Math 133

Review. In §11.10, we saw how Taylor series compute any reasonable function f(x) as a kind of "infinite polynomial" near a center point x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

where $n! = n(n-1)\cdots(2)(1)$ with 0! = 1. The constant coefficients $c_n = \frac{f^{(n)}(a)}{n!}$ involve the *n*th derivatives $f^{(n)}(x)$, but use their values *only* at the center point x = a: if the formula to compute f(x) required that we know f(x), it would be useless.

The first two terms $f(x) \approx f(a) + f'(a)(x-a)$ make the linear approximation, while the degree N Taylor polynomial $T_N(x) = \sum_{n=1}^N \frac{f^{(n)}(a)}{n!}(x-a)^n$ gives a better and better approximation of f(x) as we take more terms, provided x is in the interval of convergence.* This is how calculators can accurately compute complicated functions using only the four arithmetic operations.

In this section, we consider only Maclaurin series $f(x) = \sum_{n=0}^{\infty} c_n x^n$, centered at x = 0.

Binomial series. We have seen several functions which have simple series because their *n*th derivatives are easy to compute, at least at x = 0. One of the most useful of these is the *binomial series*, the Maclaurin series for the function $f(x) = (1+x)^p$, the *p*th power of a binomial (the sum of two terms). The coefficients of the series $(1+x)^p = \sum_{n=0}^{\infty} c_n x^n$ are called *binomial coefficients*, and they have a special symbol $c_n = {p \choose n}$.[†] By definition:

$$f(x) = (1+x)^p = \sum_{n=0}^{\infty} {p \choose n} x^n = {p \choose 0} + {p \choose 1} x + {p \choose 2} x^2 + \cdots$$

We compute these by the usual formula: $\binom{p}{n} = c_n = \frac{f^{(n)}(0)}{n!}$. The *n*th derivative is:

$$f^{(n)}(x) = p(p-1)\cdots(p-n+1)(1+x)^{p-n},$$

so plugging in x = 0 gives:

$$\binom{p}{n} = \frac{\overbrace{p(p-1)\cdots(p-n+1)}^{n \text{ factors}}}{n!}.$$

The Ratio Test shows that any binomial series has radius of convergence |x| < 1, except when p is a whole number.

Notes by Peter Magyar magyar@math.msu.edu

^{*}The Lagrange Remainder Formula below bounds the error in the approximation $f(x) \approx T_N(x)$. By the Ratio Test, the series $f(x) = \sum_{n=1}^{\infty} c_n (x-a)^n$ will converge if |x-a| < R, where the radius of convergence is: $R = \lim_{n \to \infty} |c_n/c_{n+1}|$. If R is finite, the open interval of convergence is $x \in (a-R, a+R)$.

[†]The symbol $\binom{p}{n}$ is usually read "p choose n" because if p is a whole number, it turns out that $\binom{p}{n}$ is the number of ways, given a set of p objects, to choose a subset of n of them. For example, $\binom{4}{2} = \frac{6 \cdot 5}{2 \cdot 1} = 6$ counts 6 ways to choose 2 numbers from $\{1, 2, 3, 4\}$, i.e. $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$.

EXAMPLE: For $p = \frac{1}{2}$ and $f(x) = (1+x)^{1/2} = \sqrt{1+x}$, we get a series very much like that for \sqrt{x} in §11.10:

$$(1+x)^{1/2} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}\cdot(-\frac{1}{2})}{2!}x^2 + \frac{\frac{1}{2}\cdot(-\frac{1}{2})\cdot(-\frac{3}{2})}{3!}x^3 + \frac{\frac{1}{2}\cdot(-\frac{1}{2})\cdot(-\frac{3}{2})\cdot(-\frac{5}{2})}{4!}x^4 + \cdots$$

$$= 1 + \frac{1}{2}x - \frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2!}x^2 + \frac{1}{2}\cdot\frac{1}{2}\cdot\frac{3}{2!}\cdot\frac{1}{3!}x^3 - \frac{1}{2}\cdot\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{5}{2}\cdot\frac{1}{4!}x^4 + \cdots$$

$$= 1 + \frac{1}{2}x + \sum_{n=2}^{\infty}(-1)^{n-1}\frac{(2n-3)!!}{2^nn!}x^n \quad \text{for } |x| < 1,$$

where we use the odd-factorial notation: $(2n-3)!! = 1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n-3)$.

EXAMPLE: For
$$p = -1$$
 we get a geometric series with ratio $r = -x$:
 $(1+x)^{-1} = 1 + (-1)x + \frac{(-1)(-2)}{2!}x^2 + \frac{(-1)(-2)(-3)}{3!}x^3 + \dots = 1 - x + x^2 - x^3 - \dots$

For p = -2 (and similarly for any negative integer), the binomial series also simplifies:

$$(1+x)^{-2} = 1 + (-2)x + \frac{(-2)(-3)}{2!}x^2 + \frac{(-2)(-3)(-4)}{3!}x^3 + \dots = 1 - 2x + 3x^2 - 4x^3 - \dots,$$

which we obtained in §11.9 as the derivative of $(1+x)^{-1}$.

which we obtained in §11.9 as the derivative of $(1+x)^{-1}$.

Whole number powers. If p is a positive integer, the function $(1+x)^p$ multiplies out to a polynomial, so it has a *finite* series with highest non-zero term x^p : that is, all higher terms have coefficient zero, and can be dropped. For example, taking p = 5:

$$(1+x)^5 = \sum_{n=0}^{\infty} {p \choose n} x^n = 1 + \frac{5}{1!}x + \frac{5 \cdot 4}{2!}x^2 + \frac{5 \cdot 4 \cdot 3}{3!}x^3 + \frac{5 \cdot 4 \cdot 3 \cdot 2}{4!}x^4 + \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5!}x^5 + 0x^6 + \cdots$$
$$= 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5.$$

Indeed, taking $x = \frac{b}{a}$ and clearing denominators gives a general algebraic formula analogous to $(a + b)^2 = a^2 + 2ab + b^2$:

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

Of course, we could also obtain this by successively multiplying out powers of (a + b):

$$\begin{array}{rcl} (a+b)^0 &=& 1\\ (a+b)^1 &=& a+b\\ (a+b)^2 &=& a^2+2ab+b^2\\ (a+b)^3 &=& a^3+3a^2b+3ab^2+b^3\\ (a+b)^4 &=& a^4+4a^3b+6a^2b^2+4ab^3+b^4\\ (a+b)^5 &=& a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5 \end{array}$$

In the *p*th row, the coefficients are:

$$\binom{p}{0} = 1$$
 $\binom{p}{1} = p$ $\binom{p}{2} = \frac{1}{2}p(p-1)$ \cdots $\binom{p}{p-1} = p$ $\binom{p}{p} = 1$.

Because each row is obtained by multiplying the previous by (a + b), each coefficient is the sum of the two immediately above it to the left and right, for example 10 = 4 + 6. The array of whole-number coefficients, continuing downward infinitely, is called *Pascal's Triangle*; it occurs in many problems in algebra and probability. Modifications of series. Once we know a series formula

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots = \sum_{n=0}^{\infty} c_n x^n$$

for some explicit coefficients c_n , we can manipulate it to get new series formulas for similar functions. Let k be a fixed positive integer, and q a constant.

•
$$qx^k f(x) = qc_0x^k + qc_1x^{k+1} + qc_2x^{k+2} + qc_3x^{k+3} + \dots = \sum_{n=k}^{\infty} qc_{n-k}x^n$$

• $f(qx^k) = c_0 + c_1qx^k + c_2q^2x^{2k} + c_3q^3x^{3k} + \dots = \sum_{n=0}^{\infty} c_kq^kx^{kn}.$
• $\int f(x) dx = c_0x + c_1\frac{x^2}{2} + c_2\frac{x^3}{3} + c_3\frac{x^4}{4} + \dots = \sum_{n=0}^{\infty} c_n\frac{x^{n+1}}{n+1}.$

(We already saw the last modification in $\S11.9.$)

EXAMPLE: Find the explicit Maclaurin series of $f(x) = \frac{x^2+1}{\sqrt[3]{x^2-1}}$. We manipulate this function to write it in terms of the known binomial series $(1+x)^{-1/3} = \sum_{n=0}^{\infty} {\binom{-1/3}{n}} x^n$.

$$\frac{x^2+1}{\sqrt[3]{x^2-1}} = -x^2(1-x^2)^{-1/3} - (1-x^2)^{-1/3}$$

$$= -x^2 \sum_{n=0}^{\infty} {\binom{-1/3}{n}} (-x^2)^n - \sum_{n=0}^{\infty} {\binom{-1/3}{n}} (-x^2)^n$$

$$= \sum_{n=0}^{\infty} (-1)^{n+1} {\binom{-1/3}{n}} x^{2n+2} - \sum_{n=0}^{\infty} (-1)^n {\binom{-1/3}{n}} x^{2n}$$

$$= \sum_{n=1}^{\infty} (-1)^n {\binom{-1/3}{n-1}} x^{2n} - \sum_{n=0}^{\infty} (-1)^n {\binom{-1/3}{n}} x^{2n}$$

$$= -1 + \sum_{n=1}^{\infty} (-1)^n \left[{\binom{-1/3}{n-1}} - {\binom{-1/3}{n}} \right] x^{2n}.$$

A tricky point is the index shift from n = 0 to n = 1 in the left summation: you can see in dot-dot-dot notation that the two ways of indexing produce the same terms:

$$\sum_{n=0}^{\infty} (-1)^{n+1} {\binom{-1/3}{n}} x^{2n+2} = (-1)^1 {\binom{-1/3}{0}} x^2 + (-1)^2 {\binom{-1/3}{1}} x^4 + (-1)^3 {\binom{-1/3}{2}} x^6 + \cdots$$
$$= \sum_{n=1}^{\infty} (-1)^n {\binom{-1/3}{n-1}} x^{2n}.$$

Also, in the term $-\sum_{n=0}^{\infty} (-1)^n {\binom{-1/3}{n}} x^{2n}$ on the fourth line of the computation, we broke off the n = 0 term $-(-1)^0 {\binom{-1/3}{0}} = -1$, leaving a summation starting at n = 1.

EXAMPLE: Find the explicit Maclaurin series of $f(x) = x \sin(x^2) - x + x^3$. We write this in terms of the known trig series $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$.

$$x\sin(x^2) - x + x^3 = -x + x^3 + x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (x^2)^{2n+1}$$
$$= -x + x^3 + \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{4n+3}$$
$$= -x + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{4n+3}.$$

Here $-x^3$ canceled the n = 0 term $\frac{(-1)^0}{(2(0)+1)!}x^{4(0)+3} = x^3$, leaving $n \ge 1$.

EXAMPLE: Find the explicit Maclaurin series of the indefinite integral $\int e^{-x^2} dx$, the *Gaussian error function*. This integral cannot be computed algebraically, though of course we could numerically approximate $F(x) = \int_0^x e^{-t^2} dt$ for a given x using Riemann sums. An alternative is the Taylor series, whose finite sums give approximations to the integral function F(x) for all x:

$$\int e^{-x^2} dx = \int \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int x^{2n} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n! (2n+1)}.$$

Bounding the remainder to determine accuracy. For a function with Taylor series $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, we define the *remainder term* as the difference between a function and its Taylor polynomial approximation:

$$R_N(x) = f(x) - T_N(x) = \sum_{n=N+1}^{\infty} c_n (x-a)^n.$$

Thus $f(x) = T_N(x) + R_N(x)$, so that $R_N(x)$ is the error in approximating $f(x) \approx T_N(x)$.

Lagrange Remainder Formula: For any Taylor polynomial approximation $f(x) = T_N(x) + R_N(x)$, the remainder term is equal to:

$$R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x-a)^{N+1}$$

for some point c between a and x.

This allows an *a priori* estimate of the error, provided we can find an upper bound for the derivative: if $|f^{(N+1)}(t)| \leq M$ for all $t \in [a, x]$ or [x, a], then this holds for the particular value t = c in the Remainder Formula, and:

$$|R_N(x)| \leq \max_{t \in [a,x]} \left| \frac{f^{(N+1)}(t)}{(N+1)!} (x-a)^{N+1} \right| \leq \frac{M}{(N+1)!} |x-a|^{N+1}.$$

This generalizes the error estimate for the linear approximation (Calculus I §2.9 end and §3.2 end). Note the error expression $\frac{1}{(N+1)!}f^{(N+1)}(c)(x-a)^{N+1}$ is almost the same as the next series term $\frac{1}{(N+1)!}f^{(N+1)}(a)(x-a)^{N+1}$: the only difference is taking $f^{(N+1)}$ at a middle point $c \in (a, x)$ instead of the endpoint a. We give proofs below.

EXAMPLE: In §11.10 we computed $\sin(\frac{\pi}{18}) = T_3(\frac{\pi}{18}) + R_3(\frac{\pi}{18}) = 0.1736468 + R_3(\frac{\pi}{18})$, centered at a = 0. We have the upper bound:

$$|f^{(N+1)}(t)| = |\sin^{(4)}(t)| = |\sin(t)| \le M = 1 \text{ for } t \in [0, \frac{\pi}{18}].$$

Thus, the error term is at most:

$$\left| R_3(\frac{\pi}{18}) \right| \leq \frac{M}{(N+1)!} |x-a|^{N+1} = \frac{1}{4!} (\frac{\pi}{18})^4 \approx 4 \times 10^{-5}.$$

Approximation to *n* decimal places means with error smaller than 0.5×10^{-n} , so our approximation $(\pm 0.4 \times 10^{-4})$ is accurate to at least 4 places (though actually 5 places).

EXAMPLE: In §11.10 we computed $\sqrt{2} = T_4(2) + R_4(2) = 1.4142143 + R_4(2)$, centered at $a = \frac{9}{4}$. We have the upper bound:

$$|f^{(N+1)}(t)| = |\frac{d^5}{dt^5}(t^{1/2})| = \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} t^{-9/2} \le \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} 2^{-9/2} \approx 0.15 < M = 0.2$$

for $t \in [2, \frac{9}{4}]$: we plug in the left endpoint t = 2 since $t^{-9/2}$ is a decreasing function. Thus, the error term is at most:

$$|R_4(2)| \leq \frac{M}{(N+1)!} |x-a|^{N+1} = \frac{0.2}{5!} |2-\frac{9}{4}|^5 \approx 2 \times 10^{-6}.$$

Our approximation is accurate to at least 5 decimal places.

EXAMPLE: Smooth but not analytic. The function $f(x) = e^{-1/x^2}$ is undefined at x = 0 because $1/x^2$ is undefined. However, we can easily check that $\lim_{x\to 0} f(x) = 0$, so x = 0 is a removable discontinuity (§1.8), and we can just define f(0) = 0. The resulting function is continuous and has all derivatives zero: $f^{(n)}(0) = \lim_{x\to 0} f^{(n)}(x) = 0$.

Does f(x) have a Taylor series centered at x = 0? If so, it would have coefficients $c_n = \frac{1}{n!} f^{(n)}(0) = 0$, producing the trivial Taylor series $f(x) \stackrel{??}{=} 0 + 0x + 0x^2 + \cdots$, which is clearly nonsense. We say that this function is *smooth* at x = 0 since it has derivatives of all orders, but not *analytic* since it has no convergent Taylor series.

The Lagrange Remainder Formula still holds for the trivial series, but it does not provide a useful ceiling for $R_N(x)$: for a fixed small |x| > 0 and $N \to \infty$, the factor $\frac{|x|^{N+1}}{(N+1)!}$ gets very small, but the numerator $f^{(N+1)}(c)$ gets very large, and instead of shrinking, $R_N(x)$ stays constant as $N \to \infty$. The problem is that very near x = 0, the derivative $|f^{(N+1)}(x)|$ has a very steep canyon with bottom $f^{(N+1)}(0) = 0$ between two very tall spikes, allowing large $f^{(N+1)}(c)$.

CHALLENGE PROBLEM: Prove the described behavior of $f^{(N)}(x)$ near x = 0, and show that the spikes are at approximately $x = \pm \sqrt{2/N}$. Hint: Consider the substitution z = 1/x, and use the techniques of §6.8. **Proof of Remainder Bound.** The First Fundamental Theorem (§4.3) gives f(x) = f(a) + f(a) $\int_a^x f'(t) dt$. Integrating by parts, $\int_a^x u \, dv = uv|_{t=a}^{t=x} - \int_a^x v \, du$ with u = f'(t), du = f''(t) dt, v = x - t, dv = -dt:

$$\begin{aligned} f(x) &= f(a) - \int_a^x f'(t) \, (x-t)' dt \\ &= f(a) - \left(f'(x)(x-x) - f'(a)(x-a)\right) + \int_a^x f''(t)(x-t) \, dt \\ &= f(a) + f'(a)(x-a) + \int_a^x f''(t)(x-t) \, dt, \end{aligned}$$

which means $R_1(x) = \int_a^x f''(t)(x-t) dt$. Repeating with u = f''(t) and $v = \frac{1}{2}(x-t)^2$:

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{2}\int_a^x f'''(t)(x-t)^2 dt,$$

so that $R_2(x) = \frac{1}{2} \int_a^x f'''(t)(x-t)^2 dt$. Continuing in this way gives:

$$R_N(x) = \frac{1}{N!} \int_a^x f^{(N+1)}(t) (x-t)^N dt$$

Thus $|f^{(N+1)}(t)| < M$ implies the weak bound $|R_N(x)| \le \frac{M}{N!}(x-a)^{N+1}$, omitting factor $\frac{1}{N+1}$. To get the full Lagrange remainder formula and the consequent remainder bound, hold x constant and define the function $r(t) = \frac{1}{N!}f^{(N+1)}(t)(x-t)^N$, so that $R_N(x) = \int_a^x r(t) dt$ by the above computations. Applying the integral form of the Cauchy Mean Value Theorem (see §3.2 & §4.4) to the functions r(t) and $g(t) = (x-t)^N$, we find that there exists $c \in (a, x)$ such that $r(c)/g(c) = (\int_a^x r(t) dt)/(\int_a^x g(t) dt)$, i.e.

$$\frac{\frac{1}{N!}f^{(N+1)}(c)(x-c)^{N}}{(x-c)^{N}} = \frac{R_{N}(x)}{-\frac{1}{N+1}(x-x)^{N+1} + \frac{1}{N+1}(x-a)^{N+1}}$$

Simplifying gives $R_N(x) = \frac{1}{(N+1)!} f^{(N+1)}(c) (x-a)^{N+1}$ as desired.

Quadratic convergence of Newton's Method. Recall our other main numerical method from Calculus I, §3.8: Newton's Method finds approximate solutions to an equation q(x) = 0 by repeatedly solving a linear approximation of g(x) = 0 to improve an approximate solution x_n to:

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}.$$

For example, we saw in §11.10 how to approximate $\sqrt{2}$ either by finding a Taylor series for f(x) = \sqrt{x} and plugging in x = 2; or by using Newton's Method to solve the equation $g(x) = x^2 - 2 = 0$. (However, Newton's Method cannot compute transcendental functions like $\sin(x)$ or e^x .)

Using the Lagrange Remainder Formula, we can show that each term of a Taylor series adds about a constant number of accurate decimal places to the approximation. Newton's Method is much more powerful: each iteration roughly *doubles* the number of accurate decimal places.

Newton's Method error bound: Suppose for x in some interval, the function q(x) has a root g(r) = 0, and for all $x = c_1, c_2$ it obeys $g'(c_2) \neq 0$ and $|g''(c_1)/g'(c_2)| < M$. Then the errors of approximate root x_n and the improved approximation x_{n+1} obey:

 $|x_{n+1} - r| \leq \frac{1}{2}M |x_n - r|^2.$

Proof. The Lagrange Remainder Formula centered at $x = x_n$ says that for some $c \in (x_n, r)$:

$$0 = g(r) = g(x_n) + g'(x_n)(r - x_n) + \frac{1}{2}g''(c)(r - x_n)^2,$$

$$\frac{g(x_n)}{g'(x_n)} = x_n - r - \frac{g''(c)(x_n - r)^2}{2g'(x_n)},$$
$$x_{n+1} - r = \left(x_n - \frac{g(x_n)}{g'(x_n)}\right) - r = \frac{g''(c)}{2g'(x_n)}(x_n - r)^2.$$

Hence the bound $|g''(c)/g'(x_n)| \leq M$ implies: $|x_{n+1}-r| \leq \frac{1}{2}M |x_n-r|^2$ as desired.