Bigraded classes. Following Flajolet-Sedgewick Ch. III, we define a bigraded class \mathcal{A} to be a set of combinatorial objects $a \in \mathcal{A}$ with two measures of magnitude, a primary measure $|a|=n$ called simply the "size", and a secondary measure $\|a\|=k$ called the "weight" or "parameter", or a "statistic on \mathcal{A} ". Usually we consider labeled bigraded classes $\tilde{\mathcal{A}}$, in which each object $a \in \tilde{\mathcal{A}}$ has $n=|a|$ atoms having all the labels $1,2, \ldots, n$, as well as the weight $\|a\|$ unrelated to the labels: in particular, a permutation of the labels should not change either $|a|$ or $\|a\|$. We have the counting numbers $A_{n}^{(k)}=\#\{a \in \tilde{\mathcal{A}}$ with $|a|=n,\|a\|=k\}$.

The classic example is the labeled class $\tilde{\mathcal{P}}=\coprod_{n>0} \mathfrak{S}_{n}$ comprising all permutations $w \in$ \mathfrak{S}_{n}, with size $|w|=n$ and weight $\|w\|=\operatorname{cyc}(n)=$ number of cycles of w. In this case the counting numbers are the Stirling cycle numbers: $\left[\begin{array}{l}n \\ k\end{array}\right]=P_{n}^{(k)}=\#\left\{w \in S_{n} \mid \operatorname{cyc}(w)=k\right\}$.

We take the bivariate generating function:

$$
\tilde{A}(x, t)=\sum_{n, k \geq 0} A_{n}^{(k)} \frac{x^{n}}{n!} t^{k}=\sum_{a \in \tilde{\mathcal{A}}} \frac{x^{|a|}}{|a|!} t^{\|a\|} .
$$

All the constructions available for labeled graded classes extend to the bigraded case. In particular, we endow the labeled product $\tilde{\mathcal{A}} * \tilde{\mathcal{B}}$ with the additive weight function $\left\|\left(a_{S}, b_{T}\right)\right\|=\|a\|+\|b\|$, where a_{S} means $a \in \tilde{\mathcal{A}}$ with its atoms relabeled by the set S.

We have the Labeled Bigraded Product Priniciple: for $\tilde{\mathcal{C}}=\tilde{\mathcal{A}} * \tilde{\mathcal{B}}$, the bivariate generating function is $\tilde{C}(x, t)=\tilde{A}(x, t) \cdot \tilde{B}(x, t)$. The proof is very similar to the single-graded case:

$$
\begin{aligned}
\tilde{A}(x, t) \cdot \tilde{B}(x, t) & =\left(\sum_{p \geq 0} \sum_{i \geq 0} A_{p}^{(i)} \frac{x^{p}}{p!} t^{i}\right) \cdot\left(\sum_{q \geq 0} \sum_{j \geq 0} B_{q}^{(j)} \frac{x^{q}}{q!} t^{j}\right) \\
& =\sum_{n, k \geq 0}\left(\sum_{p=0}^{n} \sum_{i=0}^{k}\binom{n}{p} A_{p}^{(i)} B_{n-p}^{(k-i)}\right) \frac{x^{n}}{n!} t^{k} \\
& =\sum_{n, k \geq 0} C_{n}^{(k)} \frac{x^{n}}{n!} t^{k}=\tilde{C}(x, t) .
\end{aligned}
$$

The second inequality uses the change of index variables $n=p+q$ and $k=i+j$, so that $\binom{n}{p} \frac{1}{n!}=\frac{1}{p!q!}$. The third equality is because each element $\left(a_{S}, b_{T}\right) \in \tilde{\mathcal{C}}_{n}^{(k)}$ corresponds to the choice of $S \subset[n], a \in \tilde{\mathcal{A}}_{p}^{(i)}, b \in \tilde{\mathcal{B}}_{n-p}^{(k-i)}$.

Similarly, the constructions $\mathrm{SEQ}_{j}, \mathrm{Seq}, \mathrm{Set}_{j}, \mathrm{Set}^{2}, \mathrm{Cyc}_{j}, \mathrm{Cyc}$ can be performed on bigraded classes, and give the same formulas for the bivariate generating functions.

Counting cycles in permutations. The class of labeled cycles of length n is $\mathrm{CYC}_{n} \widetilde{[1]}$, where $\widetilde{[1]}$ is the single-element labeled graded class, with bivariate exponential generating function $\frac{n!}{n} \frac{x^{n}}{n!} t=\frac{x^{n}}{n} t$, since a cycle is the same as a permutation of [n] up to rotation equivalence. Here $\frac{x^{n}}{n!}$ indicates the size n, while $t=t^{1}$ indicates that a single cycle has weight 1.

Allowing cycles of any length gives generating function $\sum_{n \geq 1} \frac{x^{n}}{n} t=t \log \left(\frac{1}{1-x}\right)$. Realizing any permutation as a set of k labeled cycles gives the bivariate generating function of

$$
\begin{aligned}
\tilde{\mathcal{P}}=\coprod_{n \geq 0} S_{n} & =\operatorname{SET}(\operatorname{CyC} \widetilde{[1]}): \\
\tilde{P}(x, t) & =\sum_{n, k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{x^{n}}{n!} t^{k}=\sum_{k \geq 0} \frac{1}{k!}\left(t \log \left(\frac{1}{1-x}\right)\right)^{k}=\exp \left(t \log \left(\frac{1}{1-x}\right)\right)=\frac{1}{(1-x)^{t}} .
\end{aligned}
$$

We can get several interesting specializations of this bivariate function. First, taking $t=1$ gives us the single-variable exponential generating function:

$$
\tilde{P}(x)=\exp \left(\log \left(\frac{1}{1-x}\right)\right)=\frac{1}{1-x} .
$$

Indeed, we can realize permutations either as sets of cycles or as labeled sequences: $\tilde{\mathcal{P}} \cong$ $\operatorname{SET}(\operatorname{Cyc}[\widetilde{1]}) \cong \operatorname{SEQ}(\widetilde{[1]})$; and the above computation is the generating function version.

Next, fixing k and taking the t^{k} coefficient gives the single-variable generating function:

$$
\tilde{P}^{(k)}(x)=\sum_{n \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{x^{n}}{n!}=\frac{1}{k!}\left(t \log \left(\frac{1}{1-x}\right)\right)^{k} .
$$

This does not give an explicit formula for the Stirling cycle numbers, but it allows complex analytic methods to give the asymptotic approximation: $\left[\begin{array}{l}n \\ k\end{array}\right] \sim \frac{(n-1)!}{(k-1)!}(\log n)^{k-1}$ as $n \rightarrow \infty$. This means that for large n, the fraction of n-permutations which have k cycles is very close to $\frac{(\log n)^{k-1}}{n(k-1)!}$.

Finally, fixing n and taking the coefficient of $\frac{x^{n}}{n!}$ gives the generating function $P_{n}(t)=$ $\sum_{k=1}^{n}\left[\begin{array}{l}n \\ k\end{array}\right] t^{k}$. The Taylor Coefficient Formula gives:

$$
P_{n}(t)=\left.\frac{d^{n}}{d x^{n}} \tilde{P}(x, t)\right|_{x=0}=\left.\frac{d^{n}}{d x^{n}}\left(\frac{1}{(1-x)^{t}}\right)\right|_{x=0}=t(t+1)(t+2) \cdots(t+n-1)=t^{\bar{n}}
$$

That is:

$$
\sum_{k=1}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k}=t^{\bar{n}}
$$

Substituting $-t$ for t and factoring out signs changes rising powers to falling:

$$
\sum_{k=1}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k}=t(t-1) \cdots(t-n+1)=t^{\underline{n}}
$$

Compare this with our formula involving Stirling partition numbers: ${ }^{1}$

$$
\sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} t^{\underline{k}}=t^{n}
$$

These formulas mean that $(-1)^{n-k}\left[\begin{array}{l}n \\ k\end{array}\right]$ and $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ are the change-of-basis coefficients between the usual power basis $1, t, t^{2}, t^{3}, \ldots$ for the polynomials in t, and the falling power basis $1, t, t^{2}, t^{3}, \ldots$. Hence, if for any N we define lower-triangular matrices $M_{1}=\left((-1)^{n-k}\left[\begin{array}{l}n \\ k\end{array}\right]\right)_{n, k=1}^{N}$

[^0]and $M_{2}=\left(\left\{\begin{array}{l}n \\ k\end{array}\right\}\right)_{n, k=1}^{N}$, then these are inverse matrices: $M_{1} M_{2}=I=(N \times N)$ identity matrix. This is equivalent to the formula:

$$
\sum_{j \geq 0}(-1)^{n-j}\left[\begin{array}{l}
n \\
j
\end{array}\right]\left\{\begin{array}{l}
j \\
k
\end{array}\right\}= \begin{cases}1 & \text { if } n=k \\
0 & \text { if } n \neq k .\end{cases}
$$

Similarly, $M_{2} M_{1}=I$ is equivalent to:

$$
\sum_{j \geq 0}(-1)^{j-k}\left\{\begin{array}{l}
n \\
j
\end{array}\right\}\left[\begin{array}{l}
j \\
k
\end{array}\right]= \begin{cases}1 & \text { if } n=k \\
0 & \text { if } n \neq k .\end{cases}
$$

These formulas can also be proved by the Involution Principle, the first using the same $\infty / 00$ Involution used for $t^{\underline{n}}=\sum_{j=1}^{n}(-1)^{n-j}\left[\begin{array}{l}n \\ j\end{array}\right] t^{j}$ on p. 5 .

The second can be proved using the Lonely/Crowded Involution. The left side counts permuted set partitions: an unordered partition $S_{1} \sqcup \cdots \sqcup S_{j}=[n]$, numbered so that $\min \left(S_{1}\right)<\cdots<\min \left(S_{j}\right)$, along with a permutation $w \in \mathfrak{S}_{j}$, and given the sign $(-1)^{j-k}$. The involution will define a new permuted set partition $\left(S^{\prime}, w^{\prime}\right)$. Take the smallest $a \in[n]$ such that, for $a \in S_{i}$, the cycle of sets $S_{i} \cup S_{w(i)} \cup S_{w(w(i))} \cup \cdots$ contains at least two elements. If $S_{i}=\{a\}$ is a singleton, then join it with the next set on its cycle: $S_{i}^{\prime}=S_{i} \cup S_{w(i)}$ and $w^{\prime}(i)=w(w(i))$. If S_{i} is not a singleton, split it into two sets along the same cycle: $S_{i}^{\prime}=\{a\}$ and $S_{w^{\prime}(i)}^{\prime}=S_{i}-\{a\}$, with $w^{\prime}\left(w^{\prime}(i)\right)=w(i)$. This changes the sign $(-1)^{j-k}$ by incrementing/decrementing j while leaving n, k fixed. If there is no such a, then this is the unique fixed point consisting of all singleton sets and $w=\mathrm{id}$. In the signed count $\sum_{j \geq 0}(-1)^{j-k}\left\{\begin{array}{c}n \\ j\end{array}\right\}\left[\begin{array}{l}j \\ k\end{array}\right], I$ pairs up and cancels all terms except the fixed point, which gives the right side.

Cycle formula. We give another proof of:

$$
t^{\underline{n}}=\sum_{k=1}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k}
$$

For a whole number value $t \in \mathbb{N}$, the left side $t^{\underline{n}}$ can be interpreted as the number of:

- injective functions $f:[n] \rightarrow[t]$
- proper t-colorings of the complete graph K_{n}
- sequences $\left(a_{1}, \ldots, a_{n}\right)$ of $a_{i} \in[t]$ with $a_{i} \neq a_{j}$ for $i<j$
- vectors in the hyperplane complement $\mathbb{F}_{t}^{n}-\bigcup_{i<j} H_{i j}$, where \mathbb{F}_{t} is a finite field, and $H_{i j}$ is the hyperplane having the i, j coordinates equal.

We can obtain the right side from the fourth interpretation, by using Mobius inversion (generalized PIE) on the lattice $\mathcal{L}(\mathcal{B})$ of subspaces $V \in \mathbb{F}_{t}^{n}$ generated by the braid arrangement $\mathcal{B}=\bigcup_{i<j} H_{i j}$. We give this the partial order of reverse inclusion: $U \leq V$ means $U \supset V$, so that the minimal element is the entire space $\hat{0}=\mathbb{F}_{t}^{n}$. This poset is isomorphic
to Π_{n}, the set partitions $S=\left\{S_{1}, \ldots, S_{k}\right\}$ with $S_{1} \sqcup \cdots \sqcup S_{k}=[n]$, ordered by refinement. Note that under this isomorphism, $\operatorname{dim}(V)$ is equal to $\ell(S)=k$.

Using the functions $f, g: \mathcal{L}(\mathcal{B}) \rightarrow \mathbb{Z}$ given by:

$$
f(V)=\# V=t^{\operatorname{dim}(V)}, \quad g(V)=\#\left(V-\bigcup_{H \not \supset V} H\right)
$$

where the union runs over all hyperplanes $H=H_{i j}$ not containing V. Then:

$$
f(U)=\sum_{V \subset U} g(V) \Longleftrightarrow g(U)=\sum_{V \subset U} \mu(U, V) f(V)=\sum_{V \subset U} \mu(U, V) t^{\operatorname{dim}(W)},
$$

where $\mu(W, U)$ is the Mobius function of $\mathcal{L}(\mathcal{B})$ defined by $\mu(U, U)=1$ and $\sum_{U \leq V \leq W} \mu(U, V)=$ 0 for $U<W$. In particular:

$$
t^{\underline{n}}=\#\left(\mathbb{F}_{t}^{n}-\bigcup_{i<j} H_{i j}\right)=g(\hat{0})=\sum_{V \in \mathcal{L}(\mathcal{B})} \mu(\hat{0}, V) t^{\operatorname{dim}(V)}=\sum_{S \in \Pi_{n}} \mu(\hat{0}, S) t^{\ell(S)} .
$$

The above expression is called the characteristic polyomial of the subspace arrangement: in fact, the chromatic polynomial of any graph is equal to the characteristic polyomial of the corresponding graphical hyperplane arrangement.

Taking the t^{1} term of the above expression, corresponding to the maximal element $\hat{1}=V=\mathbb{F}_{t}(1, \ldots, 1)$, we find that $\mu(\hat{0}, \hat{1})=\mu\left(\mathbb{F}_{t}^{n}, 0\right)=(-1)^{n-1}(n-1)$!, and from the product poset structure of the interval $[\hat{0}, S]$ for $S=\left\{S_{1}, \ldots, S_{k}\right\}$ with $\ell(S)=k$ and $n_{i}=\# S_{i}$, we easily find that $\mu(\hat{0}, S)=.(-1)^{n-k} \prod_{i}\left(n_{i}-1\right)$!. Therefore:

$$
t^{\underline{n}}=\sum_{S \in \Pi_{n}}(-1)^{n-\ell(S)}\left(\prod_{i=1}^{\ell(S)}\left(n_{i}-1\right)!\right) t^{\ell(S)}
$$

Now, we can construct any permutation by partitioning $[n]$ into subsets of size n_{1}, \ldots, n_{k}, and putting the elements of each block into an n_{i}-cycle in one of $\left(n_{i}-1\right)$! ways. Thus, for a given $k=\ell(S)$, the above expression counts all permutations with of $[n]$ with k cycles, and we have:

$$
t^{\underline{n}}=\sum_{k=1}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k} .
$$

We obtain yet another formula for $t^{\underline{n}}$ from the second and third interpretations above. A conjunction of conditions $a_{i}=a_{j}$ can be regarded as a set of pairs $\{i, j\}$ in the powerset $\wp\binom{[n]}{2}$, a Boolean poset. Ordinary PIE corresponding to the poset $\wp\binom{[n]}{2}$ gives:

$$
t^{\underline{n}}=\sum_{G \subset K_{n}}(-1)^{e(G)} t^{c(G)}
$$

where G runs over all graphs on n labeled vertices, with $e(G)$ edges and $c(G)$ connected components. Comparing this to the previous formula, each pair $\{i, j\}$ can be considered as a relation $i \sim j$, and a set of pairs generates an equivalence relation corresponding to a set partition in Π_{n}. Note that each $S \in \Pi_{n}$ corresponds to $c_{n_{1}} \cdots c_{n_{k}}$ sets in $\wp\binom{[n]}{2}$, where c_{j} is the number of connected graphs on j labeled vertices, so there are much fewer terms in
the Π_{n} formula, and much fewer still in the $k=1, \ldots, n$ formula.
Bijective proof of cycle formulas. We first prove the positive formula:

$$
t^{\bar{n}}=\sum_{k=1}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k}
$$

The left side counts permutation partitions: that is, an ordered set partition of $[n]$ into sets $\left(S_{1}, \cdots, S_{k}\right)$, where S_{i} may be empty, along with $\left(w_{1}, \ldots, w_{k}\right)$, where $w_{i} \in \mathfrak{S}_{S_{i}}$ is a permutation of the set S_{i}. (One may picture this as an arrangement of n distinct flags on t flagpoles.) The right side counts pairs $(w, f) \in \coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w}$, where $\mathcal{F}=\{$ functions $f:[n] \rightarrow$ $[t]\}$ and \mathcal{F}^{w} means the functions invariant under w, i.e. f is constant on each cycle of w, so that $\left|\mathcal{F}^{w}\right|=t^{\operatorname{cyc}(w)}$.

There is an easy bijection between these objects which proves the formula. Given a permutation partition $\left(S_{1}, \ldots, S_{k} ; w_{1}, \ldots, w_{k}\right)$, let $f(j)=i$ for $j \in S_{i}$, and let $w=w_{1} \cdots w_{k}$. Conversely, given (w, f), let $S_{i}=f^{-1}(i)$, and let w_{i} be the permutation w restricted to S_{i}.

We may also consider this as an example of Polya's Method (or Burnside's Lemma) counting orbits of group actions. Dividing both sides by n ! gives:

$$
\left(\binom{t}{n}\right)=\frac{1}{n!} \sum_{k=1}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k}
$$

The left side counts multisets with n objects of t kinds, which is the quotient of \mathcal{F} under the natural action of \mathfrak{S}_{n}. Now Burnside's Lemma gives:

$$
\left|\frac{\mathcal{F}}{\mathfrak{S}_{n}}\right|=\frac{1}{\left|\mathfrak{S}_{n}\right|} \sum_{w \in \mathfrak{S}_{n}}\left|\mathcal{F}^{w}\right|
$$

where \mathcal{F}^{w} is the set of functions invariant under w. This translates directly to the two sides of the multiset formula.

Finally, we give an involution proof of the signed formula

$$
t^{\underline{n}}=\sum_{k=1}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k}
$$

Now the left side counts injective functions $\mathcal{E}=\{f:[n] \hookrightarrow[t]\}$, while the right side is the signed count of $\coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w}$, where we define $\operatorname{sgn}(w, f)=(-1)^{n-k}$, where w has k cycles.

Now we define a sign-reversing involution

$$
I: \coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w} \rightarrow \coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w}
$$

with fixed-point set $\left(\coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w}\right)^{I}=(\mathrm{id}, \mathcal{E})$, which will prove the formula. For $(w, f) \in$ $\coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w}$ with f injective, let $I(w, f)=(w, f)$; since f is constant on all cycles of w, it must have only 1 -cycles, so $w=e$ and $(w, f) \in(\mathrm{id}, \mathcal{E})$. If f not injective, suppose $f(a)=f(b)$ for minimal $a, b \in[n]$; then define $I(w, f)=(w(a b), f)$, multiplying w by the transposition $(a b)$, so that $w(a b)=(c d) w$ for $c=w(a), d=w(b)$. This reverses sign,
since if a, b lie in the same cycle of w, then $w(a b)$ cuts this cycle into two; if a, b lie on different cycles, then $w(a b)$ joins these cycles into one. Thus, I will cancel all non-injective $(w, f) \in \coprod_{w \in \mathfrak{G}_{n}} \mathcal{F}^{w}$ on the right side of the formula, leaving only the injective (id, \mathcal{E}) on the left side. We call this the $\infty / 00$ Involution because it splits a figure-eight cycle into two cycles, and vice versa: it is useful because it toggles every reasonable definition of sign for w, incrementing/decrementing both the number of cycles and the number of transpositions.

This argument may also be seen as an example of counting orbits, this time with signs. Dividing by n ! gives:

$$
\binom{t}{n}=\frac{1}{n!} \sum_{k=1}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k}
$$

The left side counts n-element subsets of $[t]$, which is the quotient of \mathcal{E} under the free action of \mathfrak{S}_{n}. Also $\mathcal{E} \cong(i d, \mathcal{E})=\left(\coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w}\right)^{I}$, so by the Involution Principle:

$$
\left|\frac{\mathcal{E}}{\mathfrak{S}_{n}}\right|=\frac{1}{\left|\mathfrak{S}_{n}\right|}\left|\left(\coprod_{w \in \mathfrak{S}_{n}} \mathcal{F}^{w}\right)^{I}\right|=\frac{1}{\left|\mathfrak{S}_{n}\right|} \sum_{w \in \mathfrak{S}_{n}}(-1)^{n-\operatorname{cyc}(w)}\left|\mathcal{F}^{w}\right|,
$$

which clearly translates to the signed cycle formula.

[^0]: ${ }^{1}$ Bijective proof. The right side t^{n} counts all functions $f:[n] \rightarrow[t]$ for $t \in \mathbb{N}$, each of which can be factored into a surjective function, $\operatorname{surj}(n, k)=k!\left\{\begin{array}{l}n \\ k\end{array}\right\}$; and a choice of image, $\binom{t}{k}=\frac{1}{k!} t^{\underline{k}}$.

