
Math 482 Homework 3/21 Solutions Spring 2014

Homework: math.msu.edu/∼magyar/Math482/Old.htm#3-21.

1a. For ~a = (a1, a2), ~x = (x1, x2), we define the dot product as: ~a · ~x = a1x1 + a2x2. The
equation ~a · ~x = c means geometrically that the vector ~x lies on a line perpendicular
to ~a, at height c along ~a. Our problem deals with three lines:

(1, 1) · (x1, x2) = 2
(−1, 1) · (x1, x2) = 2
(−1, 2) · (x1, x2) = 0.

Intersecting the first and third of these means solving the system of simultaneous
linear equations:

x1 + x2 = 2
−x1 + 2x2 = 0.

This can be solved by Gaussian Elimination; or by multiplying with the inverse ma-
trix; or by Cramer’s Rule; or just by entering into Wolfram Alpha: solve {x+y=2,
-x+2y=0}. Any such system will have a unique intersection point, or no intersection
if the lines are parallel, or a whole line’s worth of intersection if the lines are the same.

In our case, there is a unique intersection: ~v1 = (x1, x2) = (4
3 , 2

3), which is one vertex
of the triangle cut out by the 3 lines. Intersecting the other two pairs of lines gives
the other two vertices: ~v2 = (0, 2) and ~v3 = (−4,−2). Graph these vertices and lines
for yourself to understand the geometric meaning.

1b. The inequality ~a ·~x ≤ c means geometrically that the point x lies on or below the line
~a · ~x = c, and ~a · ~x ≥ c means it lies on or above. That is, each inequality defines the
half-plane below or above the line. (To be precise, above means on the same side as
~a, below means on the opposite side.)

Two simultaneous inequalities define one of the angles between two lines: there are 4
such angles, corresponding to the 22 possible choices of ≥ or ≤ in the two inequalities.

The three lines in part (a) cut out 1 triangle and 6 unbounded regions. We can graph
these regions, and test one point in each to tell which inequalties define it.

For example, consider the centroid point ~v0 = 1
3~v1 + 1

3~v2 + 1
3~v3 = (−8

9 , 2
9). This point

certainly lies inside the triangle region, so we can test: (1, 1) · ~v0 = −2
3 < 2; that

is, the triangle lies below the line (1, 1) · ~x = 2. Testing the other lines, we find the
triangle is given by the simultaneous inequalities:

x1 + x2 ≤ 2
−x1 + x2 ≤ 2
−x1 + 2x2 ≥ 0.

The 6 unbounded regions correspond to different choices of the three inequalities:
instead of (≤,≤,≥), we choose:

(≤,≤,≤), (≤,≥,≤), (≥,≤,≤), (≤,≥,≥), (≥,≤,≥), (≥,≥,≥).

In fact, there is one unbounded region beyond each vertex and edge of the triangle,
for a total of 3 + 3 = 6.
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1c. There are 23 = 8 possible systems of 3 equalities, and we have accounted for only 7.
What about the remaining one, (≥,≥,≤), which is the opposite of the inequlaties for
the triangle? These are inconsistent inequalities, defining three half-spaces with no
simultaneous intersection points. That is, they define the empty set.

1d. In 3-dimensional space R3, an equation ~a · ~x = c cuts out a plane perpendicular to ~a,
and an inequality ~a ·~x ≤ c defines the half-space below the plane (i.e., on the opposite
side from ~a).

Doing the same exercise as (a)–(c) above with four vectors ~a1, . . . ,~a4 ∈ R3 would
define one bounded region, a tetrahedron (not a regular one, of course), and several
unbounded regions. In fact, there is one unbounded region beyond each vertex, edge,
and face of the tetrahedron, making 4 + 6 + 4 = 14 unbounded regions. Again, this
accounts for 15 of the 24 = 16 possible choices for the four inequalities. The remaining
choice is the one opposite to the inequalities for the tetrahedron; it is inconsistent,
with empty solution set.

2a. We wish to find the inequalities defining the tetrahedron whose four vertices are:

~v1=(1, 1, 1), ~v2=(1, 2, 3), ~v3=(−1, 1, 1), ~v4=(0, 0, 0).

We take these three at a time, and find the corresponding plane H. Taking ~v1, ~v2,
~v3, two directions along the plane are: ~v2 − ~v1 and ~v3 − ~v1; and a normal vector
(perpendicular to the plane) is given by their cross product:

~a = (~v2 − ~v1)× (~v3 − ~v1).

Recall that the cross product of two vectors ~x = (x1, x2, x3) and ~y = (y1, y2, y3) is:

~x× ~y =
(∣∣∣∣x2 x3

y2 y3

∣∣∣∣ , −
∣∣∣∣x1 x3

y1 y3

∣∣∣∣ ,

∣∣∣∣x1 x2

y1 y2
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where we use the determinant
˛̨̨̨
a b
c d

˛̨̨̨
= ad− bc.

In our case, ~x = ~v2 − ~v1 = (0, 1, 2) and ~y = ~v3 − ~v1 = (−2, 0, 0); the normal vector is:

~a = (0, 1, 2)× (−2, 0, 0) = (0,−4, 2).

Thus, the plane H containing the endpoints of ~v1, ~v2, ~v3 is defined by ~a · ~x = c for
some c. To find c, we test the height of any of the three points of H, in direction ~a:

c = ~a · ~v1 = (0,−4, 2) · (1, 1, 1) = −2.

We conclude:

H =
{
~x ∈ R3 with ~(0,−4, 2)·~x = −2

}
= {(x1, x2, x3) with − 4x2 + 2x3 = −2}

Now, the points of the tetrahedron are all above or below this plane. To find the
correct inequality, I test the height of the remaining point ~v4 = (0, 0, 0): that is,
~a · ~v4 = (0,−4, 2)·(0, 0, 0) = 0 > c = −2, so the points ~x of the tetrahedron are above
the plane: ~a · ~x ≥ c.

Finding the other planes similarly, I get the following inequalities defining the tetra-
hedron (each corresponding to a plane H containing three of the points):

H123 H124 H134 H234

(0,−4, 2)·~x ≥−2 (1,−2, 1)·~x ≤ 0 (0,−2, 2)·~x ≥ 0 (−1,−4, 3)·~x ≤ 0.

Note that the last 3 planes contain the origin ~v4 = (0, 0, 0), so all have height c = 0.



2b. The centroid, or center of gravity, of the tetrahedron is the average of the four vertex
vectors:

1
4(~v1 + ~v2 + ~v3 + ~v4) = (1

4 , 1, 5
4).

2c. We wish to slice off a small piece of the corner near ~v2 = (1, 2, 3). We will slice
parallel to the plane opposite ~v2, namely H = H134, which is defined by ~a · ~x = c for
~a = (0,−2, 2). Now, the height of H is c = 0, while the height of ~v2 is ~a · ~v2 = 2; so
we slice at a height above 0, and a bit below 2, say 3

2 . That is, our new polyhedron
is below the slice hyperplane H5, and corresponds to the inequality:

H5 : (0,−2, 2)·~x ≤ 3
2 .

This polyhedron is a triangular prism, but distorted, with top smaller than its base.

2d. The triangular prism in (d) above has the same base vertices v1, v3, v4 as the tetra-
hedron, but instead of the top vertex v2 = (1, 2, 3), it has three new top vertices
v′
1, v

′
3, v

′
4, each given by intersections of three planes: triple intersections:

v′
1 = H5 ∩H123 ∩H124 , v′

3 = H5 ∩H123 ∩H234 , v′
4 = H5 ∩H124 ∩H234 .

Finding the intersection point ~x = (x1, x2, x3) of three planes means solving a system
of three simultaneous linear equations in the three variables x1, x2, x3. For example,
~x = ~v′

1 is the solution of:

H5 : −2x2 + 2x3 = 3
2

H123 : −4x2 + 2x3 = −2
H124 : x1 − 2x2 + x3 = 0

I get: v′
1 = (1, 7

4 , 5
2). You can find the other two corners similarly.

2e. Starting with the tetrahedron from (a), we add one new vertex v5 slightly beyond the
face H124. The inequality defined by this face is: (1,−2, 1)·~x ≤ 0. The center of the
face is ~v124 = 1

3(v1 + v2 + v4) = (2
3 , 1, 4

3). Thus, we take v5 to be slightly above ~v124

in the normal direction of H124:

v5 = (2
3 , 1, 4

3) + 1
3(1,−2, 1) = (1, 1

2 , 5
3).

This polyhedron is a bipyramid, since it is constructed by gluing together two (non-
identical) triangular pyramids.


