This is a tutorial on definitions and proofs for limits and error analysis. In each proof, you may use problems and propositions which appeared earlier.

Delta-epsilon framework. Definitions:

- We say $\lim _{x \rightarrow a} f(x)=L$, or $f(x) \rightarrow L$ as $x \rightarrow a$, when any required output error tolerance $\varepsilon>0$ can be guaranteed by some input error tolerance $\delta>0$: that is, $0<|x-a|<\delta$ guarantees $|f(x)-L|<\varepsilon$.
This definition does not evaluate the limit, only rigorously verifies a given L as the limiting value. There might be no L satisfying the definition, in which case the limit does not exist.
- We say $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x=a$ when $\lim _{x \rightarrow a} f(x)=f(a)$.

Proposition: $f(x)=x^{2}$ is continuous at $x=5$.
Proof: We must show $\lim _{x \rightarrow 5} x^{2}=5^{2}=25$. For any given output error tolerance $\varepsilon>0$ (for example $\varepsilon=0.1$), we set the input error tolerance at $\delta=\min (1, \varepsilon / 11)$ ($\delta=0.009$ in our example). Assume $|x-5|<\delta$ meets the input tolerance, so $|x-5|<\varepsilon / 11$ and $|x-5|<1$, so $4<x<6$ and $|x+5|<11$. The output error is:

$$
\left|x^{2}-5^{2}\right|=|(x-5)(x+5)|=|x-5||x+5|<\left(\frac{\varepsilon}{11}\right)(11)=\varepsilon
$$

Thus, a sufficiently small input error δ guarantees a given output error ε.
Proposition: If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a} f(x)+g(x)=L+M$. Proof: Given $\varepsilon>0$, the known limits give us $\delta_{1}>0$ such that $0<|x-a|<\delta_{1}$ guarantees $|f(x)-L|<\varepsilon / 2$, and $\delta_{2}>0$ such that $0<|x-a|<\delta_{2}$ guarantees $|g(x)-M|<\frac{1}{2} \varepsilon$. (Here $\frac{1}{2} \varepsilon>0$ is the given error tolerance for the known limits.) Assume $|x-a|<\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Then:

$$
\begin{aligned}
|f(x)+g(x)-(L+M)| & =|(f(x)-L)+(g(x)-M)| \\
& \leq|f(x)-L|+\mid g(x)-M) \mid \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Here we used the Triangle Inequality: $|a+b| \leq|a|+|b|$.

Prob 1. Prove a limit cannot converge to two different numbers: that is, if $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow a} f(x)=L_{2}$, then $L_{1}=L_{2}$.
Hints: The complicated definition $\lim _{x \rightarrow a} f(x)=L$ could conceivably apply to two different numbers; but show $\left|L_{1}-L_{2}\right|<\varepsilon$ for every $\varepsilon>0$, so $L_{1}-L_{2}=0$.

Prob 2. Prove if $\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a} f(x) g(x)=L M$. Hint: Relate error in the product to the errors in each factor by writing:

$$
f(x) g(x)-L M=f(x) g(x)-L g(x)+L g(x)-L M
$$

Similarly, limits are compatible with addition, subtraction, multiplication, division. Also with composition (substitution), if the functions are continuous:

Proposition: If $g(x)$ is continuous at $x=a$, and $f(y)$ is continuous at $y=g(a)$ then $f(g(x))$ is continuous at $x=a$.
Proof: We must show $\lim _{x \rightarrow a} f(g(x))=f(g(a))$. The continuity of $f(y)$ means that, given $\varepsilon>0$, there is some input error $\delta^{\prime}>0$ such that $|y-g(a)|<\delta^{\prime}$ guarantees $|f(y)-f(g(a))|<\varepsilon$. Now, by the continuity of $g(x)$, we can take $\delta^{\prime}>0$ as the output error for $g(x)$, and find a $\delta>0$ such that $|x-a|<\delta$ guarantees $|g(x)-g(a)|<\delta^{\prime}$, which in turn guarantees $|f(g(x))-f(g(a))|<\varepsilon$. This shows the desired limit.

Little-o notation. For a magnitude function $M(h)$, we define order class $o(M(h))$ as all functions $\varepsilon(h)$ which become tiny relative to $M(h)$ as h approaches zero:

$$
o(M(h))=\left\{\varepsilon(h) \text { with } \lim _{h \rightarrow 0} \frac{|\varepsilon(h)|}{|M(h)|}=0 \text { and } \varepsilon(0)=0\right\} .
$$

This measures the error in an approximation $f(h) \approx k(h)$ for small $h \approx 0$:

$$
f(h)=k(h)+o(M(h)) \text { means } f(h)=k(h)+\varepsilon(h) \text { for some } \varepsilon(h) \in o(M(h)) .
$$

In more conventional terminology, $f(h)$ is an element of the shifted set:

$$
f(h) \in k(h)+o(M(h))=\{k(h)+\varepsilon(h) \text { for } \varepsilon(h) \in o(M(h))\} .
$$

Proposition: $\lim _{x \rightarrow a} f(x)=f(a)$ is equivalent to $f(a+h)=f(a)+o(1)$.
Proof: By the Sum of Limits Theorem, we have the equivalences:

$$
\lim _{x \rightarrow a} f(x)=f(a) \Longleftrightarrow \lim _{x \rightarrow a} f(x)-f(a)=0 \Longleftrightarrow \lim _{x \rightarrow a} \varepsilon(x-a)=0
$$

where $\varepsilon(h)=f(a+h)-f(a)$. Substituting $h=x-a$, this is equivalent to $\lim _{h \rightarrow 0} \varepsilon(h)=$ $\varepsilon(0)=0$, meaning $\varepsilon(h) \in o(1)$, or $f(a+h)=f(a)+\varepsilon(h)=f(a)+o(1)$.
Proposition. Letting $o(h)+o(h)=\left\{\varepsilon_{1}(h)+\varepsilon_{2}(h)\right.$ for $\left.\varepsilon_{1}(h), \varepsilon_{2}(h) \in o(h)\right\}$, we have $o(h)+o(h)=o(h)$.
Proof: Since $\varepsilon(h)=0 \in o(h)$, clearly $o(h) \subset o(h)+o(h)$. For the opposite inclusion, take $\varepsilon_{1}(h), \varepsilon_{2}(h) \in o(h)$, and compute:

$$
\lim _{h \rightarrow 0} \frac{\varepsilon_{1}(h)+\varepsilon_{2}(h)}{h}=\lim _{h \rightarrow 0} \frac{\varepsilon_{1}(h)}{h}+\lim _{h \rightarrow 0} \frac{\varepsilon_{2}(h)}{h}=0+0=0 .
$$

Thus $\varepsilon_{1}(h)+\varepsilon_{2}(h) \in o(h)$ and $o(h)+o(h) \subset o(h)$.
Similarly, for $C \neq 0$, we have $C o(M(h))=o(M(h))$. If $\left|M_{1}(h)\right| \leq\left|M_{2}(h)\right|$, then:

$$
\begin{aligned}
o\left(M_{1}(h)\right) & \subset o\left(M_{2}(h)\right) \\
o\left(M_{1}(h)\right)+o\left(M_{2}(h)\right) & =o\left(M_{2}(h)\right) \\
o\left(M_{1}(h)\right) o\left(M_{2}(h)\right) & =M_{1}(h) o\left(M_{2}(h)\right)=o\left(M_{1}(h) M_{2}(h)\right) .
\end{aligned}
$$

Prop: Letting $o(o(M(h)))=\bigcup_{\varepsilon(h) \in o(M(h))} o(\varepsilon(h))$, we have $o(o(M(h)))=o(M(h))$. Proof: Clearly $o(o(h)) \subset o(h)$. For for the opposite inclusion, we must show that for any $\varepsilon_{1}(h) \in o(M(h))$, there is some $\varepsilon_{2}(h) \in o(M(h))$ with $\varepsilon_{1}(h) \in o\left(\varepsilon_{2}(h)\right)$. By definition, we have the ratio $\rho(h)=\left|\varepsilon_{1}(h) / M(h)\right| \rightarrow 0$ as $h \rightarrow 0$, so also $\sqrt{\rho(h)} \rightarrow 0$. Thus $\varepsilon_{2}(h)=\sqrt{\rho(h)} M(h) \in o(M(h))$, and we have:

$$
\left|\frac{\varepsilon_{1}(h)}{\varepsilon_{2}(h)}\right|=\frac{\rho(h)|M(h)|}{\sqrt{\rho(h)}|M(h)|}=\sqrt{\rho(h)} \rightarrow 0,
$$

so $\varepsilon_{1}(h) \in o\left(\varepsilon_{2}(h)\right)$, and we conclude $o(h) \subset o(o(h))$.
Prob 3. Re-do \#2 in little-o notation, for continuous functions: if $f(a+h)=$ $f(a)+o(1)$ and $g(a+h)=g(a)+o(1)$ as $h \rightarrow 0$, then $f(x) g(x)=f(a) g(a)+o(1)$. Hint: This is immediate, using the above facts. Also consider if $f(a)$ or $g(a)=0$.

Prob 4. For two classes of functions $c_{1}(h), c_{2}(h)$, define their composition:

$$
c_{1}(h) \circ c_{2}(h)=\left\{\varepsilon_{1}\left(\varepsilon_{2}(h)\right) \text { for } \varepsilon_{1}(h) \in c_{1}(h), \varepsilon_{2}(h) \in c_{2}(h)\right\} .
$$

Show that $o(h) \circ(C h+o(h)) \subset o(h)$ for any constant C : that is, if $\varepsilon_{1}(h), \varepsilon_{2}(h) \in$ $o(h)$, then $\varepsilon_{1}\left(C h+\varepsilon_{2}(h)\right) \in o(h)$. Extra Credit: Show $o(h) \circ(C h+o(h))=o(h)$. HINT: Use $\frac{\varepsilon_{1}\left(C h+\varepsilon_{2}(h)\right)}{h}=\frac{\varepsilon_{1}\left(C h+\varepsilon_{2}(h)\right)}{C h+\varepsilon_{2}(h)} \frac{C h+\varepsilon_{2}(h)}{h}$. (What to do if $C h+\varepsilon_{2}(h)=0$?)

Derivatives. A derivative means a limit $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$, if it exists.
In o-notation, the derivative is the slope in a good linear approximation $f(a+h)=$ $f(a)+f^{\prime}(a) h+o(h)$.

Prob 5. Prove that if a good linear approximation exists, then it is unique:

$$
f(a+h)=f(a)+m_{1} h+o(h)=f(a)+m_{2} h+o(h) \quad \Rightarrow \quad m_{1}=m_{2} .
$$

Proposition: $f(a+h)=f(a)+m h+o(h)$ if and only if $m=f^{\prime}(a)$.
Proof. Suppose $f(a+h)=f(a)+m h+o(h)$, meaning $f(a+h)=f(a)+m h+\varepsilon(h)$ for a function $\varepsilon(h) \in o(h)$, so that $\lim _{h \rightarrow 0} \frac{\varepsilon(h)}{h}=0$. Solving for m and letting $h \rightarrow 0$:

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}+\frac{\varepsilon(h)}{h}=f^{\prime}(a)+0 .
$$

Conversely, if $m=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, then $\frac{f(a+h)-f(a)}{h}=m+o(1)$ by a previous proposition, so $f(a+h)-f(a)=m h+h o(1)=m h+o(h)$ and $f(a+h)=f(a)+m h+o(h)$.

Prob 6. Prove that if $f^{\prime}(g(a))$ and $g^{\prime}(a)$ exist, then the composition $k(x)=$ $f(g(x))$ has derivative $k^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)$.

Higher-order approximation.

Prob 7. Prove the geometric series approximation $\frac{1}{1-h}=1+h+h^{2}+o\left(h^{2}\right)$.

Quotient Rule.

Proposition: If $\lim _{h \rightarrow 0} q(h)=0$, then $\frac{1}{1-q(h)}=1+q(h)+o(q(h))$.
Proof: The error in the approxmation is:

$$
\varepsilon(h)=\frac{1}{1-q(h)}-(1+q(h))=\frac{1-\left(1-q(h)^{2}\right)}{1-q(h)}=\frac{q(h)^{2}}{1-q(h)},
$$

so $\varepsilon(h) / q(h)=q(h) /(1-q(h)) \rightarrow 0 /(1-0)=0$.
Finally, we approximate $\frac{f(x)}{g(x)}$ near $x=a$, assuming $g(a) \neq 0$:

$$
\begin{aligned}
\frac{f(a+h)}{g(a+h)} & =\frac{f(a)+f^{\prime}(a) h+o(h)}{g(a)+g^{\prime}(a) h+o(h)} \\
& =\frac{f(a)+f^{\prime}(a) h+o(h)}{g(a)(1-q(h))}, \quad q(h)=-\frac{g^{\prime}(a)}{g(a)} h-o(h) \\
& =\frac{1}{g(a)}\left(f(a)+f^{\prime}(a) h+o(h)\right)(1+q(h)+o(q(h))) \\
& =\frac{1}{g(a)}\left(f(a)+f^{\prime}(a) h+o(h)\right)\left(1-\frac{g^{\prime}(a)}{g(a)} h+o(h)\right) \\
& =\frac{1}{g(a)}\left(f(a)+f^{\prime}(a) h-f(a) \frac{g^{\prime}(a)}{g(a)} h+o(h)\right) .
\end{aligned}
$$

The coefficient of h gives the derivative of $\frac{f(x)}{g(x)}$ at $x=a$:

$$
\frac{f^{\prime}(a)-f(a) \frac{g^{\prime}(a)}{g(a)}}{g(a)}=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g(a)^{2}} .
$$

