
Math 482 Homework 4/7 Solutions Spring 2014

Homework: math.msu.edu/∼magyar/Math482/Old.htm#4-7.

1a. In the graph above, each vertex vi has two plane coordinates: vi = (xi, yi). We fix the
outer vertices in some convenient way, for example v3 = (1, 1), v4 = (0, 0), v5 = (2, 0).
The degrees of freedom of our system are the four coordinates of the mobile inner
vertices v1 = (x1, y1), v2 = (x2, y2).

1b. The forces are:

F1(x1, y1, x2, y2) = (v2 − v1) + (v3 − v1) + (v4 − v1) + (v5 − v1)

= (−4x1+x2+x3+x4+x5, −4y1+y2+y3+y4+y5),

= (−4x1+x2+1+0+2, −4y1+y2+1+0+0),

F2(x1, y1, x2, y2) = (v1 − v2) + (v4 − v2) + (v5 − v2)

= (x1−3x2+x4+x5, y1−3y2+y4+y5).

= (x1−3x2+0+2, y1−3y2+0+0).

To determine the correct sign of a term like ±(v2 − v1) in F1, picture the physical
vector in an example: if, as in the picture, v1 = (0.5, 0.6) and v2 = (0.5, 0.3), then
v2 − v1 = (0,−0.3), which pulls particle v1 downward toward v2, as desired. We only
need to do this once: the remaining terms in F1 will all be of the form (vi − v1), and
similarly for F2.

1c. The equilibrium state is the value of (x1, y1, x2, y2) for which F1 = 0 and F2 = 0.
That is, we must solve the linear system:

−4x1 + x2 = −3
−4y1 + y2 = −1
x1 − 3x2 = −2
y1 − 3y2 = 0

This can be solved by Gaussian elimination, and I expect you to review this for the
next Quiz. I just put it into Wolfram Alpha, which gave me (through its own Gaussian
elimination):

v1 = (x1, y1) = (1, 3
11), v2 = (x2, y2) = (1, 1

11).

Compare this to the centroid of the exterior triangle: 1
3(v3 + v4 + v5) = (1, 13) is a bit

below v1, which looks reasonable.
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1d. As in the Notes 4/7, we use the general formula for the potential in terms of the
edges:

PE(x1, y1, x2, y2) = 1
2

∑
ij∈E

|vi−vj |2 = 1
2

∑
ij∈E

(xi−xj)2 + (yi−yj)2

=
1

2

(
(x1−x2)2+(x1−x3)2+(x1−x4)2+(x1−x5)2+(x2−x4)2+(x2−x5)2
(y1−y2)2+(y1−y3)2+(y1−y4)2+(y1−y5)2+(y2−y4)2+(y2−y5)2

)
+ d,

where d = 1
2(|v3−v4|2 + |v3−v5|2 + |v4−v5|2) is a constant. (As in the Notes, this can

be obtained from a line integral in R10, moving all five vertices from the origin to
their assigned positions.)

This means that the graph of PE is an upward-curving paraboloid, and its only
critical point is a unique minimum.

1e. If any of the coordinates of v1 or v2 is large (positive or negative), then this vertex
(say v1) is far from the fixed vertices v3, v4, v5. Taking a path from a fixed vertex to
a far-away vertex, there must be at least one edge vivj with a large distance

|vi − vj |2 = (xi−xj)2 + (yi−yj)2,

which is one of the terms in the sums-of-squares forrmula for PE. Hence, as soon as
any of x1, y1, x2, y2 is large positive or negative, PE(x1, y1, x2, y2) has a large positive
value. This guarantees that the diagonalized form of PE is a positive paraboloid, and
has a unique critical point, its minimum.

2. All the computations are the same, except with 3 mobile vertices, with coordinates
v1 = (x1, y1), v2 = (x2, y2), v3 = (x3, y3), and 3 force fields F1, F2, F3. The equilib-
rium point will be found by solving a system of 6 linear equations in the 6 variables
x1, . . . , y3 (actually these can be separated into two systems in 3 variables each).

Extra credit if you can explicitly find the equilibrium positions of v1, v2, v3 when

the outer vertices are pinned in an equilateral triangle v4 = (12 ,
√
3
2 ), v5 = (1, 0),

v6 = (0, 0). This might be the prettiest configuration for this graph.


