A median of a triangle is the line segment from a vertex to the midpoint of the opposite side.

Proposition: Given any triangle in the plane, the three medians intersect at a common point which is $\frac{2}{3}$ of the way along each median.

Proof: We translate the proposition into the language of vector algebra. Let $\vec{u}, \vec{v}, \vec{w}$ be the vectors from the origin to the vertices of the triangle..

The vector from $\vec{v}$ to $\vec{w}$ is $\vec{w} \vec{v}$, and the midpoint of the corresponding side is:

$$
\vec{v}+\frac{1}{2}(\vec{w}-\vec{v})=\frac{1}{2} \vec{v}+\frac{1}{2} \vec{w} .
$$

The vector from $\vec{u}$ to this midpoint is $\frac{1}{2} \vec{v}+\frac{1}{2} \vec{w}-\vec{u}$, and the median from $\vec{u}$ to the midpoint is the parametrized line segment:

$$
\vec{\ell}(t)=\vec{u}+t\left(\frac{1}{2} \vec{v}+\frac{1}{2} \vec{w}-\vec{u}\right) \quad \text { for } \quad 0 \leq t \leq 1
$$

(That is, the points of the segment are the endpoints of the vectors $\vec{\ell}(t)$, written in standard form from the origin.) The point $\frac{2}{3}$ of the way along this median is:

$$
\begin{aligned}
\vec{\ell}\left(\frac{2}{3}\right) & =\vec{u}+\frac{2}{3}\left(\frac{1}{2} \vec{v}+\frac{1}{2} \vec{w}-\vec{u}\right) \\
& =\vec{u}+\frac{1}{3} \vec{v}+\frac{1}{3} \vec{w}-\frac{2}{3} \vec{u} \\
& =\left(1-\frac{2}{3}\right) \vec{u}+\frac{1}{3} \vec{v}+\frac{1}{3} \vec{w} \\
& =\frac{1}{3}(\vec{u}+\vec{v}+\vec{w}),
\end{aligned}
$$

where we expand and factor using the distributive property of scalar multiplication over vector addition.

The same computation for the other two medians gives their $\frac{2}{3}$ points:

$$
\begin{aligned}
& \vec{v}+\frac{2}{3}\left(\frac{1}{2} \vec{u}+\frac{1}{2} \vec{w}-\vec{v}\right)=\frac{1}{3}(\vec{u}+\vec{v}+\vec{w}) \\
& \vec{w}+\frac{2}{3}\left(\frac{1}{2} \vec{u}+\frac{1}{2} \vec{v}-\vec{w}\right)=\frac{1}{3}(\vec{u}+\vec{v}+\vec{w})
\end{aligned}
$$

Thus, all three medians contain a common point, the $\frac{2}{3}$-point along each.

Note: We call this common point the centroid of the triangle. The proof shows it is the vector average of $\vec{u}, \vec{v}, \vec{w}$.

