Math 133 Comparison Tests Stewart §11.4

Convergence and divergence. We continue to discuss convergence tests: ways
to tell if a given series Y 2| a, = limy 00 ZnN:1 a, converges (to a finite value), or
diverges (to infinity or by oscillating).* So far, we know convergence for two kinds of
standard series:

1 c s . .
o Geometric series: Y ° ; cr™ ™! converges to 1< if |r| < 1, diverges if |r| > 1.

e Standard p-series: > 7 converges if p > 1, and diverges if p < 1.

n=1 nP
In this section, we test convergence of a complicated series Y a,, by comparing it to a

simpler one (such as the above): a convergent ceiling > ¢,, or a divergent floor > d,,.

Direct Comparison Test: Let M be a positive integer starting point.

o o0
o If0<a,<c, forn>M, and > ¢, converges, then >  a, converges.

n=1 n=1
o0 o
e Ifa,>d,>0forn>M, and ) d, diverges, then ) a, diverges.
n=1 n=1

These results are clear, since the series > > | a, is term-by-term smaller or larger
than its comparison series, except possibly the first M —1 terms.f

-1

EXAMPLE: Determine convergence of: Z n2f T We have:
= _n-t < = —= L fi >1
a c or n ;
" n’yn+1 — " n2y/n  n3/2 o

since on the left the numerator is smaller and the denominator is larger than on
the right. The comparison series > o2 ;¢ = Y o0y # is a standard p-series which
converges, S0 »_ >~ ap also converges.

©_ 93n+sin(n)

EXAMPLE: Determine the convergence of: _—
— 3" +4n?

As a rough guess, we ignore the lower-order terms in numerator and denominator
. 23n 8\ . . . .
to compare with %5 = (g) , which makes a divergent geometric series, so our
series a, should also diverge. However, it is not clear that a, is really larger than
. . . 8\ . .

this comparison series, so we cannot use d,, = (3) as a divergent floor for a, in the
second part of the Comparison Test.

We want to produce a fractional d,, from our a,, by making the numerator smaller
and the denominator larger. To bound the numerator: 237Fsin(n) — g93ngsin(n) >

Notes by Peter Magyar magyar@math.msu.edu
* A general divergent series might oscillate up and down forever, but a positive series (with a, > 0)
either levels off to a finite value, or diverges to infinity.
THere we use the completeness axiom of real analysis, which states that if a series of partial sums

has an upper bound, sy = 25:1 an < B for all N, then the least upper bound L = Nlim SN exists.
— 00



2379~1 To bound the denominator, we take an exponential function with a slightly
larger base: we can check that 4™ > 3™ + 4n? for all n > 3. Thus:

93n+sin(n) 93ng—1

_ _1
T > d, = e = 52" for n > 3.

an —

Note that we only need the inequality for all large n: the first couple of terms a1, ao

make no difference to the convergence or divergence. Since Y 2 dp = > o7, %2” i
a divergent geometric series, the orginal > 7 | a, also diverges.
. n+1
EXAMPLE: Determine convergence of: E =
n° — 20
n=1
. " . . . . o] n o __ oo 1
Again, we estimate this sequence by its leading terms: » ', %5 = > ¢ 5,
which is a convergent standard p-series. However, a, = n’;féo > %, S0 we cannot

use ¢, = ;5 as a convergent ceiling for a,, in the first part of the Test.
However, we should have:
n+1

n
an 390 = Cn 2n for n large enough

How large does n need to be to make this inequality valid? Let us check:
n+1 2
T <« =
n3 —20 ~ n?
Thus, we have:

n+1 2
an:mgcn:ﬁ forn24,
where > 27, % =2, # converges, so the original > >, a,, also converges.

EXAMPLE: Consider any infinite decimal:

di  dy — dn
= 0.dideds -+ = —+ —= : —
° 1024 10+0+103 nzlon’
where 0 < d,, < 9 are any decimal digits. Does this series always converge, so that
the infinite decimal represents a real number, or could a bad choice of digits define a

meaningless decimal?

In fact, we can compare 0 < 1‘8; < 107“ since each digit is at most 9 The ceiling
9 _ Ny 9 1yl _ 9 _
is a convergent geometric series: Y 7| 157 = Doy 15 (10) = 15 1 =1, so the

original decimal sequence also converges. Any infinite decimal represents a number.

Limit Comparison Test. Suppose lim, ,,, 3= o= = L with 0 < L < cc.

oo [e.e]
e If > b, converges, then > a, converges.
n=1 n=1

o o
o If > b, diverges, then > a, diverges.

n=1 n=1

— 0<n?(n+l) <2(n%-20) <= 40<n*(n-1) <= n>4.



Proof: limy, ‘g—: = L means that, for any small € > 0, we can take a starting point
N so that for all n > N, we have:

L—e < < L+te and (L—€)b, < an, < (L+€)by,.

Taking € small enough that L4e > 0, we can prove convergence or divergence by
taking ¢, = (L+€)by, or dy, = (L—€)b,, in the Direct Comparison Test.

oo
1
ExAMPLE: We redo Z Z; . Now we can immediately compare with b, = % :
—nt - 20 n
an  n+1 n  n+l n3 — 20 B 1—1—%
b, n3—20/n3  n n3 — 20"
n

Taking n — oo gives L = 1. Since this satisfies 0 < L < 0o, and Y 02 b, = > 0 #
is a convergent standard p-series, the original series > ° | a, also converges.

Extended Limit Comparison Test. In the case where limn%oo‘g—z =L =0,
we have a,, much smaller than b,, so if 220:1 b, converges, then so does 220:1 n,.-
Similarly, in the case where lim,, .o Z—Z = L = oo, we have a,, much larger than b,
so if Y7 | by diverges, then so does > > | ap.
> 2
EXAMPLE: Determine the convergence of: Z
n=1
Since n” is negligeable compared to the exponential growth of 2", we could roughly
estimate this by >.0°; b, = 300 | oh =372 (1)", a convergent geometric series, so
the original series should converge.
However, taking the Limit Comparison Test with this b, = 2% gives L = o0, since

n
on
2

ap = g—j is much larger than b,. Thus this comparison fails: b, is a convergent floor
for a,, and we can’t tell whether > a,, converges or diverges.
L 13 . . . _ 3 n'
Let us instead take a slightly larger, but still convergent, comparison: b,, = (Z) :
2(1\"
n*(3)

. a . . n
lim — = lim s = lim n2(%) =0,
n—o0 by, n—o0 Z) n—00

as we could prove by L’Hopital’s Rule. Thus a,, = g—j becomes much smaller than b,

and > 07 by => 07 (%)n is a convergent ceiling for >~°° | a,,, which therefore must

also converge.



