left(z_{1}, \ldots, z_{k}\right)=\sum_{\pi \in G} z_{1}^{\operatorname{cyc}_{1}(\pi)} \ldots z_{k}^{\operatorname{cyc}_{k}(\pi)}
$$

is called the cycle index polynomial; for example $Z_{\mathfrak{S}_{3}}\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{3}+3 z_{1} z_{2}+2 z_{3}$.
Example: Reconsidering necklaces, the cyclic group $G=C_{k} \subset \mathfrak{S}_{k}$ has cycle index:

$$
Z_{G}\left(z_{1}, \ldots, z_{k}\right)=\sum_{d \mid k} \varphi(k / d) z_{k / d}^{d}=\sum_{d \mid k} \varphi(d) z_{d}^{k / d}
$$

Hence the color-counting necklace function $N_{k}(\vec{y})=P_{C_{k}}(\vec{y})=\bar{F}(\vec{y})$ is:

$$
N_{k}\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{k} \sum_{d \mid k} \varphi(d)\left(y_{1}^{d}+\cdots+y_{n}^{d}\right)^{k / d}
$$

The necklace polynomial $N_{k}(n)$ is the specialization of $N_{k}\left(y_{1}, \ldots, y_{n}\right)$ at $y_{1}=\cdots=y_{n}=1$, so that $y_{1}^{d}+\cdots+y_{n}^{d}=n$.

Taking $k=6$ beads with $n=2$ colors (red, blue) marked by $y_{1}=r, y_{2}=b$, we have:

$$
\begin{aligned}
N_{6}(r, b) & =\frac{1}{6}\left((r+b)^{6}+\left(r^{2}+b^{2}\right)^{3}+2\left(r^{3}+b^{3}\right)^{2}+2\left(r^{6}+b^{6}\right)\right) \\
& =b^{6}+r b^{5}+3 r^{2} b^{4}+4 r^{3} b^{3}+3 r^{4} b^{2}+r^{5} b+r^{6} .
\end{aligned}
$$

The coefficient of $r^{3} b^{3}$ counts the 4 necklaces: $r r r b b b, r r b r r b, r r b b r b, r b r b r b$. The necklace polynomial is $N_{6}(n)=N_{6}(1, \ldots, 1)=\frac{1}{6}\left(n^{6}+n^{3}+2 n^{2}+2 n\right)$, so there are $N_{6}(2)=14$ necklaces with 6 beads and any frequencies of r, b.

Multisets from a class. For a general unlabeled class $\mathcal{B}(y)$ with $\mathcal{B}_{0}=\{ \}$, consider the unlabeled bigraded class of multi-sets of \mathcal{B} :

$$
\mathcal{M}(x, y)=\operatorname{MSET}(x \mathcal{B}(y))=\left\{\text { multi-sets } m=\left\{b_{1}, \ldots, b_{k}\right\} \text { with } b_{i} \in \mathcal{B}\right\} .
$$

This has $|m|=k$ marked by x^{k} and $\operatorname{wt}(m)=\sum_{i=1}^{k}\left|b_{k}\right|=n$ marked by y^{n} :
$M(x, y)=\sum_{k, n \geq 0} M_{k}^{(n)} x^{k} y^{n}, \quad M_{k}^{(n)}=\#\{$ multisets of k elements from \mathcal{B} with total weight $n\}$.
Now, the Multiplicity Transform realizes m as a multiplicity function $m: \mathcal{B} \rightarrow \mathbb{N}$ with $|m|=\sum_{b \in \mathcal{B}} m\left(b_{i}\right)$ and $\operatorname{wt}(m)=\sum_{b \in \mathcal{B}} m\left(b_{i}\right)\left|b_{i}\right|$. Thus for $\mathbb{N}(x)=\left\{0,1 x, 2 x^{2}, \ldots\right\}$, we get:

$$
\mathcal{M}(x, y) \cong \mathbb{N}(x)^{\mathcal{B}(y)}, \quad M(x, y)=\prod_{n \geq 1}\left(1-x y^{n}\right)^{-B_{n}}
$$

A second formula comes from realizing $\operatorname{MSet}_{k} \mathcal{B}$ as the quotient $\mathcal{B}^{k} / \mathfrak{S}_{k}$ and applying Burnside theory. Consider the graded class:*

$$
\widetilde{\mathcal{M}}=\coprod_{k \geq 0} \mathcal{B}(y)^{k} \frac{x^{k}}{k!} \cong\{f:[k] \rightarrow \mathcal{B} \text { for } k \in \mathbb{N}\}
$$

with $|f|=k$ marked by $\frac{x^{k}}{k!}$ and $\operatorname{wt}(f)=\sum_{i=1}^{k}|f(i)|=n$ marked by y^{n}. Then we have:

$$
\mathcal{M}=\coprod_{k \geq 0} \widetilde{\mathcal{M}}_{k} / \mathfrak{S}_{k}
$$

As in the proof of Burnside's Theorem, we consider the total stabilizer class:

$$
\coprod_{k \geq 0} \amalg_{\pi \in \mathfrak{S}_{k}} \widetilde{\mathcal{M}}_{k}^{\pi}(x, y) \cong\left\{(\pi, f) \in \mathfrak{S}_{k} \times \widetilde{\mathcal{M}}_{k} \mid k \geq 0, \pi(f)=f\right\} \stackrel{\text { def }}{=} \tilde{\mathcal{S}}(x, y),
$$

and we apply the Theorem to compute the generating function of the quotient:

$$
M(x, y)=\sum_{k \geq 0} x^{k}\left(\frac{1}{k!} \sum_{\pi \in \mathfrak{G}_{k}} \tilde{M}_{k}^{\pi}(y)\right)=\tilde{S}(x, y)
$$

Note that the right side is the exponential generating function of $\tilde{\mathcal{S}}$, whereas the left side is the ordinary generating function of \mathcal{M} : the factor $\frac{1}{k!}$ appears as $\frac{1}{\# G}=\frac{1}{\# \mathcal{S}_{k}}$.

[^1]Thus we need to compute $\tilde{S}(x, y)$. Now, $\tilde{\mathcal{S}}$ contains those (π, f) for which $f:[k] \rightarrow \mathcal{B}$ is constant on each cycle of π. We can construct $\tilde{\mathcal{S}}$ by taking labeled cycles of length $\ell \geq 1$, each tagged with a repeated element of $\Delta^{\ell} \mathcal{B}=\{(b, \ldots, b)$ for $b \in \mathcal{B}\}$; then taking sets of these tagged cycles, relabeling the indices to get a permutation π and a function f constant on each cycle:

$$
\tilde{\mathcal{S}} \cong \operatorname{SET}^{\sim} 山_{\ell \geq 1}\left(\operatorname{CYC}_{\ell}^{\sim}([1] x) \times \Delta^{\ell} \mathcal{B}(y)\right)
$$

We deduce our second formula for the generating function of $\mathcal{M}(x, y)=\operatorname{MSET}(x \mathcal{B}(y))$:

$$
M(x, y)=\tilde{S}(x, y)=\exp \left(x \mathcal{B}(y)+\frac{x^{2}}{2} \mathcal{B}\left(y^{2}\right)+\frac{x^{3}}{3} \mathcal{B}\left(y^{3}\right)+\cdots\right) .
$$

Subsets of a class. We can apply the same analysis to $\mathcal{L}(x, y)=\operatorname{SET}(x \mathcal{B}(y))$, the unlabeled class of subsets $s=\left\{b_{1}, \ldots, b_{k}\right\}$ of \mathcal{B}-elements with no repeats, with the number of elements $|s|=k$ marked by x^{k}, and with total weight $\mathrm{wt}(s)=\sum_{i=1}^{k}\left|b_{k}\right|=n$ marked by y^{n}. Again, the Multiplicity Transform gives the first formula:

$$
\mathcal{L}(x, y) \cong\{0,1 x\}^{\mathcal{B}(y)}, \quad L(x, y)=\sum_{k, n \geq 0} L_{k}^{(n)} x^{k} y^{n}=\prod_{n \geq 1}\left(1+x y^{n}\right)^{B_{n}} .
$$

To obtain a second formula by considering $\mathcal{L}=\operatorname{SET} \mathcal{B}$ as a quotient, we again consider $\widetilde{\mathcal{M}}(x, y)=\{f:[k] \rightarrow \mathcal{B}$ for $k \geq 0\}$, so that $\operatorname{MSET}_{k}(\mathcal{B}) \cong \widetilde{\mathcal{M}}_{k} / \mathfrak{S}_{k}$, and the total stabilizer:

$$
\tilde{\mathcal{S}}(x, y)=\left\{(\pi, f) \in \mathfrak{S}_{k} \times \widetilde{\mathcal{M}}_{k} \mid k \geq 0, \pi(f)=f\right\}, \quad M(x, y)=\tilde{S}(x, y) .
$$

Now let $\widetilde{\mathcal{L}}=\{$ injective $f:[k] \hookrightarrow \underset{\widetilde{\mathcal{L}}}{ }$ for $k \geq 0\}$, so that $\mathcal{L}_{k} \cong \widetilde{\mathcal{L}}_{k} / \mathfrak{S}_{k}$. Since $f(1)_{2} \ldots, f(k)$ are all distinct, \mathfrak{S}_{k} acts freely on $\widetilde{\mathcal{L}}_{k}$, i.e. $\pi(f)=f$ only for $\pi=\mathrm{id}$, and $L_{k}(y)=\widetilde{L}_{k}(y) / k$!.

$$
\widetilde{\mathcal{L}} \cong\{\mathrm{id}\} \times \widetilde{\mathcal{L}}=\left\{(\pi, f) \in \mathfrak{S}_{k} \times \widetilde{\mathcal{L}} \mid k \geq 0, \pi(f)=f\right\}
$$

We will define a sign function on $\tilde{\mathcal{S}}$, as well as an involution I which cancels non-injective f, so that $\tilde{\mathcal{S}}^{I}=\{\mathrm{id}\} \times \widetilde{\mathcal{L}}$. Then by the Involution Principle, the signed generating function of $\tilde{\mathcal{S}}$ equals the (positive) signed generating function of the fixed class $\tilde{\mathcal{S}}^{I} \subset \tilde{\mathcal{S}}^{+}$:

$$
\tilde{S}^{ \pm}(x, y)=\tilde{S}^{I}(x, y)=\widetilde{L}(x, y)=\sum_{k \geq 0} \frac{\widetilde{L}_{k}(y)}{k!} x^{k}=\sum_{k \geq 0} L_{k}(y) x^{k}=L(x, y) .
$$

That is, the ordinary generating function of \mathcal{L} is equal to the signed exponential generating function of $\tilde{\mathcal{S}}$. To compute $\tilde{S}^{ \pm}(x, y)$, we repeat the multiset construction, but with signs:

$$
\tilde{\mathcal{S}} \cong \operatorname{SET}^{\sim} \coprod_{\ell \geq 1}\left((-1) \operatorname{CYC}_{\ell}^{\sim}((-1)[1] x) \times \Delta^{\ell} \mathcal{B}(y)\right),
$$

The signed generating function gives our second formula to count $\mathcal{L}(x, y)=\operatorname{SET}(x \mathcal{B}(y))$:

$$
L(x, y)=\tilde{S}^{ \pm}(x, y)=\exp \left(x \mathcal{B}(y)-\frac{x^{2}}{2} \mathcal{B}\left(y^{2}\right)+\frac{x^{3}}{3} \mathcal{B}\left(y^{3}\right)-\cdots\right) .
$$

Lastly, we define the promised sign function and involution on $(\pi, f) \in \tilde{\mathcal{S}}_{k}$. Let $\operatorname{sgn}(\pi, f)=(-1)^{k-\operatorname{cyc}(\pi)}$. For $(\mathrm{id}, f) \in\{\mathrm{id}\} \times \widetilde{\mathcal{L}}$ with f injective, let $I(\mathrm{id}, f)=(\mathrm{id}, f)$. Otherwise, if $(\pi, f) \in \tilde{\mathcal{S}}^{ \pm}$with $f:[k] \rightarrow \mathcal{B}$ not injective, suppose $f(i)=f(j)$ for minimal
$i, j \in[k]$; then define $I(\pi, f)=(\pi \cdot(i j), f)$, multiplying π by the transposition $(i j)$, so that $\pi \cdot(i j)=(\ell m) \cdot \pi$ for $\ell=\pi(a), m=\pi(j)$. This reverses the $\operatorname{sign}(-1)^{k-\operatorname{cyc}(\pi)}$, since if i, j lie in the same cycle of π, then $\pi \cdot(i j)$ cuts this cycle into two; if i, j lie on different cycles, then $\pi \cdot(i j)$ joins these cycles into one. Thus, I pairs off all non-injective $(\pi, f) \in \tilde{\mathcal{S}}^{ \pm}$, leaving only the injective (id, f).

We call I the $0 / 00$ Involution because it splits a single cycle 0 into two cycles 00 , and vice versa. It is useful because it toggles both obvious definitions of sign for π, incrementing/decrementing both the number of cycles and the number of transpositions.

Poset constructions. The ideas of Doubilet-Rota-Stanley give a direct connection between combinatorial structures and generating series: semi-infinite ranked posets give algebra structures to graded classes, and generating series emerge as subalgebras.

A poset is a class \mathcal{P} with a partial order relation $a<b$ which is anti-symmetric $(a<$ $b \Rightarrow b \not \leq a)$ and transitive $(a<b<c \Rightarrow a<c)$, and we define $a \leq b$ to mean $a<b$ or $a=b$. A covering $a \lessdot b$ means $a<b$ with no intermediate elements $a<c<b$. If \mathcal{P} has a unique minimal element, we denote it as $\hat{0} \leq a$ for all $a \in \mathcal{P}$. and similarly for a unique maximal element $\hat{1} \geq a$.

An interval is a sub-poset $[a, b]=\{c \in \mathcal{P}$ with $a \leq c \leq b\}$. A chain of length ℓ from a to b is an increasing sequence $a=a_{0}<a_{1}<\cdots<a_{\ell}=b$, and it is a saturated chain if each inequality is a covering. A ranked poset is a graded class $\mathcal{P}=\coprod_{k \geq 0} \mathcal{P}_{k}$ with size function $|a|=\operatorname{rk}(a)$ such that any covering $a \lessdot b$ has $\operatorname{rk}(a)+1=\operatorname{rk}(b)$; the length of an interval $[a, b]$ is defined as $\ell(a, b)=\operatorname{rk}(b)-\operatorname{rk}(a) .^{\dagger}$ An antichain of length ℓ is a set of elements $\left\{a_{1}, \ldots, a_{\ell}\right\}$ with no inequalities among them, $a_{i} \neq a_{j}$.

The incidence algebra of a poset is defined as:

$$
I(\mathcal{P})=\{\alpha: \operatorname{Int}(\mathcal{P}) \rightarrow \mathbb{C}\} \cong \bigoplus_{a \leq b} \mathbb{C}[a, b]
$$

all functions on the set of intervals $\operatorname{Int}(\mathcal{P})=\{[a, b]$ for $a \leq b\}$; a function α can be written as a formal linear combination of intervals: $\alpha=\sum_{a \leq b} \alpha(a, b)[a, b]$. Functions are multiplied by convolution, which is equivalent to concatenation of intervals:

$$
(\alpha \cdot \beta)(a, b)=\sum_{a \leq c \leq b} \alpha(a, c) \beta(c, b), \quad[a, b] \cdot[c, d]=\left\{\begin{array}{cl}
{[a, d]} & \text { if } b=c \\
0 & \text { otherwise }
\end{array}\right.
$$

Any linear extension $e: \mathcal{P} \rightarrow \mathbb{Z}$, meaning $a<b \Rightarrow e(a)<e(b)$, induces an injective homomorphism from $I(\mathcal{P})$ to the algebra of upper-triangular matrices, with the basis element $[a, b] \in I(\mathcal{P})$ mapping to the coordinate matrix $E_{e(a), e(b)}$ in $M_{n \times n}(\mathbb{C})$ if $n=\# \mathcal{P}<\infty$, or in $M_{\mathbb{Z} \times \mathbb{Z}}(\mathbb{C})$ if \mathcal{P} is countably infinite.

The identity element of $I(\mathcal{P})$ is the delta function $\delta(a, a)=1$ and $\delta(a, b)=0$ for $a<b$. An element α has a reciprocal $\alpha^{-1} \in I(\mathcal{P})$ whenever $\alpha(a, a) \neq 0$ for all a. The zeta-function is defined as $\zeta(a, b)=1$ for all $a \leq b$, and its reciprocal is the Möbius function $\mu=\zeta^{-1}$. Then $\mu \cdot \zeta=\delta$ is equivalent to $\mu(a, a)=1$ and $\sum_{c \in[a, b]} \mu(a, c)=0$ for $a<b$, and to the recursive formula $\mu(a, b)=-\sum_{a \leq c<b} \mu(a, c)$.
Mobius Inversion Formula: For functions $f, g: \mathcal{P} \rightarrow \mathbb{C}$, we have two pairs of equivalences:
$f(a)=\sum_{b \geq a} g(b) \Longleftrightarrow g(a)=\sum_{b \geq a} \mu(a, b) g(b), \quad$ and $\quad f(b)=\sum_{a \leq b} g(a) \Longleftrightarrow g(b)=\sum_{a \leq b} g(a) \mu(a, b)$.

[^2]Proof: Let $I(\mathcal{P})$ act on the vector space of functions $\mathbb{C}[\mathcal{P}]=\{f: \mathcal{P} \rightarrow \mathbb{C}\}$ as a left module via $(\alpha \cdot f)(a)=\sum_{b \geq a} \alpha(a, b) f(b)$, so that $\alpha \cdot(\beta \cdot f)=(\alpha \cdot \beta) \cdot f . \ddagger$ Then we have:

$$
f(a)=\sum_{b \geq a} g(b) \Longleftrightarrow f=\zeta \cdot g \quad \Longleftrightarrow \quad \mu \cdot f=\mu \cdot \zeta \cdot g=g \quad \Longleftrightarrow \quad g(a)=\sum_{b \geq a} \mu(a, b) f(b) .
$$

The other equivalence follows from the right action $(f \cdot \alpha)(b)=\sum_{a \leq b} f(a) \alpha(a, b)$.
A binomial poset is a ranked poset with a distinguished infinite chain $\hat{0}=\tilde{0} \lessdot \tilde{1} \lessdot \tilde{2} \lessdot \cdots$, such that for every interval $[a, b]$ with length $\ell(a, b)=n$, the set $\mathcal{B}(a, b)$ of saturated chains from a to b has the same number of elements, $\# \mathcal{B}(a, b)=\# \mathcal{B}(\tilde{0}, \tilde{n})=B(n)$, where $B(0)=B(1)=1$. In $I(\mathcal{P})$, define the elements:

$$
\bar{n}=\sum_{\ell(a, b)=n}[a, b], \quad x=\overline{1}=\sum_{a<b}[a, b] .
$$

Then:

$$
x^{n}=\sum_{(a<\cdots<b) \in \mathcal{B}(a, b)}[a, b]=B(n) \bar{n} .
$$

Now define the reduced incidence algebra:

$$
R(\mathcal{P})=\underset{n \geq 0}{\bigoplus} \mathbb{C} \frac{x^{n}}{B(n)}=\underset{n \geq 0}{\bigoplus} \mathbb{C} \bar{n}=\{\alpha \in I(\mathcal{P}) \text { with } \alpha(a, b)=\alpha(\tilde{0}, \tilde{n}) \text { for } n=\ell(a, b)\}
$$

We can write elements of $R(\mathcal{P})$ as power series:

$$
\alpha=a_{0}+a_{1} x+a_{2} \frac{x^{2}}{B(2)}+a_{3} \frac{x^{3}}{B(3)}+\cdots,
$$

where the term a_{0} means $a_{0} \delta$. That is, $R(\mathcal{P})$ is isomorphic to the formal power series ring $\mathbb{C}[[x]]$ with basis $x^{n} / B(n)$, and we may transfer the x-adic topology to $R(\mathcal{P})$. The zeta and Mobius functions lie in $R(\mathcal{P})$:

$$
\zeta=\sum_{n \geq 0} \frac{x^{n}}{B(n)}, \quad \mu=\frac{1}{\zeta}=\frac{1}{1+(\zeta-1)}=1-(\zeta-1)+(\zeta-1)^{2}-\cdots
$$

This series converges because the $n^{\text {th }}$ term contains only components $[a, b]$ with $\ell(a, b) \geq n$.

[^3]************************************** What is the real meaning of PIE?
(i) Mobius inversion for functions on the binomial poset $\mathcal{P}=\wp[n]$.
(ii) Involution principle, cancellation in a signed class $\wp[n] \times \mathcal{A}$.
(iii) Algebra of characteristic functions in $\mathbb{C}[\mathcal{A}]$.
(iv) Some kind of universal framework in $I(\mathcal{P})$ including the other approaches

Is there a Taylor's coefficient formula for general $R(\mathcal{P})$, generalizing calc of finite differences for $\mathcal{P}=\mathbb{N}$ with $\mu \cdot f=\Delta f$?

Examples: chain, Boolean (product), divisor poset (product, non-binomial; necklace poly Moreau $M_{n}(k)$)

Stratification posets. Geometric lattices, hyperplane arrangements, set partitions, Mobius via characteristic polynomial counting. Regular cell complexes, simpicial complexes and Hall's Theorem, $\Delta(\mathcal{P}(\Delta))$ is barycentric subdivision. Is every important poset a stratification poset?

Product posets: For two posets \mathcal{P}, \mathcal{Q}, their Cartesian product $\mathcal{P} \times \mathcal{Q}$ is defined by $(p, q) \leq$ $\left(p^{\prime}, q^{\prime}\right)$ whenever $p \leq p^{\prime}$ and $q \leq q^{\prime}$. The Mobius function of a product poset is the product of the Mobius functions of the factors: $\mu_{\mathcal{P} \times \mathcal{Q}}\left((p, q),\left(p^{\prime}, q^{\prime}\right)\right)=\mu_{\mathcal{P}}\left(p, p^{\prime}\right) \mu_{\mathcal{Q}}\left(q, q^{\prime}\right)$, as is easily checked using the recursive formula above.

Example: Divisor poset $\mathcal{D}=\{1,2,3, \ldots\}$ ordered by integer divisibility written as $a \mid b$ instead of $a \leq b$, and minimal element 1 instead of $\hat{0}$. This is not a binomial poset, but has similar features. Its standard elements $\tilde{n}=n$ do not form a chain, but every interval is isomorphic to a standard interval: $[a, b] \cong[1, b / a] .{ }^{\S}$ Define the reduced incidence algebra:

$$
R(\mathcal{P})=\underset{n \geq 0}{\bigoplus} \mathbb{C} \bar{n}=\{\alpha \in I(\mathcal{P}) \text { with } \alpha(a, b)=\alpha(1, n) \text { for } n=b / a\}
$$

We can easily check the character law $\bar{n} \cdot \bar{m}=\overline{n m}$, which is the same as the multiplication of the functions n^{s} for a complex variable s. Thus $R(P)$ is isomorphic to the algebra of Dirichlet series $\bigoplus_{n \geq 0} \mathbb{C} n^{s}$ via $\bar{n} \mapsto n^{s}$, and we may identify $\alpha \in R(\mathcal{P})$ with the function

$$
\alpha(s)=\frac{a_{1}}{1^{s}}+\frac{a_{2}}{2^{s}}+\frac{a_{3}}{3^{s}}+\cdots \quad \text { for } \quad a_{n}=\alpha(1, n) .
$$

Again, $R(\mathcal{P})$ contains $\delta(s)=1$. and $\zeta(s)$ is the classical Riemann zeta function. Its reciprocal $\mu(s)=1 / \zeta(s)=\sum_{n \geq 0} \mu(n) / n^{s}$ is the original case for which Mobius introduced his function.
$* *$
Example: q-Boolean subspaces, q-Binomial Theorem in $R(\mathcal{P})$.
Use q-commuting twisted $R(\mathcal{P})_{q}$, expanded to a flag algebra, and twisted with vectormarkings. Prove $y x=q x y \Rightarrow(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k}_{q} x^{k} y^{n-k}$, via coordinate-free Schubert cell mapping. Quantum function algebras.

[^4]Koornwinder: How this relates to $(1+x)(1+q x) \cdots\left(1+q^{n-1} x\right)=\sum_{k=0}^{n} q^{\binom{k}{2}} x^{k} /[k]_{q}^{!}$. Mention q-analog of $\left(1+\frac{x}{n}\right)^{n} \rightarrow e^{x}$.

Also Macdonald-book type formulas like $\prod_{i=1}^{n}\left(1+t^{k} x_{i}\right)=\sum_{k=0}^{n} t^{k} e_{i}\left(x_{1}, \ldots, x_{n}\right)$
Cauchy identity \& generalization to dual bases in Λ

Two "dual" algebras via Britz-Fomin, Dilworth-Greene chain-antichain duality.

1. Order ideal lattice $J(\mathcal{P})$ with antichain basis
2. Flag algebra $\mathbb{C} \Delta[\mathcal{P}]$ with chain basis, i.e. the chain complex of simplicial complex $\Delta(\mathcal{P})$, with concatenation multiplication $=$ cup product. Beilinson-Kazhdan-Macpherson on quantum function algebras. Or is it quantum enveloping algebra?

Summary of asymptotic theorems \& examples from green spiral notebook: poles, comparison theorems, saddle point for Stirling.

Problems

1. The formula $\zeta \cdot \mu=\delta$ is equivalent to the equations: $\mu[a, a]=1$ and $\sum_{a \leq c \leq b} \mu[a, c]=0$ for $a<b$. The direct product of two posets is $\mathcal{P} \times \mathcal{Q}$, with $(p, q) \leq\left(p^{\prime}, q^{\prime}\right)$ whenever $p \leq p^{\prime}$ and $q \leq q^{\prime}$. Prove that the Möbius function of the product is the product of the individual Möbius functions of \mathcal{P}, \mathcal{Q} :

$$
\mu_{\mathcal{P} \times \mathcal{Q}}\left[(p, q),\left(p^{\prime}, q^{\prime}\right)\right]=\mu_{\mathcal{P}}\left[p, p^{\prime}\right] \mu_{\mathcal{Q}}\left[q, q^{\prime}\right] .
$$

2. For the poset $\mathcal{P}=\mathcal{D}_{18}$, the 6 -element poset of divisors of $18=2 \cdot 3^{2}$ ordered by divisibility, work out the Möbius function $\mu[a, b]$ in several ways:
a. Write a 6×6 matrix Z corresponding to $\zeta[a, b]=1$ for all $a \leq b$, and invert by Gaussian elimination: write a double matrix $[Z \mid I]$, then row reduce to the form $[I \mid M]$, so that $M=Z^{-1}$.
b. Write $Z=I+N$, for identity I and strictly upper-triangular N, nilpotent with $N^{6}=0$. By computer, expand the geometric series $M=(I+N)^{-1}=I-N+N^{2}-\cdots$.
c. For each $a \in \mathcal{P}$, draw a copy of the Hasse diagram (a 2×3 rectangle). Mark $\mu[a, a]=1$, then work upwards computing $\mu[a, b]$ using the recurrence $\mu[a, b]=-\sum_{a \leq c<b} \mu[a, c]$.
d. Apply the product formula of $\# 1$ above to $\mathcal{D}_{18} \cong[2] \times[3]$, the direct product of two chains. Match this with Mobius' original description: $\mu[d, n]=(-1)^{k}$ if n / d is the product of k distinct primes, and $\mu[d, n]=0$ if n / d is divisible by a square number.
e. Evaluate Phillip Hall's Formula: $\mu[a, b]=\hat{c}_{0}-\hat{c}_{1}+\hat{c}_{2}-\cdots$, where \hat{c}_{d} is the number of chains of length d from a to b in \mathcal{P}, starting with $\hat{c}_{0}=0, \hat{c}_{1}=1$.
f. Consider $\mathcal{P}=\mathcal{Q} \sqcup\{\hat{0}, \hat{1}\}$, where $\mathcal{Q}=\{a \in \mathcal{P}$ with $\hat{0}<a<\hat{1}\}$, and form the simplicial complex $\Delta(Q)$ whose elements are all chains in \mathcal{Q}. Draw a picture of the corresponding topological space, consisting of one-simplexes glued at their endpoints.

Hall's Formula says $\mu[\hat{0}, \hat{1}]=\tilde{\chi}(\Delta(Q))$, the reduced Euler characteristic of the above topological space, the alternating sum of the number of simplexes of each dimension, minus 1. Compute $\tilde{\chi}(\Delta(Q))$ from this definition. Also, find the simplest triangulation of this space, and compute $\tilde{\chi}$ from that.
3. The posets \mathcal{D}_{n} of divisors of n have the semi-infinite union $\mathcal{P}=\mathcal{D}_{\infty}=\{1,2,3, \ldots\}$ ordered by divisibility. This has standard elements $\hat{n}=n$, and the equivalence of intervals $[a, b] \sim[c, d]$ whenever $b / a=d / c,{ }^{\text {『 }}$ which induces equivalence classes $\bar{n}=\overline{[1, n]}$, making a basis of the reduced algebra $R(\mathcal{P})=\bigoplus_{n>1} \mathbb{C} \bar{n}$. We have $\bar{n} \bar{m}=\overline{n m}$, so $R(\mathcal{P})$ embeds in the ring of complex functions via $\bar{n} \cong n^{-s}$, and $\alpha \in R(\mathcal{P})$ corresponds to a Dirichlet series $\sum_{n \geq 1} \frac{\alpha(\bar{n})}{n^{s}}$, where s is a complex variable.
a. Recall how we counted necklaces of n beads chosen from k colors, orbits of the cyclic symmetry group $G=C_{n}$. Since G has $\phi(n / d)$ permutations with d cycles, Burnside's Theorem showed that the number of orbits is the necklace polynomial:

$$
N_{n}(k)=\frac{1}{\# G} \sum_{\pi \in G} k^{\operatorname{cyc}(\pi)}=\frac{1}{n} \sum_{d \mid n} \phi(n / d) k^{d} .
$$

Problem: Count the number $M_{n}(k)$ of aperiodic necklaces, those with no cyclic symmetry, so their orbit has size n. We use a form of inclusion-exclusion. Show that:

$$
k^{n}=\sum_{d \mid n} d M_{d}(k) .
$$

That is, if we consider $\alpha(n)=k^{n}$ and $\beta(n)=n M_{n}(k)$ as elements of $R(\mathcal{P})$, we have $\alpha=\zeta \cdot \beta$. Now give a formula for $M_{n}(k)$ via Mobius inversion.
Note: For an extension of finite fields $\mathbb{F}_{p} \subset \mathbb{F}_{q}$ with $q=p^{n}$, the cyclic group $G=C_{n}$ is the Galois group, generated by the Frobenius automorphism $\Phi(s)=s^{p}$. Elements of $\mathbb{F}_{p^{n}}$ can be written as $a_{1} s_{\circ}+a_{2} \Phi\left(s_{\circ}\right)+\cdots+a_{n} \Phi^{n-1}\left(s_{\circ}\right)$ for a fixed $s_{\circ} \in \mathbb{F}_{q}$ and arbitrary $a_{i} \in \mathbb{F}_{p}$, so we may consider the coefficients as taking the role of $k=p$ colors in a necklace. An orbit of G comprises the roots of an irreducible polynomial over \mathbb{F}_{p}, and orbits of size n are the roots of irreducible polynomials of degree n. Thus $M_{n}(p)$ counts monic irreducible polynomials of degree n in $\mathbb{F}_{p}[x]$.
b. \mathcal{D}_{n} is a lattice. What is the usual number-theory interpretation of the meet $a \vee b$ and the join $a \wedge b$?
[Added] c. Show that \mathcal{D}_{n} is distributive. Find its join-irreducible elements, and show that $k=\bigvee j$ where j runs over all join-irreducibles $\leq k$.

[^5]4. For a finite field $F=\mathbb{F}_{q}$, consider the poset $\mathcal{B}_{n}(q)$ of linear subspaces $V \subset F^{n}$ ordered by inclusion, a q-analog of the Boolean poset $\mathcal{B}_{n} \cong \wp[n]$ of subsets $I \subset[n]$. The union of these spaces via the inclusions $0 \subset F^{1} \subset F^{2} \subset \cdots$ is the semi-infinte poset $\mathcal{P}=\mathcal{B}_{\infty}(q)$, with standard elements $\hat{n}=F^{n}$. The reduced incidence algebra $R(\mathcal{P})$ is isomorphic to $\mathbb{C}[[x]]$, with the basis element \bar{n} corresponding to $x^{n} /[n]_{q}^{!}$. Thus we can consider $R(\mathcal{P})$ as the ring of Eulerian generating functions:
$$
f(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{[n]_{q}^{!}}=a_{0}+a_{1} x+a_{2} \frac{x^{2}}{1+q}+a_{3} \frac{x^{3}}{\left(1+q+q^{2}\right)(1+q)}+\cdots .
$$

The zeta function of \mathcal{P} is $\zeta=\exp _{q}(x)=\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}^{!}}$.
a. Explain why \mathcal{P} is a binomial poset with

$$
B(n)=[n]_{q}^{!}=\# \operatorname{Flag}\left(\mathbb{F}_{q}^{n}\right)=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}, \quad \text { where }[n]_{q}=\frac{q^{n}-1}{q-1} .
$$

b. Show that the reciprocal of $\zeta=\exp _{q}(x)$ is the powersd series

$$
\mu=\sum_{n \geq 0}(-1)^{n} q^{\binom{n}{2}} \frac{x^{n}}{[n]_{q}^{!}},
$$

and determine the Mobius function $\mu[U, V]$ for any $U \subset V$ in \mathcal{P}.
Hint: Use the q-binomial theorem $\prod_{i=1}^{n}\left(1+q^{i-1} x\right)=\sum_{k=0}^{n} q^{\binom{k}{2}}\binom{n}{k}_{q} x^{k}$.
c. For an n-dimensional $V \in \mathcal{P}$, let

$$
\begin{aligned}
& \alpha(V)=\alpha(n)=\#\left\{\text { linear functions } f: F^{k} \rightarrow V\right\}=q^{n k} \\
& \beta(V)=\beta(n)=\#\left\{\text { surjective } f: F^{k} \rightarrow V\right\}=\operatorname{surj}_{q}(k, n) .
\end{aligned}
$$

Every $f: F^{k} \rightarrow F^{n}$ is surjective onto its image $V=f\left(F^{k}\right)$, so that

$$
\alpha(n)=\sum_{V \subset F^{n}} \beta(V) .
$$

Solve for $\beta(n)$ by Mobius inversion, obtaining an explicit summation formula for the number of surjective linear mappings $f: F^{k} \rightarrow F^{n}$.
d. Show that the number of surjective linear mappings $f: F^{k} \rightarrow F^{n}$ is equal to the number of injective linear mappings $f: F^{n} \rightarrow F^{k}$. Determine this last number directly, obtaining a product formula much simpler than in part (c). Verify algebraically that these formulas are equal for $n=1$.

Notes: The Grassmannian $\operatorname{Gr}\left(d, F^{n}\right)$ is the parameter space whose points correspond to d-dimensional subspaces V in the n-dimensional vector space F^{n} over a given field F. We specify a subspace $V=\operatorname{Span}_{F}\left(v_{1}, \ldots, v_{d}\right)$ by a $d \times n$ matrix of row vectors, with change-of-basis symmetry group $\mathrm{GL}_{d}(F)$. This matrix can be normalized by making a given $d \times d$ submatrix into the identity, in columns $I=\left\{i_{1}<\cdots<i_{d}\right\} \subset[n]$, provided the determinant of this submatrix is nonzero:

The *'s denote $d(n-d)$ free parameters in F defining a coordinate chart U_{I} of the Grassmannian, making it into an F-manifold: $\operatorname{Gr}\left(d, F^{n}\right)=\bigcup_{I} U_{I}$.

We define the Schubert cell decomposition $\operatorname{GR}\left(d, F^{n}\right)=\coprod_{I} X_{I}$ by letting X_{I} consist of those $V \in U_{I}$ which have no $*$'s to the right of any 1 (row-echelon form). We can define X_{I} geometrically in terms of the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of F^{n} and the standard coordinate subspaces $E_{r}=\operatorname{Span}\left(e_{1}, \ldots, e_{r}\right)$; then $V \in X_{I}$ whenever $\operatorname{dim}\left(V \cap E_{r}\right)=\#(I \cap[r])$ for $r=1, \ldots, n$. That is, $I=[d]$ forces $V=E_{d}$, and larger I makes $V \in X_{I}$ stick out further from the standard subspaces, until $I=\{n-d+1, \ldots, n\}$ corresponds to generic V 's in the open set $X_{I}=U_{I}$. The topological closure \bar{X}_{I} is given by: $\operatorname{dim}\left(V \cap E_{r}\right) \geq \#(I \cap[r])$ for $r=1, \ldots, n$. We keep track of how the cells fit together using the Bruhat degeneration order: we define $I \leq J$ to mean $X_{I} \subset \bar{X}_{J}$, or equivalently $\bar{X}_{I} \subset \bar{X}_{J}$.
Example: For $\operatorname{Gr}\left(2, F^{4}\right)$, we have:

$$
\begin{gathered}
U_{34}=X_{34}=\left[\begin{array}{cccc}
* & * & 1 & 0 \\
* & * & 0 & 1
\end{array}\right]=\left\{V \mid V \cap E_{2}=0, \operatorname{dim}\left(V \cap E_{3}\right)=1\right\}, \\
U_{14}=\left[\begin{array}{llll}
1 & * & * & 0 \\
0 & * & * & 1
\end{array}\right], \quad X_{14}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & * & * & 1
\end{array}\right]=\left\{V \mid E_{1} \subset V \not \subset E_{3}\right\} .
\end{gathered}
$$

Here are the cell closures with defining conditions, height indicating Bruhat order:

$$
\begin{gathered}
\bar{X}_{34}=\operatorname{GR}\left(2, F^{4}\right) \\
\bar{X}_{24}=\left(\operatorname{dim}\left(V \cap E_{2}\right) \geq 1\right) \\
\bar{X}_{23}=\left(V \subset E_{3}\right) \quad \bar{X}_{14}=\left(E_{1} \subset V\right) \\
\bar{X}_{13}=\left(E_{1} \subset V \subset E_{3}\right) \\
\bar{X}_{12}=\left(V=E_{2}\right)
\end{gathered}
$$

The Bruhat order relations $\bar{X}_{I} \subset \bar{X}_{J}$ are evident from the defining conditions on V. To verify in coordinates that $\{1,3\} \leq\{1,4\}$, we show that any plane $V_{\circ} \in X_{13}$ is approached by planes in X_{14} : we find a continuous family $\mathcal{V}: F \rightarrow \operatorname{GR}\left(2, F^{4}\right)$ with $\mathcal{V}(t) \in X_{14}$ for $t \neq 0$, and $\mathcal{V}(0)=V_{0}$:

$$
V_{\circ}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & a & 1 & 0
\end{array}\right], \quad \mathcal{V}(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & a & 1 & t
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a / t & 1 / t & 1
\end{array}\right] \text { for } t \neq 0 .
$$

Similarly, the flag manifold $\mathrm{FL}_{\mathrm{L}}\left(F^{n}\right)$ is the parameter space of flags

$$
V_{\bullet}=\left(0 \subset V_{1} \subset \cdots \subset V_{n-1} \subset F^{n}\right), \quad \operatorname{dim}\left(V_{d}\right)=d
$$

We specify V_{\bullet} by a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of F^{n}, with $V_{d}=\operatorname{Span}\left(v_{1}, \ldots, v_{d}\right)$; the basis forms an $n \times n$ matrix of row vectors. The change-of-basis symmetry group B of V_{\bullet} consists of all lower-triangular matrices (with non-zero diagonal entries) in $\mathrm{GL}_{n}(F)$, since we can add a multiple of v_{i} only to a later basis vector to leave each V_{d} invariant. We get a Schubert cell decomposition indexed by permutations $w \in S_{n}: \operatorname{Fl}\left(F^{n}\right)=\coprod_{w} X_{w}$, where X_{w} consists of V_{\bullet} whose B-reduced form is a permutation matrix w, plus $*$ coordinates in the positions of the Röthe diagram $D(w)=\left\{(i, j) \mid j<w(i), i<w^{-1}(j)\right\}$. Thus $\operatorname{dim}\left(X_{w}\right)=\# D(w)=\operatorname{inv}(w)$.

Problems.

1a. Determine the Gaussian binomial coefficient $\binom{6}{3}_{q}=\# \mathrm{GR}\left(3, \mathbb{F}_{q}^{6}\right)$ as the number of 3×6 V-basis matrices divided by the number of 3×3 change-of-basis matrices; also as a quotient of q-integers $[n]_{q}=\frac{q^{n}-1}{q-1}$; and finally as a polynomial by dividing through (with computer).
b. There are $\binom{6}{3}=20$ sets $I=\left\{i_{1}, i_{2}, i_{3}\right\} \subset[6]$ indexing the Schubert cells, in bijection with partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq 0\right)$ with $\lambda_{1} \leq 6-3$: the Young diagrams fit in $3 \times(6-3)$. List all I 's and λ 's, along with the size measure $q^{\mathrm{wt}(I)}=q^{|\lambda|}=\# X_{I}$. Here $\mathrm{wt}(I)=|\lambda|=\operatorname{dim}\left(X_{I}\right)$. Compare with part (a).

2a. Verify the q-Binomial Theorem:

$$
\prod_{i=1}^{n}\left(1+q^{i} x\right)=\sum_{d=0}^{n} q^{\binom{d+1}{2}}\binom{n}{k}_{q} x^{d}
$$

for the special case $n=3$. Multiply out by hand!
b. Prove the q-Binomial Theorem for all n by writing the lefthand side as a bivariate generating function for the class of all subsets $I \subset[n]$, then using our expansion illustrated in Prob. 1, $\binom{n}{d}_{q}=\sum_{I} q^{\mathrm{wt}(I)}$, where the sum is over all $I=\left\{i_{1}<\cdots<i_{d}\right\}$ and $\mathrm{wt}(I)=\sum_{j=1}^{d}\left(i_{j}-j\right)$.
3. Find q-analogs of the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ using two analogs of deletion.
a. Consider the mapping $\operatorname{GR}\left(d, F^{n}\right) \rightarrow \operatorname{GR}\left(d, F^{n-1}\right) \coprod \operatorname{GR}\left(d-1, F^{n-1}\right)$ which takes V to $V^{\prime}=V \cap E_{n-1}$, intersecting with the coordinate subspace E_{n-1}. Make this a bijection by keeping track of lost information needed to reconstruct the row-echelon basis of V from V^{\prime}. Deduce a recurrence for $\binom{n}{d}_{q}$.
b. Let $P: F^{n} \rightarrow F^{n-1}$ be the projection map along e_{1}, so that $P\left(e_{i}\right)=e_{i}$ for $i=2, \ldots, n$. Consider the mapping $\operatorname{GR}\left(d, F^{n}\right) \rightarrow \operatorname{GR}\left(d, F^{n-1}\right) \coprod \operatorname{GR}\left(d-1, F^{n-1}\right)$ which takes V to $V^{\prime}=P(V)$. Again make this a bijection, and find a different recurrence for for $\binom{n}{d}_{q}$.

4a. For each Schubert cell $X_{w} \subset \operatorname{Fl}\left(F^{3}\right)$ corresponding to $w \in S_{3}$, write the B-reduced matrix form for V_{\bullet} corresponding to the Röthe diagram $D(w)$. For $F=\mathbb{F}_{q}$, explicitly verify:

$$
\# \operatorname{Flag}\left(\mathbb{F}_{q}^{3}\right)=\frac{\# \mathrm{GL}_{3}\left(\mathbb{F}_{q}\right)}{\# B}=[3]_{q}[2]_{q}[1]_{q}=\sum_{w \in S_{3}} q^{\operatorname{inv}(w)}
$$

b. For each Schubert cell closure \bar{X}_{w} above, describe its flags $V_{\bullet}=\left(V_{1} \subset V_{2}\right)$ in terms of their relation to the standard flag $E_{1} \subset E_{2}$. For example, the minimal cell closure is: $\bar{X}_{123}=X_{123}=\left\{E_{\bullet}\right\}=\left\{V_{\bullet} \mid V_{1}=E_{1}, V_{2}=E_{2}\right\}$. By examining the implications among the defining conditions for the \bar{X}_{w} 's, arrange the w 's according their Bruhat degeneration order, defined by $\bar{X}_{w} \subset \bar{X}_{u}$.
c. The Bruhat order covering relations $w^{\prime} \lessdot w$ correspond to minimal containments $\bar{X}_{w^{\prime}} \subset \bar{X}_{w}$, having $\operatorname{dim} X_{w^{\prime}}=\operatorname{dim} X_{w}-1$. For each minimal containment in $\operatorname{Flag}\left(F^{3}\right)$ and any $\left(V_{\bullet}\right) \in X_{w^{\prime}}$ (properly in the cell, not its closure), give a family $\mathcal{V}: F \rightarrow \mathrm{Fl}\left(F^{3}\right)$ with $\mathcal{V}(t) \in X_{w}$ for $t \neq 0$ and $\mathcal{V}(0)=V_{\bullet}$. Also, describe each covering combinatorially in terms of moving a certain pair of 1 's in the permutation matrix of w to get w^{\prime}, and conjecture a general move rule for coverings of $w \in S_{n}$.

[^0]: ${ }^{*}$ The first formula ${ }^{\circ} P(q, x)^{\circ} Q(q,-x)=1$ can be proved by a Min-Transfer Involution on $(\lambda, \mu) \in{ }^{\circ} \mathcal{P} \times{ }^{\circ} \mathcal{Q}$.

[^1]: ${ }^{*}$ Note that for $\tilde{\mathbb{N}}(x)=\left\{\varnothing,[1] \frac{x}{1!},[2] \frac{x^{2}}{2!}, \ldots\right\}$, we have $\widetilde{\mathcal{M}} \cong \operatorname{AFUN}(\tilde{\mathbb{N}}(x), \mathcal{B}(y))$, so $\tilde{M}(x, y)=\exp (x B(y))$.

[^2]: ${ }^{\dagger}$ Such $\operatorname{rk}(a)$ exists (essentially uniquely) if every saturated chain from a to b has the same length $\ell(a, b)$.

[^3]: ${ }^{\ddagger}$ This is isomorphic to the natural action of the embedding of $I(\mathcal{P})$ into a matrix algebra.

[^4]: ${ }^{\S}[a, b] \cong[c, d]$ whenever b / a and c / d have the same number of prime factors with the same multiplicites.

[^5]: ${ }^{\text {§ }}$ This is stronger than rank equivalence $\ell[a, b]=\ell[c, d]$, and isomorphism equivalence $[a, b] \cong[c, d]$.

