Consider the surface S which is the graph of the function $f(x, y)=x^{3}-x-y^{2}$ over the unit disk $x^{2}+y^{2} \leq 1$:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{3}-x-y^{2}, \quad x^{2}+y^{2} \leq 1\right\} .
$$

Let C be the parabolic curve with $x=0, z=1-y^{2}$.
problem: Find the minimum distance between S and C. That is, find the points $\vec{u} \in S$ and $\vec{v} \in C$ which minimize the function $\operatorname{dist}(\vec{u}, \vec{v})=|\vec{u}-\vec{v}|$.

1. Explain in detail why the problem is equivalent to minimizing the function:

$$
\ell(x, y, t)=x^{2}+(y-t)^{2}+\left(x^{3}-x-y^{2}-1+t^{2}\right)^{2}
$$

over the solid cylindrical region $R=\left\{(x, y, t) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1\right\}$.
2. Find the critical points \vec{a} of $\ell(x, y, t)$ which lie in region R. (Any \vec{a} outside of R are irrelevant.) Get approximate solutions to $\nabla \ell(\vec{a})=\overrightarrow{0}$ using Wolfram Alpha or Mathematica. Determine $f(\vec{a})$ for each critical point.

Examples of Mathematica code: $\mathrm{h}\left[\mathrm{x}_{-}, \mathrm{y}-\right]:=\mathrm{x} \wedge 2+\mathrm{xy}$; $\mathrm{h}[1,2]$; $\mathrm{D}[\mathrm{h}[\mathrm{x}, \mathrm{y}], \mathrm{x}]$; NSolve $[\{D[h[x, y], x], D[h[x, y], y]\}==\{0,0\}]$. Press Ctrl+Enter to evaluate an expression. Ending a line with ; means the output result is not printed, using no end-punctuation means it is printed.
3. For each critical point found, classify it as max, min, or indefinite (saddle), using the Second Derivative Test for the 3×3 Hessian $H f_{\vec{a}}$ on [MT] p. 175. (If $H f_{\vec{a}}$ is positive definite, \vec{a} is a min; if $-H f_{\vec{a}}$ is positive definite, \vec{a} a max; otherwise, \vec{a} is a saddle.) Note it is enough to test $H f_{\vec{a}}$ at a numerical approximation of \vec{a}, since the sign of a determinant will not change because of a slight error in \vec{a} (unless the det is zero).
4. Find the approximate critical min point of $\ell(x, y, t)$ using the gradientflow method on a spreadsheet, from WHW 3.
5. Repeat $\# 2$ and/or $\# 4$ for the boundary surface of the region R. That is parametrize the surface $B=\left\{(x, y, t) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$, as $B(s, t)=$ $(x(s), y(s), t)$, and find the critical points of $\ell^{*}(s, t)=\ell(B(s, t))$ over the (s, t) parameter region.
6. Again find the minimum points on B using the Lagrange multiplier method on $[\mathrm{MT}]$ p. 185. That is, to find critical points of $\ell(x, y, t)$ on the constraint surface $g(x, y, t)=x^{2}+y^{2}=1$, solve the simultaneous equations $g(x, y, t)=1$ and $\vec{\nabla} \ell(x, y, t)=\lambda \vec{\nabla} g(x, y, t)$ for the four variables x, y, t, λ. This means the points on the surface where the gradient of ℓ is parallel to the gradient of the constraint function g, which implies that the level surface of ℓ is tangent to the constraint surface.
7. Finally, determine the overall minimum value of $\ell(x, y, t)$ on the region R, and solve the original problem. Does your answer seem right on the picture?

