1 Notation. We denote a vector in n-dimensional space \mathbb{R}^{n} by:

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vec{e}_{1}+\cdots+x_{n} \vec{e}_{n},
$$

where the standard basis vector $\vec{e}_{i}=(0, \ldots, 1, \ldots, 0)$ has a 1 in the $i^{\text {th }}$ place.
We will work with a scalar-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, so that $f(\vec{x})=$ $f\left(x_{1}, \ldots, x_{n}\right)$ is a number.

2 Definition of Limit. $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=L$ means that any output error tolerance of $f(\vec{x})$ away from L is guaranteed by some input error tolerance of \vec{x} from \vec{c}. That is, for any output tolerance $\epsilon>0$, there is some input tolerance $\delta>0$ with:

$$
0<|\vec{x}-\vec{c}|<\delta \quad \Longrightarrow \quad|f(\vec{x})-L|<\epsilon
$$

where " \Longrightarrow " means "implies" or "guarantees".
Note that the definition makes sense even if $f(\vec{x})$ is only defined for \vec{x} in some punctured open ball around \vec{c}, for $0<|\vec{x}-\vec{c}|<r$.

3 Limit Laws. If $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=L$ and $\lim _{\vec{x} \rightarrow \vec{c}} g(\vec{x})=M$, then:
(a) $\lim _{\vec{x} \rightarrow \vec{c}} f(x)+g(x)=L+M$
(b) $\lim _{\vec{x} \rightarrow \vec{c}} f(x) g(x)=L M$
(c) $\lim _{\vec{x} \rightarrow \vec{c}} f(x) / g(x)=L / M$, provided $M \neq 0$

Proof of (b). By hypothesis, we assume that any desired output errors for $f(\vec{x})$ and $g(\vec{x})$ can be guaranteed by some input error for \vec{x}. We proceed to find an upper bound (ceiling) for the output error of $f(\vec{x}) g(\vec{x})$ in terms of the controllable errors of $f(\vec{x})$ and $g(\vec{x})$.

$$
\begin{aligned}
|f(\vec{x}) g(\vec{x})-L M| & =|f(\vec{x}) g(\vec{x})-f(\vec{x}) M+f(\vec{x}) M-L M| \\
& \leq|f(\vec{x}) g(\vec{x})-f(\vec{x}) M|+|f(\vec{x}) M-L M| \quad \text { because }|u+v| \leq|u|+|v| \\
& =|f(\vec{x})||g(\vec{x})-M|+|M||f(\vec{x})-L| .
\end{aligned}
$$

Now, given a desired $\epsilon>0$, choose δ small enough that $0<|\vec{x}-\vec{c}|<\delta$ guarantees:

$$
|f(\vec{x})-L|<1, \quad|f(\vec{x})-L|<\frac{\epsilon}{2(|L|+1)}, \quad|g(\vec{x})-M|<\frac{\epsilon}{2(|M|+1)}
$$

The first inequality assures $|f(x)|<|L|+1$, so our previous estimate guarantees:

$$
|f(\vec{x}) g(\vec{x})-L M| \leq(|L|+1) \frac{\epsilon}{2(|L|+1)}+(|M|+1) \frac{\epsilon}{2(|M|+1)}=\epsilon .
$$

We conclude that any desired output tolerance $\epsilon>0$ for $f(\vec{x}) g(\vec{x})$ can be guaranteed by some input tolerance δ, which is the definition of $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x}) g(\vec{x})=L M$.

4 Continuity. We say that $f(\vec{x})$ is continuous at $\vec{x}=\vec{c}$ when $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=f(\vec{c})$.
Proposition: For functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$, if $f(\vec{x})$ is continuous at $\vec{x}=\vec{c}$, and $g(y)$ is continous at $y=f(\vec{c})$, then the composition $g(f(\vec{x}))$ is continuous at $\vec{x}=\vec{c}$.

Proof. By hypothesis, we assume that the output errors of $f(\vec{x})$ and $g(y)$ can be controlled near $\vec{x}=\vec{c}$ and $y=f(\vec{c})$. We chain these error bounds together to control the error of $g(f(\vec{x}))$.

Given $\epsilon>0$, choose $\delta^{\prime}>0$ so that $|y-f(\vec{c})|<\delta^{\prime}$ guarantees $|g(y)-g(f(\vec{c}))|<\epsilon$. Now, taking δ^{\prime} as an output error tolerance for $f(\vec{x})$, choose $\delta>0$ so that $|\vec{x}-\vec{c}|<\delta$ guarantees $|f(\vec{x})-f(\vec{c})|<\delta^{\prime}$. Then we have:

$$
|\vec{x}-\vec{c}|<\delta \quad \Longrightarrow \quad|f(\vec{x})-f(\vec{c})|<\delta^{\prime} \quad \Longrightarrow \quad|g(f(\vec{x}))-g(f(\vec{c}))|<\epsilon
$$

which means $\lim _{\vec{x} \rightarrow \vec{c}} g(f(\vec{x}))=g(f(\vec{c}))$. Conclusion: $g(f(\vec{x}))$ is continuous at \vec{c}.
5 Linear Mappings. We say a function $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear mapping if $\ell(s \vec{u}+t \vec{v})=s \ell(\vec{u})+t \ell(\vec{v})$ for all vectors \vec{u}, \vec{v} and scalars s, t. Thus we have:

$$
\ell(\vec{x})=\ell\left(x_{1} \vec{e}_{1}+\cdots x_{n} \vec{e}_{n}\right)=x_{1} \ell\left(\vec{e}_{1}\right)+\cdots+x_{n} \ell\left(\vec{e}_{n}\right)=\vec{\ell} \cdot \vec{x}
$$

the dot product of \vec{x} with the vector $\vec{\ell}=\left(\ell\left(\vec{e}_{1}\right), \ldots, \ell\left(e_{n}\right)\right)$. In linear algebra, we call $\vec{\ell}$ the matrix of the linear mapping $\ell(\vec{x})$.

An affine mapping means a linear mapping plus a constant: $m(\vec{x})=\ell(\vec{x})+b$.
6 Definition of Derivative. The derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $\vec{x}=\vec{c}$ is a linear mapping $D f_{\vec{c}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which gives a very accurate affine approximation:

$$
f(\vec{x}) \approx f(\vec{c})+D f_{\vec{c}}(\vec{x}-\vec{c}) \quad \text { for } \quad \vec{x} \approx \vec{c}
$$

The error in the approximation must be vanishingly small relative to $|\vec{x}-\vec{c}|$:

$$
\lim _{\vec{x} \rightarrow \vec{c}} \frac{\left|f(\vec{x})-f(\vec{c})-D f_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|}=0
$$

7 Partial Derivative Theorem: If the functions $\frac{\partial f}{\partial x_{1}}(\vec{x}), \ldots, \frac{\partial f}{\partial x_{n}}(\vec{x})$ exist and are continuous near $\vec{x}=\vec{c}$, then $D f_{\vec{c}}(\vec{x})$ exists and equals the dot product of \vec{x} with the gradient vector:

$$
D f_{\vec{c}}(\vec{x})=\nabla f(\vec{c}) \cdot \vec{x} \quad \text { where } \quad \nabla f(\vec{c})=\left(\frac{\partial f}{\partial x_{1}}(\vec{c}), \ldots, \frac{\partial f}{\partial x_{n}}(\vec{c})\right)
$$

Proof: For notational simplicity, we prove only the case $n=2$, but the general case is completely analogous. We let $\vec{x}=(x, y)$ and $\vec{c}=(a, b)$. As part of the hypothesis, we assume the following limit values:
$\lim _{x \rightarrow a} \frac{f(x, b)-f(a, b)}{x-a}=\frac{\partial f}{\partial x}(a, b), \quad \lim _{y \rightarrow b} \frac{f(x, y)-f(x, b)}{y-b}=\frac{\partial f}{\partial y}(x, b), \quad \lim _{x \rightarrow a} \frac{\partial f}{\partial y}(x, b)=\frac{\partial f}{\partial y}(a, b)$.

To prove the conclusion, we must show the accuracy of the approximation:

$$
f(x, y) \approx f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b) .
$$

Specifically, we will find upper bounds for the error in terms of the controllable errors coming from the above three limits. We have:

$$
\begin{array}{ll}
& \frac{\left|f(x, y)-f(a, b)-\frac{\partial f}{\partial x}(a, b)(x-a)-\frac{\partial f}{\partial y}(a, b)(y-b)\right|}{|(x, y)-(a, b)|} \\
= & \frac{\left|f(x, y)-f(x, b)-\frac{\partial f}{\partial y}(a, b)(y-b)+f(x, b)-f(a, b)-\frac{\partial f}{\partial x}(a, b)(x-a)\right|}{|(x-a, y-b)|} \\
\leq & \frac{\left|f(x, y)-f(x, b)-\frac{\partial f}{\partial y}(a, b)(y-b)\right|}{|(x-a, y-b)|}+\frac{\left|f(x, b)-f(a, b)-\frac{\partial f}{\partial x}(a, b)(x-a)\right|}{|(x-a, y-b)|} \\
\leq & \frac{\left|f(x, y)-f(x, b)-\frac{\partial f}{\partial y}(a, b)(y-b)\right|}{|y-b|}+\frac{\left|f(x, b)-f(a, b)-\frac{\partial f}{\partial x}(a, b)(x-a)\right|}{|x-a|} \\
\leq & \left|\frac{f(x, y)-f(x, b)}{y-b}-\frac{\partial f}{\partial y}(a, b)\right|+\left|\frac{f(x, b)-f(a, b)}{x-a}-\frac{\partial f}{\partial x}(a, b)\right| \\
\leq & \left|\frac{f(x, y)-f(x, b)}{y-b}-\frac{\partial f}{\partial y}(x, b)\right|+\left|\frac{\partial f}{\partial y}(x, b)-\frac{\partial f}{\partial y}(a, b)\right|+\left|\frac{f(x, b)-f(a, b)}{x-a}-\frac{\partial f}{\partial x}(a, b)\right|
\end{array}
$$

The fourth line follows because $|(x-a, y-b)| \geq|x-a|,|y-b|$; and in the last line, we used the triangle inequality $|u-v| \leq|u-w|+|w-v|$ for $w=\frac{\partial f}{\partial y}(x, b)$.

Now the three terms at the end of the above estimate all go to zero as $(x, y) \rightarrow$ (a, b), by the three limit values mentioned above. (Specifically, there is some input error $|(x, y)-(a, b)|<\delta$ which guarantees that each of the three terms is less than $\frac{\epsilon}{3}$, so that the total output error is less than ϵ.) Thus we conclude:

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{\left|f(x, y)-f(a, b)-\frac{\partial f}{\partial x}(a, b)(x-a)-\frac{\partial f}{\partial y}(a, b)(y-b)\right|}{|(x, y)-(a, b)|}=0,
$$

which means by definition that $D f_{(a, b)}(x, y)=\nabla f(a, b) \cdot(x, y)$.
Note that the proof only needed the continuity of one of the partial derivatives. For general n, we need $n-1$ of them continuous at $\vec{x}=\vec{c}$.

8 Derivative Product Theorem: If the functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable at $\vec{x}=\vec{c}$, then the product function $f(\vec{x}) g(\vec{x})$ has derivative mapping:

$$
D(f g)_{\vec{c}}(\vec{x})=f(\vec{c}) D f_{\vec{c}}(\vec{x})+g(\vec{c}) D g_{\vec{c}}(\vec{x})
$$

Proof. We must show the accuracy of the approximation:

$$
f(\vec{x}) g(\vec{x}) \approx f(\vec{c}) g(\vec{c})+f(\vec{c}) D g_{\vec{c}}(\vec{x}-\vec{c})+g(\vec{c}) D f_{\vec{c}}(\vec{x}-\vec{c})
$$

We have:

$$
\begin{gathered}
\frac{\left|f(\vec{x}) g(\vec{x})-f(\vec{c}) g(\vec{c})-f(\vec{c}) D g_{\vec{c}}(\vec{x}-\vec{c})-g(\vec{c}) D f_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|} \\
=\frac{\left|f(\vec{x}) g(\vec{x})-f(\vec{x}) g(\vec{c})-f(\vec{c}) D g_{\vec{c}}(\vec{x}-\vec{c})+f(\vec{x}) g(\vec{c})-f(\vec{c}) g(\vec{c})-g(\vec{c}) D f_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|} \\
\leq \frac{\left|f(\vec{x}) g(\vec{x})-f(\vec{x}) g(\vec{c})-f(\vec{c}) D g_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|}+\frac{\left|f(\vec{x}) g(\vec{c})-f(\vec{c}) g(\vec{c})-g(\vec{c}) D f_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|} \\
\leq \frac{\left|f(\vec{x}) g(\vec{x})-f(\vec{x}) g(\vec{c})-f(\vec{x}) D g_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|}+\frac{\left|f(\vec{x}) D g_{\vec{c}}(\vec{x}-\vec{c})-f(\vec{c}) D g_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|} \\
+\frac{\left|f(\vec{x})-f(\vec{c})-D f_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|}|g(\vec{c})| \\
=|f(\vec{x})| \frac{\left|g(\vec{x})-g(\vec{c})-D g_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|}+|f(\vec{x})-f(\vec{c})| \frac{\left|D g_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|} \\
+\frac{\left|f(\vec{x})-f(\vec{c})-D f_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|}|g(\vec{c})|
\end{gathered}
$$

Now each of the three terms on the last line goes to zero, because by hypothesis $f(\vec{x}) \approx f(c)+D f_{\vec{c}}(\vec{x}-\vec{c}), \quad g(\vec{x}) \approx g(\vec{c})+D g_{\vec{c}}(\vec{x}-\vec{c})$, and:

$$
\frac{\left|D f_{\vec{c}}(\vec{x}-\vec{c})\right|}{|\vec{x}-\vec{c}|}=\left|\nabla f(\vec{c}) \cdot \frac{\vec{x}-\vec{c}}{|\vec{x}-\vec{c}|}\right| \leq|\nabla f(\vec{c})| .
$$

