Definitions. Besides the algebraic functions defined by arithmetic operations, constant powers, and roots, we have seen several types of transcendental functions such as e^{x}, the trigonometric functions, and their inverse functions. Now we introduce the hyperbolic functions, a new class of transcendental functions which appear in some scientific and mathematical applications (though much less commonly than our previous functions).

Each hyperbolic function corresponds to a trigonometric function: to the ordinary sine function $\sin (x)$ there corresponds the hyperbolic sine, written $\sinh (x)$; to the ordinary tangent there corresponds the hyperbolic tangent $\tanh (x)$, etc.* These new functions are defined in terms of exponential functions:

$$
\begin{array}{ll}
\sinh (x)=\frac{e^{x}-e^{-x}}{2} & \cosh (x)=\frac{e^{x}+e^{-x}}{2} \quad \tanh (x)=\frac{\sinh (x)}{\cosh (x)} \\
\operatorname{sech}(x)=\frac{1}{\cosh (x)} & \operatorname{csch}(x)=\frac{1}{\sinh (x)} \quad \operatorname{coth}(x)=\frac{\cosh (x)}{\sinh (x)}
\end{array}
$$

That is, $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$, etc. Graphs are easy to picture from $y=\frac{1}{2} e^{x}$ and $y=\frac{1}{2} e^{-x}$:

Notice that $\sinh (x)$ is an odd function like $\sin (x)$, meaning $f(-x)=-f(x)$; and $\cosh (x)$ is an even function like $\cos (x)$, meaning $f(-x)=f(x)$. Also, $e^{x}=\sinh (x)+$ $\cosh (x)$, so the two primary hyperbolic functions are the odd and even components of the exponential function. ${ }^{\dagger}$

[^0]Geometric meaning. Why the trigonometric nomenclature? The most important geometric role of the trigonometric functions is to pamametrize circular motion: $(x, y)=$ $(\cos (t), \sin (t))$ traces out the unit circle for $t \in[0,2 \pi]$. This is because the circle equation $x^{2}+y^{2}=1$ corresponds to the identity $\cos ^{2}(t)+\sin ^{2}(t)=1$.

It turns out the hyperbolic functions $(x, y)=(\cosh (t), \sinh (t))$ for $t \in(-\infty, \infty)$ trace out a branch of the standard hyperbola defined by $x^{2}-y^{2}=1$, because of the basic hyperbolic identity $\cosh ^{2}(t)-\sinh ^{2}(t)=1$.

In fact, the shaded sector with corners $(0,0),(1,0),(\cosh (t), \sinh (t))$ has area $\frac{1}{2} t$; just as in the circle, the sector with corners $(0,0),(1,0),(\cos (t), \sin (t))$ has area $\frac{1}{2} t$.

The basic hyperbolic identity can easily be checked from the definitions:

$$
\begin{gathered}
\cosh ^{2}(x)-\sinh ^{2}(x)=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \\
=\frac{\left(e^{2 x}+2+e^{-2 x}\right)-\left(e^{2 x}-2+e^{-2 x}\right)}{4}=\frac{4}{4}=1
\end{gathered}
$$

Formulas. The analogy goes much further: almost every formula involving trigonometric functions has a hyperbolic counterpart, often with changes in the \pm signs.

$$
\begin{gathered}
\cosh ^{2}(x)-\sinh ^{2}(x)=1 \\
\sinh (x+y)=\sinh (x) \cosh (y)+\cosh (x) \sinh (y) \\
\cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y) \\
\sinh ^{\prime}(x)=\cosh (x) \quad \cosh ^{\prime}(x)=\sinh (x) \\
\tanh ^{\prime}(x)=\operatorname{sech}^{2}(x) \quad \operatorname{sech}^{\prime}(x)=-\tanh (x) \operatorname{sech}(x)
\end{gathered}
$$

Each of these can be easily verified from the definitions via exponentials. For example:

$$
\begin{gathered}
\sinh ^{\prime}(x)=\left(\frac{1}{2}\left(e^{x}-e^{-x}\right)\right)^{\prime}=\frac{1}{2}\left(e^{x}-\left(-e^{-x}\right)\right)=\cosh (x) \\
\tanh ^{\prime}(x)=\left(\frac{\sinh (x)}{\cosh (x)}\right)^{\prime}=\frac{\sinh ^{\prime}(x) \cosh (x)-\sinh (x) \cosh ^{\prime}(x)}{\cosh ^{2}(x)} \\
=\frac{\cosh ^{2}(x)-\sinh ^{2}(x)}{\cosh ^{2}(x)}=\frac{1}{\cosh ^{2}(x)}=\operatorname{sech}^{2}(x)
\end{gathered}
$$

EXAMPLE: If $\sinh (x)=-3$, find $\cosh (x)$. Solve $\cosh ^{2}(x)-\sinh ^{2}(x)=1$ to get $\cosh (x)=$ $\pm \sqrt{1+(-3)^{2}}= \pm \sqrt{10}$; but $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)>0$ for all x, so $\cosh (x)=\sqrt{10}$.

EXAMPLE: Find the derivative of $\ln (\cosh (x))$. Using the Chain Rule:

$$
[\ln (\cosh (x))]^{\prime}=\ln ^{\prime}(\cosh (x)) \cdot \cosh ^{\prime}(x)=\frac{1}{\cosh (x)} \cdot \sinh (x)=\tanh (x)
$$

a signed analog of $[\ln (\cos (x))]^{\prime}=[-\ln (\sec (t))]^{\prime}=-\tan (x)$.
EXAMPLE: Find the antiderivative $\int \frac{\sinh (x)}{\cosh ^{2}(x)} d x$. Substitute $u=\cosh (x), d u=\sinh (x) d x$:
$\int \frac{\sinh (x)}{\cosh ^{2}(x)} d x=\int \frac{1}{\cosh ^{2}(x)} \sinh (x) d x=\int \frac{1}{u^{2}} d u=-\frac{1}{u}=-\frac{1}{\cosh (x)}=-\operatorname{sech}(x)$.
(For brevity, we neglect the arbitrary constant term $+C$.) Alternatively: $\int \frac{\sinh (x)}{\cosh ^{2}(x)} d x=$ $\int \tanh (x) \operatorname{sech}(x) d x=-\operatorname{sech}(x)$, directly from reversing our derivative table.

EXAMPLE: Find $\int \sinh ^{2}(t) d t$. Exactly as for $\int \sin ^{2}(\theta) d \theta$, use

$$
\cosh (2 t)=\cosh ^{2}(t)+\sinh ^{2}(t)=2 \sinh ^{2}(t)+1
$$

so that $\sinh ^{2}(t)=\frac{1}{2} \cosh (2 t)-\frac{1}{2}$, and:

$$
\int \sinh ^{2}(t) d t=\int\left(\frac{1}{2} \cosh (2 t)-\frac{1}{2}\right) d t=\frac{1}{4} \sinh (2 t)-\frac{1}{2} t=\frac{1}{2} \cosh (t) \sinh (t)-\frac{1}{2} t
$$

EXAMPLE: Find $\int \operatorname{sech}(x) d x$. The tricks for $\int \sec (x) d x$ do not work. Instead, write in terms of exponentials, and substitute $u=e^{x}, x=\ln (u), d x=\frac{1}{u} d u$:
$\int \operatorname{sech}(x) d x=\int \frac{2}{e^{x}+e^{-x}} d x=\int \frac{2 e^{x}}{e^{2 x}+1} d x=\int \frac{2 u}{u^{2}+1} \frac{1}{u} d u=2 \tan ^{-1}(u)=2 \tan ^{-1}\left(e^{x}\right)$.
Inverse hyperbolic functions. We can define inverse hyperbolic functions and compute their derivatives just as for trig functions in $\S 6.6$, getting several more antiderivatives. For example, setting $y=\sinh (x), x=\sinh ^{-1}(y)$, we have $\cosh (x)=\sqrt{y^{2}+1}$ by the basic hyperbolic identity. We take $\frac{d}{d y}$ of $y=\sinh \left(\sinh ^{-1}(y)\right)$ to find:

$$
\begin{gathered}
1=\cosh \left(\sinh ^{-1}(y)\right)\left(\sinh ^{-1}\right)^{\prime}(y) \\
\left(\sinh ^{-1}\right)^{\prime}(y)=\frac{1}{\cosh \left(\sinh ^{-1}(y)\right)}=\frac{1}{\cosh (x)}=\frac{1}{\sqrt{y^{2}+1}}
\end{gathered}
$$

Therefore:

$$
\int \frac{1}{\sqrt{1+y^{2}}} d y=\sinh ^{-1}(y)+C
$$

We can get a more elementary form for $x=\sinh ^{-1}(y)$ by solving the equation:

$$
y=\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)=\frac{1}{2}\left(e^{x}-\frac{1}{e^{x}}\right)=\frac{\left(e^{x}\right)^{2}-1}{2 e^{x}}
$$

That is, $\left(e^{x}\right)^{2}-2 y\left(e^{x}\right)-1=0$, so the Quadratic Formula gives $e^{x}=\frac{1}{2}\left(2 y \pm \sqrt{4 y^{2}+4}\right)$,

$$
\sinh ^{-1}(y)=x=\ln \left(y \pm \sqrt{y^{2}+1}\right)
$$

Here \pm must be + since the input of logarithm must be positive.

We summarize a number of similar formulas, omitting $+C$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-1}} d x=\cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right) \\
& \int \frac{1}{\sqrt{x^{2}+1}} d x=\sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right) \\
& \int \frac{-1}{x \sqrt{1-x^{2}}} d x=\operatorname{sech}^{-1}(x)=-\ln (x)+\ln \left(1+\sqrt{1-x^{2}}\right) \\
& \int \frac{-1}{x \sqrt{1+x^{2}}} d x=\operatorname{csch}^{-1}(x)=-\ln (x)+\ln \left(1+\sqrt{1+x^{2}}\right) \\
& \int \frac{1}{1-x^{2}} d x=\tanh ^{-1}(x)=\frac{1}{2} \ln (1+x)-\frac{1}{2} \ln (1-x)
\end{aligned}
$$

We sometimes denote $\sin ^{-1}$ as arcsin, and we may denote $\sinh ^{-1}$ as arsinh or arsh, etc.
EXAMPLE: Integrate $\int \frac{1}{\sqrt{x^{2}+x}} d x$. We want to manipulate this into one of the above forms. Completing the square, we have

$$
x^{2}+x=x^{2}+2\left(\frac{1}{2}\right) x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}=\frac{1}{4}\left((2 x+1)^{2}-1\right),
$$

so the substitution $u=2 x+1, d u=2 d x$ gives:

$$
\begin{gathered}
\int \frac{1}{\sqrt{x^{2}+x}} d x=\int \frac{1}{\sqrt{(2 x+1)^{2}-1}} 2 d x=\int \frac{1}{\sqrt{u^{2}-1}} d u \\
=\cosh ^{-1}(u)=\cosh ^{-1}(2 x+1)=\ln \left(2 x+1+2 \sqrt{x^{2}+x}\right) .
\end{gathered}
$$

[^0]: Notes by Peter Magyar magyar@math.msu.edu
 *We pronounce sinh as "sinch", cosh as "kosh", tanh as "tanch", etc.
 ${ }^{\dagger}$ The hyperbolic $e^{x}=\cosh (x)+\sinh (x)$ corresponds to Euler's formula $e^{i x}=\cos (x)+i \sin (x)$, where $i=\sqrt{-1}$. Comparing, we find $\cosh (x)=\cos (i x)$ and $\sinh (x)=-i \sin (i x)$, which explains the analogy.

