
Math 133 Hyperbolic Functions Stewart §6.7

Definitions. Besides the algebraic functions defined by arithmetic operations, constant
powers, and roots, we have seen several types of transcendental functions such as ex, the
trigonometric functions, and their inverse functions. Now we introduce the hyperbolic
functions, a new class of transcendental functions which appear in some scientific and
mathematical applications (though much less commonly than our previous functions).

Each hyperbolic function corresponds to a trigonometric function: to the ordinary
sine function sin(x) there corresponds the hyperbolic sine, written sinh(x); to the ordi-
nary tangent there corresponds the hyperbolic tangent tanh(x), etc.∗ These new func-
tions are defined in terms of exponential functions:

sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2
tanh(x) =

sinh(x)

cosh(x)

sech(x) =
1

cosh(x)
csch(x) =

1

sinh(x)
coth(x) =

cosh(x)

sinh(x)

That is, tanh(x) = ex−e−x

ex+e−x , etc. Graphs are easy to picture from y = 1
2e

x and y = 1
2e
−x:

Notice that sinh(x) is an odd function like sin(x), meaning f(−x) = −f(x); and
cosh(x) is an even function like cos(x), meaning f(−x) = f(x). Also, ex = sinh(x) +
cosh(x) , so the two primary hyperbolic functions are the odd and even components of
the exponential function.†

Notes by Peter Magyar magyar@math.msu.edu
∗We pronounce sinh as “sinch”, cosh as “kosh”, tanh as “tanch”, etc.
†The hyperbolic ex = cosh(x) + sinh(x) corresponds to Euler’s formula eix = cos(x) + i sin(x), where

i =
√
−1. Comparing, we find cosh(x) = cos(ix) and sinh(x) = −i sin(ix), which explains the analogy.



Geometric meaning. Why the trigonometric nomenclature? The most important
geometric role of the trigonometric functions is to pamametrize circular motion: (x, y) =
(cos(t), sin(t)) traces out the unit circle for t ∈ [0, 2π]. This is because the circle equation
x2 + y2 = 1 corresponds to the identity cos2(t) + sin2(t) = 1.

It turns out the hyperbolic functions (x, y) = (cosh(t), sinh(t)) for t ∈ (−∞,∞) trace
out a branch of the standard hyperbola defined by x2 − y2 = 1, because of the basic
hyperbolic identity cosh2(t)− sinh2(t) = 1.

In fact, the shaded sector with corners (0, 0), (1, 0), (cosh(t), sinh(t)) has area 1
2 t; just

as in the circle, the sector with corners (0, 0), (1, 0), (cos(t), sin(t)) has area 1
2 t.

The basic hyperbolic identity can easily be checked from the definitions:

cosh2(x)− sinh2(x) =

(
ex + e−x

2

)2
−
(
ex − e−x

2

)2
=

(e2x+2+e−2x)− (e2x−2+e−2x)

4
=

4

4
= 1

Formulas. The analogy goes much further: almost every formula involving trigonomet-
ric functions has a hyperbolic counterpart, often with changes in the ± signs.

cosh2(x)− sinh2(x) = 1

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y)

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y)

sinh′(x) = cosh(x) cosh′(x) = sinh(x)

tanh′(x) = sech2(x) sech′(x) = − tanh(x) sech(x)

Each of these can be easily verified from the definitions via exponentials. For example:

sinh′(x) =
(
1
2(ex − e−x)

)′
= 1

2

(
ex − (−e−x)

)
= cosh(x).

tanh′(x) =
(

sinh(x)
cosh(x)

)′
= sinh′(x) cosh(x)−sinh(x) cosh′(x)

cosh2(x)

= cosh2(x)−sinh2(x)
cosh2(x)

= 1
cosh2(x)

= sech2(x).



example: If sinh(x) = −3, find cosh(x). Solve cosh2(x)− sinh2(x) = 1 to get cosh(x) =
±
√

1+(−3)2 = ±
√

10; but cosh(x) = 1
2(ex+e−x) > 0 for all x, so cosh(x) =

√
10.

example: Find the derivative of ln(cosh(x)). Using the Chain Rule:

[ln(cosh(x))]′ = ln′(cosh(x)) · cosh′(x) = 1
cosh(x) · sinh(x) = tanh(x),

a signed analog of [ln(cos(x))]′ = [− ln(sec(t))]′ = − tan(x).

example: Find the antiderivative
∫ sinh(x)

cosh2(x)
dx. Substitute u = cosh(x), du = sinh(x) dx:∫

sinh(x)

cosh2(x)
dx =

∫
1

cosh2(x)
sinh(x) dx =

∫
1

u2
du = −1

u
= − 1

cosh(x)
= −sech(x) .

(For brevity, we neglect the arbitrary constant term +C.) Alternatively:
∫ sinh(x)

cosh2(x)
dx =∫

tanh(x) sech(x) dx = −sech(x), directly from reversing our derivative table.

example: Find
∫

sinh2(t) dt. Exactly as for
∫

sin2(θ) dθ, use

cosh(2t) = cosh2(t) + sinh2(t) = 2 sinh2(t) + 1,

so that sinh2(t) = 1
2 cosh(2t)− 1

2 , and:∫
sinh2(t) dt =

∫
(12 cosh(2t)− 1

2) dt = 1
4 sinh(2t)− 1

2 t = 1
2 cosh(t) sinh(t)− 1

2 t.

example: Find
∫

sech(x) dx. The tricks for
∫

sec(x) dx do not work. Instead, write in
terms of exponentials, and substitute u = ex, x = ln(u), dx = 1

u du:∫
sech(x) dx =

∫
2

ex+e−x dx =
∫

2ex

e2x+1
dx =

∫
2u

u2+1
1
u du = 2 tan−1(u) = 2 tan−1(ex).

Inverse hyperbolic functions. We can define inverse hyperbolic functions and com-
pute their derivatives just as for trig functions in §6.6, getting several more antideriva-
tives. For example, setting y = sinh(x), x = sinh−1(y), we have cosh(x) =

√
y2 + 1 by

the basic hyperbolic identity. We take d
dy of y = sinh(sinh−1(y)) to find:

1 = cosh(sinh−1(y)) (sinh−1)′(y)

(sinh−1)′(y) =
1

cosh(sinh−1(y))
=

1

cosh(x)
=

1√
y2 + 1

.

Therefore:
∫

1√
1 + y2

dy = sinh−1(y) + C.

We can get a more elementary form for x = sinh−1(y) by solving the equation:

y = sinh(x) = 1
2(ex − e−x) = 1

2(ex − 1
ex ) = (ex)2−1

2ex .

That is, (ex)2− 2y(ex)− 1 = 0, so the Quadratic Formula gives ex = 1
2(2y±

√
4y2 + 4),

sinh−1(y) = x = ln(y ±
√
y2+1).

Here ± must be + since the input of logarithm must be positive.



We summarize a number of similar formulas, omitting +C.∫
1√

x2 − 1
dx = cosh−1(x) = ln(x+

√
x2 − 1)

∫
1√

x2 + 1
dx = sinh−1(x) = ln(x+

√
x2 + 1)

∫
−1

x
√

1− x2
dx = sech−1(x) = − ln(x) + ln(1 +

√
1− x2)

∫
−1

x
√

1 + x2
dx = csch−1(x) = − ln(x) + ln(1 +

√
1 + x2)

∫
1

1− x2
dx = tanh−1(x) = 1

2 ln(1 + x)− 1
2 ln(1− x)

We sometimes denote sin−1 as arcsin, and we may denote sinh−1 as arsinh or arsh, etc.

example: Integrate
∫

1√
x2+x

dx. We want to manipulate this into one of the above

forms. Completing the square, we have

x2 + x = x2 + 2(12)x+ (12)2 − (12)2 = (x+1
2)2 − 1

4 = 1
4((2x+ 1)2 − 1),

so the substitution u = 2x+1, du = 2 dx gives:∫
1√

x2 + x
dx =

∫
1√

(2x+1)2 − 1
2 dx =

∫
1√

u2 − 1
du

= cosh−1(u) = cosh−1(2x+1) = ln
(

2x+ 1 + 2
√
x2+x

)
.


