
Math 482 Notes 4/7 Spring 2014

Steinitz Theorem: G a 3-connected planar graph =⇒ G edge-graph of convex polyhedron
P .

Proof strategy:

1. Construct a “well-proportioned” planar drawing of G.

2. Lift it to 3 dimensions by giving a height to each vertex.

Today we concentrate on #1. To make precise the idea of “well-proportioned”, we con-
sider a physical situation in which we pin down an outer cycle of the graph, forming a convex
polygon. We consider each internal edge as a rubber band exerting a Hooke force propor-
tional to its length, pulling the end-vertices toward each other. The equilibrium position, in
which all the edge-forces on internal vertices cancel out, is the well-proportioned drawing.
This position is unique for a fixed arrangement of the external vertices.

Toy Model. We consider the case of 4 vertices on a line (not a plane), arranged in a path
v0−v1−v2−v3. The end-vertices v0, v3 are external, pinned at x0 = 0 and x3 = 1; and the
two internal vertices v1, v2 have positions x1 and x2. The forces on v1 and v2 are:

F1(x1, x2) = (0−x1) + (x2−x1)
F2(x1, x2) = (x1−x2) + (1−x2).

For example, if 0 < x1 < x2 < 1, then the forces on v1 are 0−x1 (negative, toward v0 at
0) and x2−x1 (positive, toward v2 at x2). The equilibrium position is the (x1, x2) for which
both forces are zero. This is found by simplifying F1(x1, x2) = −2x1 + x2 and F2(x1, x2) =
x1 − 2x2 + 1, and solving the linear system:

−2x1 + x2 = 0
x1 − 2x2 = −1.

Performing Gaussian Elimination gives x1=
1
3 , x2=

2
3 , meaning that at equilibrium, the four

points are equally spaced on the line, which is certainly a well-proportioned arrangement.

Potential Function. We can find the equilibrium another way, which gives more qualitative
insight about why it is unique. The potential energy is the work done against the force
to move two particles from (0, 0) to two particular values (x1, x2): that is, PE(x1, x2) =

−
∮ (x1,x2)
(0,0) F (~r) · d~r. It turns out that:

PE(x1, x2) = 1
2

∑
ij∈E

(xi − xj)
2 = 1

2

(
(0−x1)2 + (x1−x2)2 + (x2−1)2

)
,

where E is the edge-set of our path graph. It is clear that ∇PE = ( ∂
∂x1

PE, ∂
∂x2

PE) =

−(F1, F2), so it must be correct (except possibly for the constant term).1

1We can compute this by an integral along the straight-line path in R4 which moves all four vertices from
the origin to their assigned positions: ~r(t) = (tx0, tx1, tx2, tx3) = (0, tx1, tx2, t) for 0 ≤ t ≤ 1:

PE(x1, x2) = −
∫ 1

t=0
(F0, F1, F2, F3) · ~r ′(t) dt

= −
∫ 1

t=0
(F0, F1, F2, F3) · (x0, x1, x2, x3) dt

= 1
2
( (x0−x1)x0 + (x1−x0)x1 + (x1−x2)x1 + (x2−x1)x2 + (x2−x3)x2 + (x3−x2)x3 ).

Each edge vivj contributes twice to this sum, adding a total of:

(xi−xj)xi + (xj−xi)xj = (xi−xj)xi − (xi−xj)xj = (xi−xj)
2,

giving the stated formula for PE.



Now, it known that any such quadratic function can be diagonalized into the form:

g(x1, x2) = a1(b1x1 + c1x2 − d1)
2 + a2(b2x1 + c2x2 − d2)

2 + d.

The shape of such a function is either:

(+) an upward-curving paraboloid, if a1, a2 > 0;

( 0 ) a saddle-surface, if a1 and a2 have opposite signs

(−) a downward-curving paraboloid, if a1, a2 < 0.

That is, g is either positive definite, indefinite, or negative definite.
Which is the category of our function PE? It is clear from the sum-of-squares form of

PE(x1, x2) that if |x1| or |x2| is large, then PE(x1, x2) is a large positive value.

Conclusion. PE must be positive definite (+), which means it has a unique critical point
where ∇PE(x1, x2) = (0, 0), namely its minimum point; and this is the unique equilibrium
point where (F1, F2) = (0, 0).


