Proposition: In a half-circle, inscribe a triangle with one side equal to the diameter; then the opposite angle must be a right angle.

Proof: Let A, B, C be the vertices of the triangle, O the center of the circle, and line segment $\overline{A O B}$ the diameter. Define the radius vector $\vec{v}=\overrightarrow{O A}$, with opposite radius $\vec{v}=\overrightarrow{O B}$, and $\vec{u}=\overrightarrow{O C}$. Since the triangle $\triangle A B C$ is inscribed in the circle, these vectors are all radii with the same length: $|\vec{v}|=|\vec{u}|$.

The angle $\angle C$ consists of rays $\overrightarrow{C A}=\vec{v}-\vec{u}$ and $\overrightarrow{C B}=-\vec{v}-\vec{u}=-(\vec{v}+\vec{u})$, with dot product:

$$
\begin{gathered}
-(\vec{v}+\vec{u}) \cdot(\vec{v}-\vec{u})=-(\vec{v} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{u} \cdot \vec{v}-\vec{u} \cdot \vec{u}) \\
=-|v|^{2}+\vec{u} \cdot \vec{v}-\vec{u} \cdot v+|\vec{u}|^{2}=0,
\end{gathered}
$$

where we use distributive and commutative laws for dot product, and $|\vec{v}|=|\vec{u}|$.
Since the dot product is zero, the vectors are orthogonal, and $\angle C$ is a right angle, as required.

Style notes:

- The proof is divided into paragraphs: the statement of the proposition; the setup translating the geometric hypotheses into vector notation; the main computation; and the conclusion.
- The proof does not depend on a diagram: the words make sense on their own, and one could draw a diagram based on them.
- No needed explanation is omited, and nothing else is inserted. For example, vector coordinates are irrelevant.
- For some reason, instead of the rays $\overrightarrow{C A}, \overrightarrow{C B}$ forming $\angle C$, every single student used the vectors $\overrightarrow{A C}, \overrightarrow{B C}$, which, when translated to start at C, form the vertical angle to $\angle C$, outside the triangle.

