
Math 482 Homework 3/14 Solutions Spring 2014

Homework: math.msu.edu/∼magyar/Math482/Old.htm#3-14.

1a,b. The formula qT = pT − 1 is evident from the table in Solutions 3/12, #1. From the
same table, r6 = 20 (which agrees with the table in Solutions 3/10) and e6 = 14, with
the difference t6 = 20− 14 = 6, which is also in the table.

1c. The formula:

e6 = 1
2(r1r5 + r2r4 + r3r3 + r4r2 + r5r1 − r3) = r1r5 + r2r4 + 1

2r3(r3 − 1)

is checked using the table in Solutions 3/10 : 14 = (1)(9) + (1)(4) + 1
2(2)(2− 1).

1d. Here is half the table (which is all I had the patience to draw):

The full table would list on the left all 14 edge-rooted 6-vertex trees (with the root on
a non-symmetry edge); and on the right all unordered pairs of distinct vertex-rooted
trees with a total of 6 vertices.

3. One example of a graph with all of its edges being symmetry-edges is the cycle Cn, but
there are many other highly symmetric graphs with this property. Another example is
the edge-graph of the prism (cylinder) over an n-gon; this is the union of two n-cycles,
one inside the other, with n extra edges joining corresponding pairs of vertices.

4a. An example of an infinite tree with infintely many symmetry edges is the infinite path
with vertices vi for all integers i, and edges vivi+1 for all i.

4b. An example of an infinite tree with just one symmetry edge is constructed from the
infinite path above by adding “decorations” which limit the symmetry: for example,
add two vertices x0, x1 and two edges v0x0 and v1x1. Then the only non-trivial
symmetry of T is the reflection σ(vi) = v1−i, σ(x0) = x1, σ(x1) = x0; and the only
symmetry edge is v0v1.
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4c. Proposition: No tree T , finite or infinite, can have exactly 2 symmetry edges.

Proof: For reference in the following arguments: paths, walks, connected components,
and cycles are defined in Graph Notes I and [HHM] pp. 6–8; trees are discussed in
Graph Notes II.6 and [HHM] pp. 34–37.

Let T be a tree with symmetry edge e = xy, where y = σ(x) for σ ∈ Sym(T ).

Claim (i): If x 6= σ(y), then T has infinitely many symmetry edges. Indeed, since
xy = xσ(x) is an edge of T , and σ takes edges to edges, we see σ(x)σ(y) = σ(x)σ(σ(x))
is also an edge. In fact, it is a symmetry edge, since the second vertex is σ of the first
vertex. Applying σ repeatedly, we obtain an infinite walk of symmetry edges of the
form σk(x)σk+1(x) for all k ≥ 0. Furthermore, σ(σ(x)) = σ(y) 6= x by assumption,
so this walk contains at least 3 distinct vertices x, σ(x), σ2(x). Now, if there were
eventually a repeated vertex on the walk, it would create a cycle, which is impossible
since T is a tree. Therefore, there are no repeated vertices, and we get an infinite
path of symmetry edges in T .

Claim (ii): Removing e = xy (but leaving its end vertices x, y) disconnects T into
two connected components:

T−e = Tx ∪ Ty.

First, x and y cannot be connected by a path P in T−e, since this would create a
cycle C = P+e in T , which is impossible. Second, since T is connected, every vertex
v has a path vw · · ·x in T . If the path does not contain e, then it is a path in T−e
from v to x. On the other hand, if the path does contain e, then it must be of the
form vw · · · yx, so vw · · · y is a path in T−e from v to y. That is, every vertex is
connected in T−e to either x or y.

Claim (iii): If x = σ(y), then σ(Tx) = Ty and σ(Ty) = Tx. Since σ(e) = σ(x)σ(y) =
yx = e, we see that σ takes paths in T−e to other paths in T−e. Thus, σ takes the
connected component of x to the connected component of σ(x) = y, and vice versa.

Claim (iv): If e′ = x′y′ is another symmetry edge, then e′′ = σ(e′) is also a symmetry
edge. Indeed, it is an edge, because σ takes edges to edges. It is a symmetry edge,
because for the composite symmetry τ = σσ′σ−1, we have:

τ(x′′) = σ(σ′(σ−1(σ(x′)))) since τ = σσ′σ−1 and x′′ = σ(x′)
= σ(σ′(x′)) since σ−1σ = ε, the identity symmetry
= σ(y′) since σ′(x′) = y′

= y′′ since y′′ = σ′(y′)

We can now complete the proof. If e′ ⊂ Tx, then e and e′ ⊂ Tx and e′′ ⊂ Ty are three
distinct symmetry edges, and there cannot be only two; and similarly if e′ ⊂ Ty.

Note: You can quote any of the above Claims in your own Hand-In proof.
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