Math 254H Weekly Homework 8 Due Apr 4, 2017

This homework is a tutorial on limits and error analysis.

Delta-epsilon notation. We say $\lim_{x\to a} f(x) = L$, or alternatively $f(x) \to L$ as $x \to a$, when any required output error tolerance $\epsilon > 0$ can be guaranteed by some input error tolerance $\delta > 0$: that is, $|x - a| < \delta$ guarantees $|f(x) - L| < \epsilon$.

We say $f : \mathbb{R} \to \mathbb{R}$ is continuous at x = a when $\lim_{x \to a} f(x) = f(a)$.

Example: Prove that f(x) = 2x+1 is continuous at x = a.

PROOF: We must show $\lim_{x\to a} f(x) = f(a)$. Given a required output tolerance $\epsilon > 0$ (for example $\epsilon = 0.01$), we set the input tolerance at $\delta = \frac{1}{2}\epsilon$ (which would be $\delta = 0.005$ in our example). If x meets the input tolerance $|x-a| < \delta = \frac{1}{2}\epsilon$, then the output error is $|f(x) - f(a)| = |2x+1-(2a+1)| = 2|x-a| < \epsilon$, satisfying the output tolerance.

Prob 1. Prove that a limit is a well-defined quantity if it exists: that is, if $\lim_{x\to a} f(x) = L_1$, and $\lim_{x\to a} f(x) = L_2$, then $L_1 = L_2$.

NOTE: The point here is that the complicated definition $\lim_{x\to a} f(x) = L$ could conceivably apply to two different numbers, both approached by f(x). Show that $|L_1 - L_2| < \epsilon$ for every $\epsilon > 0$, which means $L_1 - L_2 = 0$.

Prob 2. Prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} f(x)g(x) = LM$. HINT: Relate the product error to the individual errors by writing f(x)g(x)-LM = f(x)g(x) - Lg(x) + Lg(x) - LM.

Similarly, we get that limits are compatible with addition, subtraction, multiplication, and division.

Example: If g(x) is continuous at x = a, and f(y) is continuous at y = g(a) then f(g(x)) is continuous at x = a.

Proof: We must show $\lim_{x\to a} f(g(x)) = f(g(a))$. The continuity of f(y) means that, given $\varepsilon > 0$, there is some input tolerance $\delta_1 > 0$ such that $|y-g(a)| < \delta_1$ guarantees $|f(y) - f(g(a))| < \epsilon$. Now, by the continuity of g(x), there is also a $\delta_2 > 0$ such that $|x-a| < \delta_2$ guarantees $|g(x)-g(a)| < \delta_1$, which in turn guarantees $|f(g(x)) - f(g(a))| < \epsilon$. This shows the desired limit. **Little-o notation.** For a function g(h), we define the order class o(g(h)) of functions $\varepsilon(h)$ which become tiny relative to g(h) as h goes to zero:

$$o(g(h)) = \{\varepsilon(h) \text{ with } \lim_{h \to 0} \frac{\varepsilon(h)}{g(h)} = 0, \text{ and } \varepsilon(0) = 0\}.$$

We use this to indicate the magnitude of error in an approximation $f(h) \approx k(h)$:

$$f(h) \in k(h) + o(g(h))$$
 means $f(h) = k(h) + \varepsilon(h)$ for $\varepsilon(h) \in o(g(h))$

Abusing notation, we write this as f(x) = L + o(g(h)), using "=" to mean " \in ". *Example:* $\lim_{x\to a} f(x) = L$ whenever f(a+h) = L + o(1), meaning we have error $\frac{\varepsilon(h)}{1} = \varepsilon(h) = f(a+h) - L \to 0$ as $h \to 0$.

Example. Geometric series. We have $\frac{1}{1-h} = 1 + h + h^2 + o(h^2)$, since the error is $\varepsilon(h) = \frac{1}{1-h} - (1+h+h^2) = \frac{1-1+h^3}{1-h}$, so $\frac{\varepsilon(h)}{h^2} = \frac{h}{1-h} \to 0$ as $h \to 0$. *Example.* Prove that o(h) + o(h) = o(h), meaning if $\varepsilon_1(h), \varepsilon_2(h) \in o(h)$, then

 $\varepsilon_1(h) + \varepsilon_2(h) \in o(h).$ Proof: We have $\lim_{h \to 0} \frac{\varepsilon_1(h) + \varepsilon_2(h)}{h} = \lim_{h \to 0} \frac{\varepsilon_1(h)}{h} + \lim_{h \to 0} \frac{\varepsilon_2(h)}{h} = 0 + 0 = 0.$

Similarly, if $C \neq 0$, we have C o(g(h)) = o(g(h)); and if $g_1(h) \leq g_2(h)$, we have: $o(g_1(h)) \subset o(g_2(h)), o(g_1(h)) + o(g_2(h)) = o(g_2(h)), \text{ and } o(g_1(h))o(g_2(h)) = o(g_1(h)g_2(h)).$ **Prob 3.** Re-do #2 in little-o notation. That is, if f(a+h) = L + o(1) and

g(a+h) = M + o(1) as $h \to 0$, then f(x)g(x) = LM + o(1). HINT: This is less tricky than the previous method. Account for the case where L or M is zero.

Prob 4. Show $o(o(h)) \subset o(h)$. That is, if $\frac{\varepsilon_1(h)}{h}, \frac{\varepsilon_2(h)}{h} \to 0$, then $\frac{\varepsilon_1(\varepsilon_2(h))}{h} \to 0$. HINT: Use $\frac{\varepsilon_1(\varepsilon_2(h))}{h} = \frac{\varepsilon_1(\varepsilon_2(h))}{\varepsilon_2(h)} \frac{\varepsilon_2(h)}{h}$. (Also consider when $\varepsilon_2(h) = 0$ for some $h \neq 0$.)

Derivatives. We say f(x) has derivative f'(a) when f(a+h) = f(a)+f'(a)h+o(h). **Prob 5.** Prove that if f'(a) exists, then it is unique: that is, if $f(a+h) = f(a) + d_1h + o(h) = f(a) + d_2h + o(h)$, then $d_1 = d_2$.

Prob 6. Prove that if f'(g(a)) and g'(a) exist, then the composition k(x) = f(g(x)) has derivative k'(a) = f'(g(a)) g'(a).

HINT: Combine g(a+h) = g(a) + g'(a)h + o(h) and f(b+h) = f(b) + f'(b)h + o(h) for b = g(a) and any h going to zero.