This homework is a tutorial on limits and error analysis.
Delta-epsilon notation. We say $\lim _{x \rightarrow a} f(x)=L$, or alternatively $f(x) \rightarrow L$ as $x \rightarrow a$, when any required output error tolerance $\epsilon>0$ can be guaranteed by some input error tolerance $\delta>0$: that is, $|x-a|<\delta$ guarantees $|f(x)-L|<\epsilon$.

We say $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x=a$ when $\lim _{x \rightarrow a} f(x)=f(a)$.
Example: Prove that $f(x)=2 x+1$ is continuous at $x=a$.
PROOF: We must show $\lim _{x \rightarrow a} f(x)=f(a)$. Given a required output tolerance $\epsilon>0$ (for example $\epsilon=0.01$), we set the input tolerance at $\delta=\frac{1}{2} \epsilon$ (which would be $\delta=0.005$ in our example). If x meets the input tolerance $|x-a|<\delta=\frac{1}{2} \epsilon$, then the output error is $|f(x)-f(a)|=|2 x+1-(2 a+1)|=2|x-a|<\epsilon$, satisfying the output tolerance.
Prob 1. Prove that a limit is a well-defined quantity if it exists: that is, if $\lim _{x \rightarrow a} f(x)=L_{1}$, and $\lim _{x \rightarrow a} f(x)=L_{2}$, then $L_{1}=L_{2}$.
note: The point here is that the complicated definition $\lim _{x \rightarrow a} f(x)=L$ could conceivably apply to two different numbers, both approached by $f(x)$. Show that $\left|L_{1}-L_{2}\right|<\epsilon$ for every $\epsilon>0$, which means $L_{1}-L_{2}=0$.
Prob 2. Prove that if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a} f(x) g(x)=L M$. HINT: Relate the product error to the individual errors by writing $f(x) g(x)-L M=$ $f(x) g(x)-L g(x)+L g(x)-L M$.

Similarly, we get that limits are compatible with addition, subtraction, multiplication, and division.
Example: If $g(x)$ is continuous at $x=a$, and $f(y)$ is continuous at $y=g(a)$ then $f(g(x))$ is continuous at $x=a$.
Proof: We must show $\lim _{x \rightarrow a} f(g(x))=f(g(a))$. The continuity of $f(y)$ means that, given $\varepsilon>0$, there is some input tolerance $\delta_{1}>0$ such that $|y-g(a)|<\delta_{1}$ guarantees $|f(y)-f(g(a))|<\epsilon$. Now, by the continuity of $g(x)$, there is also a $\delta_{2}>0$ such that $|x-a|<\delta_{2}$ guarantees $|g(x)-g(a)|<\delta_{1}$, which in turn guarantees $|f(g(x))-f(g(a))|<\epsilon$. This shows the desired limit.

Little-o notation. For a function $g(h)$, we define the order class $o(g(h))$ of functions $\varepsilon(h)$ which become tiny relative to $g(h)$ as h goes to zero:

$$
o(g(h))=\left\{\varepsilon(h) \text { with } \lim _{h \rightarrow 0} \frac{\varepsilon(h)}{g(h)}=0, \text { and } \varepsilon(0)=0\right\} .
$$

We use this to indicate the magnitude of error in an approximation $f(h) \approx k(h)$:

$$
f(h) \in k(h)+o(g(h)) \text { means } f(h)=k(h)+\varepsilon(h) \text { for } \varepsilon(h) \in o(g(h)) .
$$

Abusing notation, we write this as $f(x)=L+o(g(h))$, using " $=$ " to mean " \in ". Example: $\lim _{x \rightarrow a} f(x)=L$ whenever $f(a+h)=L+o(1)$, meaning we have error $\frac{\varepsilon(h)}{1}=\varepsilon(h)=f(a+h)-L \rightarrow 0$ as $h \rightarrow 0$.
Example. Geometric series. We have $\frac{1}{1-h}=1+h+h^{2}+o\left(h^{2}\right)$, since the error is $\varepsilon(h)=\frac{1}{1-h}-\left(1+h+h^{2}\right)=\frac{1-1+h^{3}}{1-h}$, so $\frac{\varepsilon(h)}{h^{2}}=\frac{h}{1-h} \rightarrow 0$ as $h \rightarrow 0$.
Example. Prove that $o(h)+o(h)=o(h)$, meaning if $\varepsilon_{1}(h), \varepsilon_{2}(h) \in o(h)$, then $\varepsilon_{1}(h)+\varepsilon_{2}(h) \in o(h)$.
Proof: We have $\lim _{h \rightarrow 0} \frac{\varepsilon_{1}(h)+\varepsilon_{2}(h)}{h}=\lim _{h \rightarrow 0} \frac{\varepsilon_{1}(h)}{h}+\lim _{h \rightarrow 0} \frac{\varepsilon_{2}(h)}{h}=0+0=0$.
Similarly, if $C \neq 0$, we have $C o(g(h))=o(g(h))$; and if $g_{1}(h) \leq g_{2}(h)$, we have: $o\left(g_{1}(h)\right) \subset o\left(g_{2}(h)\right), o\left(g_{1}(h)\right)+o\left(g_{2}(h)\right)=o\left(g_{2}(h)\right)$, and $o\left(g_{1}(h)\right) o\left(g_{2}(h)\right)=o\left(g_{1}(h) g_{2}(h)\right)$.
Prob 3. Re-do \#2 in little-o notation. That is, if $f(a+h)=L+o(1)$ and $g(a+h)=M+o(1)$ as $h \rightarrow 0$, then $f(x) g(x)=L M+o(1)$.
hint: This is less tricky than the previous method. Account for the case where L or M is zero.
Prob 4. Show $o(o(h)) \subset o(h)$. That is, if $\frac{\varepsilon_{1}(h)}{h}, \frac{\varepsilon_{2}(h)}{h} \rightarrow 0$, then $\frac{\varepsilon_{1}\left(\varepsilon_{2}(h)\right)}{h} \rightarrow 0$. HINT: Use $\frac{\varepsilon_{1}\left(\varepsilon_{2}(h)\right)}{h}=\frac{\varepsilon_{1}\left(\varepsilon_{2}(h)\right)}{\varepsilon_{2}(h)} \frac{\varepsilon_{2}(h)}{h}$. (Also consider when $\varepsilon_{2}(h)=0$ for some $h \neq 0$.)

Derivatives. We say $f(x)$ has derivative $f^{\prime}(a)$ when $f(a+h)=f(a)+f^{\prime}(a) h+o(h)$.
Prob 5. Prove that if $f^{\prime}(a)$ exists, then it is unique: that is, if $f(a+h)=$ $f(a)+d_{1} h+o(h)=f(a)+d_{2} h+o(h)$, then $d_{1}=d_{2}$.
Prob 6. Prove that if $f^{\prime}(g(a))$ and $g^{\prime}(a)$ exist, then the composition $k(x)=$ $f(g(x))$ has derivative $k^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)$.
HINT: Combine $g(a+h)=g(a)+g^{\prime}(a) h+o(h)$ and $f(b+h)=f(b)+f^{\prime}(b) h+o(h)$ for $b=g(a)$ and any h going to zero.

