Recall that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has Jacobian derivative matrix $[D F]$ with m rows, n columns.

1. Consider a function $\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}$, tracing the curve $\mathbf{c}(t)=(x(t), y(t))$. Write the derivative matrix $\left[D \mathbf{c}_{t}\right]$ in terms of the coordinate functions $x(t)$ and $y(t)$.
2. Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Write the derivative matrix $\left[D f_{(x, y)}\right]$.
3. Use the Chain Rule to compute the derivative matrix of the composite function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $F(u, v)=\mathbf{c}(f(u, v))$.
