1. By Newton's Law of Gravitation, a point mass produces a gravitational force field pointing toward the mass, with magnitude proportional to the inverse-square distance from the mass. (The force is undefined at the mass itself.)
a. Give a formula for the gravitational field $\vec{G}(x, y, z)$ of a point mass at the origin in \mathbb{R}^{3}, assuming the constant of proportionality is 1 .
b. Compute the curl of \vec{G}, and show it is a conservative vector field.
c. Find a potential energy function $e(x, y, z)$ with $\vec{G}=\nabla e$, normalized so that $e(x, y, z) \rightarrow 0$ as $(x, y, z) \rightarrow \infty$. Hint: Do not integrate from $(0,0,0)$, where the field is undefined.
d. Compute the flux of \vec{G} out of the sphere of radius ρ centered at $(0,0,0)$.
e. Prove that the flux of \vec{G} out of any closed surface S equals -4π if $(0,0,0)$ is enclosed by S, and zero if it is outside S. Hint: Apply the Divergence Theorem to the solid region R between S and a small sphere centered at $(0,0,0)$.
2. When a moth sees a light at night, it navigates so as to keep a constant angle α between its velocity vector and the direction of the light. If the light is a star, this results in a straight-line path; but if the light is a candle, the moth is constantly turning toward the light-source.
a. Assuming the candle is at $(0,0)$ and writing the resulting path in polar form $\vec{c}(t)=f(t)(\cos (t), \sin (t))$, find a formula for the radius function $f(t)$ depending on the parameter α. Hint: Express the constant $\cos (\alpha)$ as a dot product, and solve the resulting easy differential equation for $f(t)$. Don't worry about initial values. b. What happens in the end, as $t \rightarrow \infty$? (The result will depend on α.)
3. Recall that an affine mapping $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear mapping L shifted by a constant vector \vec{a}, so that $A(\vec{v})=L(\vec{v})+\vec{a}$.
a. Let $A=A_{\theta, \vec{c}}$ be the rotation of \mathbb{R}^{2} around a center point \vec{c} by counterclockwise angle θ. Show A is an affine mapping, and find a formula for $A(x, y)$. Hint: To rotate around \vec{c}, shift \vec{c} to the origin $\overrightarrow{0}$, rotate around $\overrightarrow{0}$, then shift $\overrightarrow{0}$ back to \vec{c}.
b. In the geocentric model of astronomy, each planet rotated around a center point, and the center point was itself rotating around the Earth, which was fixed at the origin. The resulting path is called an epicycloid.
Problem: Detote the path of the rotating center point by $\vec{c}(t)$, and the path of the planet by $\vec{p}(t)$. From the initial points $\vec{c}(0)=(2,0)$ and $\vec{p}(0)=(2,1)$, write formulas for $\vec{c}(t)$ and $\vec{p}(t)$. Hint: Act on $\vec{p}(0)$ by $A_{t, \vec{c}(t)}$. Check by plotting in W|A. Example: parametric plot $\{\{\cos (\mathrm{t}),-\sin (\mathrm{t})\},\{\sin (\mathrm{t}), \cos (\mathrm{t})\}\} .\{1,1\}$ for $\mathrm{t}=0$ to pi
