1. Proposition: If $L_{1}, L_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are linear mappings, then so is the composition $L_{3}=L_{1} \circ L_{2}$.
Proof. First, it is clear that the composition $L_{3}(\mathbf{v})=L_{1}\left(L_{2}(\mathbf{v})\right)$ is a well-defined mapping, taking $L_{3}: \mathbb{R}^{2} \xrightarrow{L_{2}} \mathbb{R}^{2} \xrightarrow{L_{1}} R^{2}$. We must also check the defining properties of a linear mapping, assuming these properties for L_{1}, L_{2} :

$$
\begin{aligned}
L_{3}(\mathbf{u}+\mathbf{v}) & =L_{1}\left(L_{2}(\mathbf{u}+\mathbf{v})\right)=L_{1}\left(L_{2}(\mathbf{u})+L_{2}(\mathbf{v})\right) \\
& =L_{1}\left(L_{2}(\mathbf{u})\right)+L_{1}\left(L_{2}(\mathbf{v})\right)=L_{3}(\mathbf{u})+L_{3}(\mathbf{v}) \\
L_{3}(s \mathbf{v}) & =L_{1}\left(L_{2}(s \mathbf{v})\right)=L_{1}\left(s L_{2}(\mathbf{v})\right)=s L_{1}\left(L_{2}(\mathbf{v})\right)=s L_{3}(\mathbf{v})
\end{aligned}
$$

Hence L_{3} is linear.
2a. Given $P(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$, we have:

$$
P\left(P(\mathbf{v})=\frac{\left(\frac{v \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}\right) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}=\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a}} \frac{\mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}=P(\mathbf{v})\right.
$$

Thus Proja $\circ \operatorname{Proj}_{\mathbf{a}}=\operatorname{Proj}_{\mathbf{a}}$, and it is geometrically clear that projecting a second time to the a-line has no effect. If $\mathbf{a}=\left(a_{1}, a_{2}\right)$, the matrix is:

$$
\left[\text { Proja }_{\mathbf{a}}\right]=\frac{1}{a_{1}^{2}+a_{2}^{2}}\left[\begin{array}{cc}
a_{1}^{2} & a_{1} a_{2} \\
a_{1} a_{2} & a_{2}^{2}
\end{array}\right]
$$

where the scalar at left multiplies every entry of the matrix.

2b. Given $R(\mathbf{v})=\mathbf{v}-2 \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$, we have:

$$
\begin{aligned}
R(R(\mathbf{v})) & =\left(\mathbf{v}-2 \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}\right)-2 \frac{\left(\mathbf{v}-2 \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}\right) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \\
& =\mathbf{v}-2 \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}-2 \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}+4 \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \\
& =\mathbf{v} .
\end{aligned}
$$

That is, $\operatorname{Ref}_{\mathbf{a}} \circ \operatorname{Ref}_{\mathbf{a}}=\mathrm{I}$, the identity mapping $I(\mathbf{v})=\mathbf{v}$ with matrix $[\mathrm{I}]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
2c. The rotation is defined by: $R(x, y)=x(\cos \theta, \sin \theta)+y(-\sin \theta, \cos \theta)$. In particular taking $(x, y)=R(\mathbf{i})=(\cos \theta, \sin \theta)$ gives:

$$
\begin{aligned}
R(R(\mathbf{i})) & =R(\cos \theta, \sin \theta)=\cos \theta(\cos \theta, \sin \theta)+\sin \theta(-\sin \theta, \cos \theta) \\
& =\left(\cos ^{2} \theta-\sin ^{2} \theta, 2 \sin \theta \cos \theta\right)
\end{aligned}
$$

and similarly $R(R(\mathbf{j}))=\left(-2 \sin \theta \cos \theta, \cos ^{2} \theta-\sin ^{2} \theta\right)$. Simplifying with the Double Angle Formulas from trigonometry, we find the matrix:

$$
\left[\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\theta}\right]=\left[\begin{array}{r|r}
\cos (2 \theta) & -\sin (2 \theta) \\
\sin (2 \theta) & \cos (2 \theta)
\end{array}\right]=\left[\operatorname{Rot}_{2 \theta}\right] .
$$

Geometrically, this means two successive rotations by θ produce rotation by 2θ.

2d. If $R_{1}(x, y)=x(0,1)+y(-1,0)=(-y, x)$ and $R_{2}(x, y)=(-x, y)$, then: $R_{1}\left(R_{2}(x, y)\right)=$ $R_{2}(-x, y)=(-y,-x)$, with matrix: $\left[R_{1} \circ R_{2}\right]=\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$. Drawing this shows it is $\operatorname{Ref}_{(1,1)}$, reflection of the direction $\mathbf{a}=(1,1)$ across the perpendicular line $y=-x$.
3. The linear mapping $R=\operatorname{Ref}_{\mathbf{a}}$ reflects the vector $\mathbf{a}=\left(a_{1}, a_{2}\right)$ across its perpendicular line $a_{1} x+a_{2} y=0$. Since we know $R(\mathbf{v})=\mathbf{v}-2 \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$, we have:

$$
R(\mathbf{i})=(1,0)-2 \frac{a_{1}}{a_{1}^{2}+a_{2}^{2}}\left(a_{1}, a_{2}\right)=\frac{1}{a_{1}^{2}+a_{2}^{2}}\left(a_{2}^{2}-a_{1}^{2},-2 a_{1} a_{2}\right)
$$

and similarly $R(\mathbf{j})=\frac{1}{a_{1}^{2}+a_{2}^{2}}\left(-2 a_{1} a_{2}, a_{1}^{2}-a_{2}^{2}\right)$. Writing these as columns gives the matrix:

$$
\left[\operatorname{Ref}_{\mathbf{a}}\right]=\frac{1}{a_{1}^{2}+a_{2}^{2}}\left[\begin{array}{r|r}
a_{2}^{2}-a_{1}^{2} & -2 a_{1} a_{2} \\
-2 a_{1} a_{2} & a_{1}^{2}-a_{2}^{2}
\end{array}\right]
$$

The scalar on the left multiplies each element of the matrix; it disappears if $|\mathbf{a}|=1$.

