Math 482 Homework 4/7 Solutions Spring 2014

Homework: math.msu.edu/~magyar/Math482/01d.htm#4-7|
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In the graph above, each vertex v; has two plane coordinates: v; = (x;,y;). We fix the
outer vertices in some convenient way, for example v3 = (1,1), vs = (0,0), vs = (2,0).
The degrees of freedom of our system are the four coordinates of the mobile inner
vertices vy = (z1,y1), v2 = (22, Y2).

The forces are:

vg — 1) + (v3 —v1) + (va —v1) + (v5 — 1)
dr1+rotr3trstas, —4y1+y2+ys+ystys),
4x1+xo+14+042, —4y1+y2+1+0+0),

v —v2) + (v4 — v2) + (V5 — v2)

T1—32+24+T5, Y1—3Y2+yatys).

x1—3x2+0+2, y1—3y2+0+0).
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To determine the correct sign of a term like +(ve — v1) in Fj, picture the physical
vector in an example: if, as in the picture, v; = (0.5,0.6) and vy = (0.5,0.3), then
vy —v1 = (0,—0.3), which pulls particle v; downward toward ve, as desired. We only
need to do this once: the remaining terms in F} will all be of the form (v; — v1), and
similarly for F5.

The equilibrium state is the value of (z1,y1,x2,y2) for which F; = 0 and Fy, = 0.
That is, we must solve the linear system:

—4x14+ 20 = —3
—dy1+y2 = -1
Tr1 — 31’2 = =2
y1—3y2 = 0

This can be solved by [Gaussian elimination] and I expect you to review this for the
next Quiz. I just put it into Wolfram Alpha, which gave me (through its own Gaussian
elimination):

U1 = (xlvyl) = (17 %)7 V2 = ($27y2) = (17 Tll)

Compare this to the centroid of the exterior triangle: %(7)3 +vg+v5) = (1, %) is a bit
below vq, which looks reasonable.


http://math.msu.edu/~magyar/Math482/Old.html#4-7
http://www.math.dartmouth.edu/archive/m23s06/public_html/handouts/row_reduction_examples.pdf

1d. As in the Notes 4/7, we use the general formula for the potential in terms of the
edges:
PE(z1,y1,70,92) = 3 Y li—vl* = §> (mi—2;)” + (yi—y;)*
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_ 1 <($1—$2)2+(5E1—1‘3)2+(w1—w4)2+(ﬂz1—x5)2+(932—fc4)2+(:v2—fv5)2
2 +

2\ (y1—12)2+(y1—y3)? +(y1—ya)*+(y1—y5) >+ (Y2 —ya) >+ (y2—y5)*

where d = 3(Jv3—v4|? + |[v3—v5|® + [va—v5|?) is a constant. (As in the Notes, this can
be obtained from a line integral in R'?, moving all five vertices from the origin to
their assigned positions.)

This means that the graph of PFE is an upward-curving paraboloid, and its only
critical point is a unique minimum.

If any of the coordinates of v; or vy is large (positive or negative), then this vertex
(say vy) is far from the fixed vertices vs, v4, v5. Taking a path from a fixed vertex to
a far-away vertex, there must be at least one edge v;v; with a large distance

v — i * = (zi—;)* + (yi—y;)7,

which is one of the terms in the sums-of-squares forrmula for PE. Hence, as soon as
any of x1,y1, x2, yo is large positive or negative, PE(x1,y1, z2,y2) has a large positive
value. This guarantees that the diagonalized form of PFE is a positive paraboloid, and
has a unique critical point, its minimum.

. All the computations are the same, except with 3 mobile vertices, with coordinates

v1 = (21,y1), v2 = (2,Y2), v3 = (x3,y3), and 3 force fields Fy, Fy, F5. The equilib-
rium point will be found by solving a system of 6 linear equations in the 6 variables
x1,...,ys (actually these can be separated into two systems in 3 variables each).

Extra credit if you can explicitly find the equilibrium positions of vy, vs,v3 when

the outer vertices are pinned in an equilateral triangle vy = (3, @), vs = (1,0),
ve = (0,0). This might be the prettiest configuration for this graph.
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