Math 133 Hyperbolic Functions Stewart §6.7

Definitions. Besides the algebraic functions defined by arithmetic operations, constant
powers, and roots, we have seen several types of transcendental functions such as e®, the
trigonometric functions, and their inverse functions. Now we introduce the hyperbolic
functions, a new class of transcendental functions which appear in some scientific and
mathematical applications (though much less commonly than our previous functions).

Each hyperbolic function corresponds to a trigonometric function: to the ordinary
sine function sin(z) there corresponds the hyperbolic sine, written sinh(z); to the ordi-
nary tangent there corresponds the hyperbolic tangent tanh(x), etc.* These new func-
tions are defined in terms of exponential functions:
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That is, tanh(z) = %, etc. Graphs are easy to picture from y = %e’” and y = %e*“:
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Notice that sinh(z) is an odd function like sin(z), meaning f(—z) = —f(x); and
cosh(z) is an even function like cos(x), meaning f(—z) = f(x). Also, e* = sinh(z) +

cosh(z), so the two primary hyperbolic functions are the odd and even components of
the exponential function.’

Notes by Peter Magyar magyar@math.msu.edu
*We pronounce sinh as “sinch”, cosh as “kosh”, tanh as “tanch”, etc.
TThe hyperbolic e* = cosh(z) + sinh(z) corresponds to Euler’s formula e*® = cos(x) + isin(z), where
i = v/—1. Comparing, we find cosh(z) = cos(ix) and sinh(x) = —isin(ix), which explains the analogy.



Geometric meaning. Why the trigonometric nomenclature? The most important
geometric role of the trigonometric functions is to pamametrize circular motion: (x,y) =
(cos(t),sin(t)) traces out the unit circle for ¢ € [0, 27r]. This is because the circle equation
22 4+ 3% = 1 corresponds to the identity cos?(t) + sin?(t) = 1.

It turns out the hyperbolic functions (z,y) = (cosh(¢), sinh(¢)) for ¢ € (—o0, 00) trace
out a branch of the standard hyperbola defined by 22 — y? = 1, because of the basic
hyperbolic identity cosh?(t) — sinh?(t) = 1.
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In fact, the shaded sector with corners (0,0), (1,0), (cosh(t),sinh(t)) has area 3¢; just
as in the circle, the sector with corners (0,0), (1,0), (cos(t), sin(¢)) has area 3t.
The basic hyperbolic identity can easily be checked from the definitions:
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Formulas. The analogy goes much further: almost every formula involving trigonomet-
ric functions has a hyperbolic counterpart, often with changes in the + signs.

cosh?(z) — sinh?(z) = 1
sinh(z + y) = sinh(x) cosh(y) + cosh(z) sinh(y)
cosh(z + y) = cosh(x) cosh(y) + sinh(z) sinh(y)

sinh’(z) = cosh(z) cosh’(z) = sinh(x)
tanh’(x) = sech?(z) sech’(x) = — tanh(z) sech(x)

Each of these can be easily verified from the definitions via exponentials. For example:

sinh’(z) = (3(e” — ™)) = L(e® — (=e™®)) = cosh(z).

_ (sinh(z) Y _ sinh/(z) cosh(z)—sinh(z) cosh’ (z)
tanh'(x) - <cosh(a:)> - cosh?(z)
_ cosh?(xz)—sinh?(z) 1 — sech? (x)

cosh?(x) T cosh?(x)



EXAMPLE: If sinh(z) = —3, find cosh(z). Solve cosh?(z) —sinh?(x) = 1 to get cosh(z) =
+/1+(—3)2 = £//10; but cosh(z) = 3(e®+e~*) > 0 for all z, so cosh(z) = V/10.

EXAMPLE: Find the derivative of In(cosh(x)). Using the Chain Rule:

[In(cosh(x))]" = In’(cosh(z)) - cosh’(z) = -sinh(z) = tanh(z),
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a signed analog of [In(cos(x))]’ = [ In(sec(t))] = — tan(x).
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For brevity, we neglect the arbitrary constant term +C.) Alternativel Smh ) dr =
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EXAMPLE: Find the antiderivative f

dx. Substitute u = cosh(z), du = sinh(x) dz:

[ tanh(z)sech(z) dv = —sech(z), directly from reversing our derivative table

EXAMPLE: Find [ sinh?(t) dt. Exactly as for [ sin?()d6, use
cosh(2t) = cosh2(t) +sinh?(t) = 2sinh?(t) + 1,
so that sinh?(t) = 1 cosh(2t) — 1, and:

/sinhQ(t) dt = /(% cosh(2t) — 3)dt = Llsinh(2t) — 3t = 3 cosh(¢)sinh(t) — 3t.

EXAMPLE: Find [ sech(z)dz. The tricks for f sec(x) dx do not Work Instead, write in
terms of exponentials, and substitute u = e*, x = ln( ), dx = L du:

[sech(z)de = [Z2=dr = TH = [F45 +du = 2tan~'(u) = 2tan'(e").

Inverse hyperbolic functions. We can define inverse hyperbolic functions and com-
pute their derivatives just as for trig functions in §6.6, getting several more antideriva-
tives. For example, setting y = sinh(z), 2 = sinh~*(y), we have cosh(z) = /32 + 1 by
the basic hyperbolic identity. We take % of y = sinh(sinh ™! (y)) to ﬁnd

1 = cosh(sinh_l(y)) (Sinh_l),(y)
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Therefore: / 1
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We can get a more elementary form for x = sinh_l(y) by solving the equation:

dy = sinh™'(y) + C.
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y = Slnh(x) = %(6 — e ) = %(e _eiz) — (2)6z 1'

That is, (e¥)? — 2y(e®) — 1 = 0, so the Quadratic Formula gives e* = %(2y +/4y? +4),

sinh™!(y) = 2 = In(y + \/y2+1).

Here 4+ must be + since the input of logarithm must be positive.



We summarize a number of similar formulas, omitting +C'.
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We sometimes denote sin™! as arcsin, and we may denote sinh~! as arsinh or arsh, etc.

EXAMPLE: Integrate f# dr. We want to manipulate this into one of the above
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forms. Completing the square, we have

e = 2o (37— (B = @) -4 = Hee? -,
so the substitution v = 2z+1, du = 2dz gives:
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= cosh™Y(u) = cosh™(2z+1) = 1n<2x+1+2\/x2+x) .

du



