Math 254H Weekly Homework 11 Due Dec 11, 2019

1. By Newton's Law of Gravitation, a point mass produces a gravitational force field pointing toward the mass, with magnitude proportional to the inverse-square distance from the mass. (The force is undefined at the mass itself.)

a. Give a formula for the gravitational field $\vec{G}(x, y, z)$ of a point mass at the origin in \mathbb{R}^3 , assuming the constant of proportionality is 1.

b. Compute the curl of \vec{G} , and show it is a conservative vector field.

c. Find a potential energy function e(x, y, z) with $\vec{G} = \nabla e$, normalized so that $e(x, y, z) \to 0$ as $(x, y, z) \to \infty$. *Hint:* Do not integrate from (0, 0, 0), where the field is undefined.

d. Compute the flux of \vec{G} out of the sphere of radius ρ centered at (0,0,0).

e. Prove that the flux of \vec{G} out of any closed surface S equals -4π if (0,0,0) is enclosed by S, and zero if it is outside S. *Hint:* Apply the Divergence Theorem to the solid region R between S and a small sphere centered at (0,0,0).

2. When a moth sees a light at night, it navigates so as to keep a constant angle α between its velocity vector and the direction of the light. If the light is a star, this results in a straight-line path; but if the light is a candle, the moth is constantly turning toward the light-source.

a. Assuming the candle is at (0,0) and writing the resulting path in polar form $\vec{c}(t) = f(t)(\cos(t), \sin(t))$, find a formula for the radius function f(t) depending on the parameter α . *Hint:* Express the constant $\cos(\alpha)$ as a dot product, and solve the resulting easy differential equation for f(t). Don't worry about initial values. **b.** What happens in the end, as $t \to \infty$? (The result will depend on α .)

3. Recall that an affine mapping $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear mapping L shifted by a constant vector \vec{a} , so that $A(\vec{v}) = L(\vec{v}) + \vec{a}$.

a. Let $A = A_{\theta,\vec{c}}$ be the rotation of \mathbb{R}^2 around a center point \vec{c} by counterclockwise angle θ . Show A is an affine mapping, and find a formula for A(x, y). *Hint:* To rotate around \vec{c} , shift \vec{c} to the origin $\vec{0}$, rotate around $\vec{0}$, then shift $\vec{0}$ back to \vec{c} .

b. In the geocentric model of astronomy, each planet rotated around a center point, and the center point was itself rotating around the Earth, which was fixed at the origin. The resulting path is called an *epicycloid*.

PROBLEM: Detote the path of the rotating center point by $\vec{c}(t)$, and the path of the planet by $\vec{p}(t)$. From the initial points $\vec{c}(0) = (2,0)$ and $\vec{p}(0) = (2,1)$, write formulas for $\vec{c}(t)$ and $\vec{p}(t)$. Hint: Act on $\vec{p}(0)$ by $A_{t,\vec{c}(t)}$. Check by plotting in W|A. EXAMPLE: parametric plot {{cos(t),-sin(t)},{sin(t),cos(t)}}.{1,1} for t=0 to pi