Math 254H Weekly Homework 10 Due Nov 14, 2019

This is a tutorial on definitions and proofs for limits and error analysis. In each proof, you may use problems and propositions which appeared earlier.

Delta-epsilon framework. Definitions:

• We say $\lim_{x \to a} f(x) = L$, or $f(x) \to L$ as $x \to a$, when any required output error tolerance $\varepsilon > 0$ can be guaranteed by some input error tolerance $\delta > 0$: that is, $0 < |x - a| < \delta$ guarantees $|f(x) - L| < \varepsilon$.

This definition does not evaluate the limit, only rigorously verifies a given L as the limiting value. There might be *no* L satisfying the definition, in which case the limit *does not exist*.

• We say $f : \mathbb{R} \to \mathbb{R}$ is *continuous* at x = a when $\lim_{x \to a} f(x) = f(a)$.

PROPOSITION: $f(x) = x^2$ is continuous at x = 5.

Proof: We must show $\lim_{x\to 5} x^2 = 5^2 = 25$. For any given output error tolerance $\varepsilon > 0$ (for example $\varepsilon = 0.1$), we set the input error tolerance at $\delta = \min(1, \varepsilon/11)$ ($\delta = 0.009$ in our example). Assume $|x - 5| < \delta$ meets the input tolerance, so $|x-5| < \varepsilon/11$ and |x-5| < 1, so 4 < x < 6 and |x + 5| < 11. The output error is:

$$|x^2 - 5^2| = |(x - 5)(x + 5)| = |x - 5| |x + 5| < (\frac{\varepsilon}{11})(11) = \varepsilon.$$

Thus, a sufficiently small input error δ guarantees a given output error ε .

PROPOSITION: If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then $\lim_{x \to a} f(x) + g(x) = L + M$. *Proof:* Given $\varepsilon > 0$, the known limits give us $\delta_1 > 0$ such that $0 < |x - a| < \delta_1$ guarantees $|f(x) - L| < \varepsilon/2$, and $\delta_2 > 0$ such that $0 < |x - a| < \delta_2$ guarantees $|g(x) - M| < \frac{1}{2}\varepsilon$. (Here $\frac{1}{2}\varepsilon > 0$ is the given error tolerance for the known limits.) Assume $|x - a| < \delta = \min(\delta_1, \delta_2)$. Then:

$$\begin{aligned} |f(x) + g(x) - (L+M)| &= |(f(x)-L) + (g(x)-M)| \\ &\leq |f(x)-L| + |g(x)-M)| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Here we used the Triangle Inequality: $|a + b| \le |a| + |b|$.

Prob 1. Prove a limit cannot converge to two different numbers: that is, if $\lim_{x\to a} f(x) = L_1$ and $\lim_{x\to a} f(x) = L_2$, then $L_1 = L_2$.

Hints: The complicated definition $\lim_{x \to a} f(x) = L$ could conceivably apply to two different numbers; but show $|L_1 - L_2| < \varepsilon$ for every $\varepsilon > 0$, so $L_1 - L_2 = 0$.

Prob 2. Prove if $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} f(x)g(x) = LM$. *Hint:* Relate error in the product to the errors in each factor by writing:

$$f(x)g(x) - LM = f(x)g(x) - Lg(x) + Lg(x) - LM.$$

Similarly, limits are compatible with addition, subtraction, multiplication, division. Also with composition (substitution), if the functions are continuous:

PROPOSITION: If g(x) is continuous at x = a, and f(y) is continuous at y = g(a) then f(g(x)) is continuous at x = a.

Proof: We must show $\lim_{x\to a} f(g(x)) = f(g(a))$. The continuity of f(y) means that, given $\varepsilon > 0$, there is some input error $\delta' > 0$ such that $|y - g(a)| < \delta'$ guarantees $|f(y) - f(g(a))| < \varepsilon$. Now, by the continuity of g(x), we can take $\delta' > 0$ as the output error for g(x), and find a $\delta > 0$ such that $|x-a| < \delta$ guarantees $|g(x) - g(a)| < \delta'$, which in turn guarantees $|f(g(x)) - f(g(a))| < \varepsilon$. This shows the desired limit.

Little-o notation. For a magnitude function M(h), we define order class o(M(h)) as all functions $\varepsilon(h)$ which become tiny relative to M(h) as h approaches zero:

$$o(M(h)) = \left\{ \varepsilon(h) \text{ with } \lim_{h \to 0} \frac{|\varepsilon(h)|}{|M(h)|} = 0 \text{ and } \varepsilon(0) = 0 \right\}.$$

This measures the error in an approximation $f(h) \approx k(h)$ for small $h \approx 0$:

$$f(h) = k(h) + o(M(h)) \text{ means } f(h) = k(h) + \varepsilon(h) \text{ for some } \varepsilon(h) \in o(M(h)).$$

In more conventional terminology, f(h) is an *element* of the shifted set:

$$f(h) \in k(h) + o(M(h)) = \{k(h) + \varepsilon(h) \text{ for } \varepsilon(h) \in o(M(h))\}$$

PROPOSITION: $\lim_{x\to a} f(x) = f(a)$ is equivalent to f(a+h) = f(a) + o(1). *Proof:* By the Sum of Limits Theorem, we have the equivalences:

$$\lim_{x \to a} f(x) = f(a) \iff \lim_{x \to a} f(x) - f(a) = 0 \iff \lim_{x \to a} \varepsilon(x - a) = 0$$

where $\varepsilon(h) = f(a+h) - f(a)$. Substituting h = x-a, this is equivalent to $\lim_{h \to 0} \varepsilon(h) = \varepsilon(0) = 0$, meaning $\varepsilon(h) \in o(1)$, or $f(a+h) = f(a) + \varepsilon(h) = f(a) + o(1)$. **PROPOSITION.** Letting $o(h) + o(h) = \{\varepsilon_1(h) + \varepsilon_2(h) \text{ for } \varepsilon_1(h), \varepsilon_2(h) \in o(h)\}$, we have o(h) + o(h) = o(h).

Proof: Since $\varepsilon(h) = 0 \in o(h)$, clearly $o(h) \subset o(h) + o(h)$. For the opposite inclusion, take $\varepsilon_1(h), \varepsilon_2(h) \in o(h)$, and compute:

$$\lim_{h \to 0} \frac{\varepsilon_1(h) + \varepsilon_2(h)}{h} = \lim_{h \to 0} \frac{\varepsilon_1(h)}{h} + \lim_{h \to 0} \frac{\varepsilon_2(h)}{h} = 0 + 0 = 0.$$

Thus $\varepsilon_1(h) + \varepsilon_2(h) \in o(h)$ and $o(h) + o(h) \subset o(h)$.

Similarly, for $C \neq 0$, we have C o(M(h)) = o(M(h)). If $|M_1(h)| \leq |M_2(h)|$, then:

$$\begin{array}{rcl}
o(M_1(h)) &\subset & o(M_2(h)) \\
o(M_1(h)) + o(M_2(h)) &= & o(M_2(h)) \\
o(M_1(h)) o(M_2(h)) &= & M_1(h) o(M_2(h)) = & o(M_1(h)M_2(h)).
\end{array}$$

PROP: Letting $o(o(M(h))) = \bigcup_{\varepsilon(h) \in o(M(h))} o(\varepsilon(h))$, we have o(o(M(h))) = o(M(h)). *Proof:* Clearly $o(o(h)) \subset o(h)$. For for the opposite inclusion, we must show that for any $\varepsilon_1(h) \in o(M(h))$, there is some $\varepsilon_2(h) \in o(M(h))$ with $\varepsilon_1(h) \in o(\varepsilon_2(h))$. By definition, we have the ratio $\rho(h) = |\varepsilon_1(h)/M(h)| \to 0$ as $h \to 0$, so also $\sqrt{\rho(h)} \to 0$. Thus $\varepsilon_2(h) = \sqrt{\rho(h)}M(h) \in o(M(h))$, and we have:

$$\left|\frac{\varepsilon_1(h)}{\varepsilon_2(h)}\right| = \frac{\rho(h) |M(h)|}{\sqrt{\rho(h)} |M(h)|} = \sqrt{\rho(h)} \to 0,$$

so $\varepsilon_1(h) \in o(\varepsilon_2(h))$, and we conclude $o(h) \subset o(o(h))$.

Prob 3. Re-do #2 in little-o notation, for continuous functions: if f(a+h) = f(a) + o(1) and g(a+h) = g(a) + o(1) as $h \to 0$, then f(x)g(x) = f(a)g(a) + o(1). *Hint:* This is immediate, using the above facts. Also consider if f(a) or g(a) = 0.

Prob 4. For two classes of functions $c_1(h), c_2(h)$, define their composition:

$$c_1(h) \circ c_2(h) = \{ \varepsilon_1(\varepsilon_2(h)) \text{ for } \varepsilon_1(h) \in c_1(h), \varepsilon_2(h) \in c_2(h) \}.$$

Show that $o(h) \circ (Ch + o(h)) \subset o(h)$ for any constant C: that is, if $\varepsilon_1(h), \varepsilon_2(h) \in o(h)$, then $\varepsilon_1(Ch + \varepsilon_2(h)) \in o(h)$. Extra Credit: Show $o(h) \circ (Ch + o(h)) = o(h)$. HINT: Use $\frac{\varepsilon_1(Ch + \varepsilon_2(h))}{h} = \frac{\varepsilon_1(Ch + \varepsilon_2(h))}{Ch + \varepsilon_2(h)} \frac{Ch + \varepsilon_2(h)}{h}$. (What to do if $Ch + \varepsilon_2(h) = 0$?)

Derivatives. A derivative means a limit $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$, if it exists.

In o-notation, the derivative is the slope in a good linear approximation f(a+h) = f(a) + f'(a)h + o(h).

Prob 5. Prove that if a good linear approximation exists, then it is unique:

$$f(a+h) = f(a) + m_1 h + o(h) = f(a) + m_2 h + o(h) \Rightarrow m_1 = m_2.$$

PROPOSITION: f(a+h) = f(a) + mh + o(h) if and only if m = f'(a).

Proof. Suppose f(a+h) = f(a) + mh + o(h), meaning $f(a+h) = f(a) + mh + \varepsilon(h)$ for a function $\varepsilon(h) \in o(h)$, so that $\lim_{h \to 0} \frac{\varepsilon(h)}{h} = 0$. Solving for m and letting $h \to 0$:

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} + \frac{\varepsilon(h)}{h} = f'(a) + 0.$$

Conversely, if $m = f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$, then $\frac{f(a+h)-f(a)}{h} = m + o(1)$ by a previous proposition, so f(a+h) - f(a) = mh + ho(1) = mh + o(h) and f(a+h) = f(a) + mh + o(h).

Prob 6. Prove that if f'(g(a)) and g'(a) exist, then the composition k(x) = f(g(x)) has derivative k'(a) = f'(g(a))g'(a).

Higher-order approximation.

Prob 7. Prove the geometric series approximation $\frac{1}{1-h} = 1 + h + h^2 + o(h^2)$.

Quotient Rule.

PROPOSITION: If $\lim_{h\to 0} q(h) = 0$, then $\frac{1}{1-q(h)} = 1 + q(h) + o(q(h))$. *Proof:* The error in the approximation is:

$$\varepsilon(h) = \frac{1}{1-q(h)} - (1+q(h)) = \frac{1-(1-q(h)^2)}{1-q(h)} = \frac{q(h)^2}{1-q(h)}$$

so $\varepsilon(h)/q(h) = q(h)/(1-q(h)) \to 0/(1-0) = 0$. Finally, we approximate $\frac{f(x)}{g(x)}$ near x = a, assuming $g(a) \neq 0$:

$$\begin{aligned} \frac{f(a+h)}{g(a+h)} &= \frac{f(a) + f'(a)h + o(h)}{g(a) + g'(a)h + o(h)} \\ &= \frac{f(a) + f'(a)h + o(h)}{g(a)(1 - q(h))}, \quad q(h) = -\frac{g'(a)}{g(a)}h - o(h) \\ &= \frac{1}{g(a)} \left(f(a) + f'(a)h + o(h) \right) \left(1 + q(h) + o(q(h)) \right) \\ &= \frac{1}{g(a)} \left(f(a) + f'(a)h + o(h) \right) \left(1 - \frac{g'(a)}{g(a)}h + o(h) \right) \\ &= \frac{1}{g(a)} \left(f(a) + f'(a)h - f(a)\frac{g'(a)}{g(a)}h + o(h) \right). \end{aligned}$$

The coefficient of h gives the derivative of $\frac{f(x)}{g(x)}$ at x = a:

$$\frac{f'(a) - f(a)\frac{g'(a)}{g(a)}}{g(a)} = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$