Math 254H Weekly Homework 9 Apr 17, 2017

Consider the surface S which is the graph of the function $f(x, y) = x^3 - x - y^2$ over the unit disk $x^2 + y^2 \le 1$:

$$S \ = \ \{ \ (x,y,z) \in \mathbb{R}^3 \ \mid \ z = x^3 - x - y^2, \ \ x^2 + y^2 \leq 1 \ \}.$$

Let C be the parabolic curve with $x = 0, z = 1 - y^2$.

PROBLEM: Find the minimum distance between S and C. That is, find the points $\vec{u} \in S$ and $\vec{v} \in C$ which minimize the function $\operatorname{dist}(\vec{u}, \vec{v}) = |\vec{u} - \vec{v}|$.

1. Explain in detail why the problem is equivalent to minimizing the function:

$$\ell(x, y, t) = x^{2} + (y - t)^{2} + (x^{3} - x - y^{2} - 1 + t^{2})^{2}$$

over the solid cylindrical region $R = \{(x, y, t) \in \mathbb{R}^3 \mid x^2 + y^2 \leq 1\}.$

2. Find the critical points \vec{a} of $\ell(x, y, t)$ which lie in region R. (Any \vec{a} outside of R are irrelevant.) Get approximate solutions to $\nabla \ell(\vec{a}) = \vec{0}$ using Wolfram Alpha or Mathematica. Determine $f(\vec{a})$ for each critical point.

Examples of Mathematica code: $h[x_,y_]:=x^2+xy$; h[1,2]; D[h[x,y],x]; NSolve[{D[h[x,y],x], D[h[x,y],y]} == {0,0}]. Press Ctrl+Enter to evaluate an expression. Ending a line with ; means the output result is not printed, using no end-punctuation means it is printed. **3.** For each critical point found, classify it as max, min, or indefinite (saddle), using the Second Derivative Test for the 3×3 Hessian $Hf_{\vec{a}}$ on [MT] p. 175. (If $Hf_{\vec{a}}$ is positive definite, \vec{a} is a min; if $-Hf_{\vec{a}}$ is positive definite, \vec{a} a max; otherwise, \vec{a} is a saddle.) Note it is enough to test $Hf_{\vec{a}}$ at a numerical approximation of \vec{a} , since the sign of a determinant will not change because of a slight error in \vec{a} (unless the det is zero).

4. Find the approximate critical min point of $\ell(x, y, t)$ using the gradient-flow method on a spreadsheet, from WHW 3.

5. Repeat #2 and/or #4 for the boundary surface of the region R. That is parametrize the surface $B = \{(x, y, t) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$, as B(s, t) = (x(s), y(s), t), and find the critical points of $\ell^*(s, t) = \ell(B(s, t))$ over the (s, t) parameter region.

6. Again find the minimum points on B using the Lagrange multiplier method on [MT] p. 185. That is, to find critical points of $\ell(x, y, t)$ on the constraint surface $g(x, y, t) = x^2 + y^2 = 1$, solve the simultaneous equations g(x, y, t) = 1 and $\nabla \ell(x, y, t) = \lambda \nabla g(x, y, t)$ for the four variables x, y, t, λ . This means the points on the surface where the gradient of ℓ is parallel to the gradient of the constraint function g, which implies that the level surface of ℓ is tangent to the constraint surface.

7. Finally, determine the overall minimum value of $\ell(x, y, t)$ on the region R, and solve the original problem. Does your answer seem right on the picture?