Review. In $\S 11.10$, we saw how Taylor series compute any reasonable function $f(x)$ as a kind of "infinite polynomial" near a center point $x=a$:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots,
$$

where $n!=n(n-1) \cdots(2)(1)$ with $0!=1$. The constant coefficients $c_{n}=\frac{f^{(n)}(a)}{n!}$ involve the nth derivatives $f^{(n)}(x)$, but use their values only at the center point $x=a$: if the formula to compute $f(x)$ required that we know $f(x)$, it would be useless.

The first two terms $f(x) \approx f(a)+f^{\prime}(a)(x-a)$ make the linear approximation, while the degree N Taylor polynomial $T_{N}(x)=\sum_{n=1}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ gives a better and better approximation of $f(x)$ as we take more terms, provided x is in the interval of convergence.* This is how calculators can accurately compute complicated functions using only the four arithmetic operations.

In this section, we consider only Maclaurin series $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, centered at $x=0$.
Binomial series. We have seen several functions which have simple series because their nth derivatives are easy to compute, at least at $x=0$. One of the most useful of these is the binomial series, the Maclaurin series for the function $f(x)=(1+x)^{p}$, the p th power of a binomial (the sum of two terms). The coefficients of the series $(1+x)^{p}=\sum_{n=0}^{\infty} c_{n} x^{n}$ are called binomial coefficients, and they have a special symbol $c_{n}=\binom{p}{n}{ }^{\dagger}$ By definition:

$$
f(x)=(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}=\binom{p}{0}+\binom{p}{1} x+\binom{p}{2} x^{2}+\cdots .
$$

We compute these by the usual formula: $\binom{p}{n}=c_{n}=\frac{f^{(n)}(0)}{n!}$. The nth derivative is:

$$
f^{(n)}(x)=p(p-1) \cdots(p-n+1)(1+x)^{p-n}
$$

so plugging in $x=0$ gives:

$$
\binom{p}{n}=\overbrace{\frac{p(p-1) \cdots(p-n+1)}{n \text { factors }}}^{n!} .
$$

The Ratio Test shows that any binomial series has radius of convergence $|x|<1$, except when p is a whole number.

[^0]EXAMPLE: For $p=\frac{1}{2}$ and $f(x)=(1+x)^{1 / 2}=\sqrt{1+x}$, we get a series very much like that for \sqrt{x} in $\S 11.10$:

$$
\begin{aligned}
(1+x)^{1 / 2} & =1+\frac{1}{2} x+\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right)}{2!} x^{2}+\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right)}{3!} x^{3}+\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right) \cdot\left(-\frac{5}{2}\right)}{4!} x^{4}+\cdots . \\
& =1+\frac{1}{2} x-\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2!} x^{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{1}{3!} x^{3}-\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \frac{1}{4!} x^{4}+\cdots . \\
& =1+\frac{1}{2} x+\sum_{n=2}^{\infty}(-1)^{n-1} \frac{(2 n-3)!!}{2^{n} n!} x^{n} \quad \text { for }|x|<1,
\end{aligned}
$$

where we use the odd-factorial notation: $(2 n-3)!!=1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-3)$.
example: For $p=-1$ we get a geometric series with ratio $r=-x$:

$$
(1+x)^{-1}=1+(-1) x+\frac{(-1)(-2)}{2!} x^{2}+\frac{(-1)(-2)(-3)}{3!} x^{3}+\cdots=1-x+x^{2}-x^{3}-\cdots
$$

For $p=-2$ (and similarly for any negative integer), the binomial series also simplifies:
$(1+x)^{-2}=1+(-2) x+\frac{(-2)(-3)}{2!} x^{2}+\frac{(-2)(-3)(-4)}{3!} x^{3}+\cdots=1-2 x+3 x^{2}-4 x^{3}-\cdots$,
which we obtained in $\S 11.9$ as the derivative of $(1+x)^{-1}$.
Whole number powers. If p is a positive integer, the function $(1+x)^{p}$ mulitplies out to a polynomial, so it has a finite series with highest non-zero term x^{p} : that is, all higher terms have coefficient zero, and can be dropped. For example, taking $p=5$:

$$
\begin{aligned}
(1+x)^{5}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n} & =1+\frac{5}{1!} x+\frac{5 \cdot 4}{2!} x^{2}+\frac{5 \cdot 4 \cdot 3}{3!} x^{3}+\frac{5 \cdot 4 \cdot 3 \cdot 2}{4!} x^{4}+\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5!} x^{5}+0 x^{6}+\cdots \\
& =1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5} .
\end{aligned}
$$

Indeed, taking $x=\frac{b}{a}$ and clearing denominators gives a general algebraic formula analogous to $(a+b)^{2}=a^{2}+2 a b+b^{2}$:

$$
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} .
$$

Of course, we could also obtain this by successively multiplying out powers of $(a+b)$:

$$
\begin{aligned}
& (a+b)^{0}= \\
& (a+b)^{1}=\quad a+b \\
& (a+b)^{2}=\quad a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=\quad a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

In the p th row, the coefficients are:

$$
\binom{p}{0}=1 \quad\binom{p}{1}=p \quad\binom{p}{2}=\frac{1}{2} p(p-1) \quad \cdots \quad\binom{p}{p-1}=p \quad\binom{p}{p}=1 .
$$

Because each row is obtained by multiplying the previous by $(a+b)$, each coefficient is the sum of the two immediately above it to the left and right, for example $10=4+6$. The array of whole-number coefficients, continuing downward infinitely, is called Pascal's Triangle; it occurs in many problems in algebra and probability.

Modifications of series. Once we know a series formula

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

for some explicit coefficients c_{n}, we can manipulate it to get new series formulas for similar functions. Let k be a fixed positive integer, and q a constant.

- $q x^{k} f(x)=q c_{0} x^{k}+q c_{1} x^{k+1}+q c_{2} x^{k+2}+q c_{3} x^{k+3}+\cdots=\sum_{n=k}^{\infty} q c_{n-k} x^{n}$.
- $f\left(q x^{k}\right)=c_{0}+c_{1} q x^{k}+c_{2} q^{2} x^{2 k}+c_{3} q^{3} x^{3 k}+\cdots=\sum_{n=0}^{\infty} c_{k} q^{k} x^{k n}$.
- $\int f(x) d x=c_{0} x+c_{1} \frac{x^{2}}{2}+c_{2} \frac{x^{3}}{3}+c_{3} \frac{x^{4}}{4}+\cdots=\sum_{n=0}^{\infty} c_{n} \frac{x^{n+1}}{n+1}$.
(We already saw the last modification in §11.9.)
EXAMPLE: Find the explicit Maclaurin series of $f(x)=\frac{x^{2}+1}{\sqrt[3]{x^{2}-1}}$. We manipulate this function to write it in terms of the known binomial series $(1+x)^{-1 / 3}=\sum_{n=0}^{\infty}\binom{-1 / 3}{n} x^{n}$.

$$
\begin{aligned}
\frac{x^{2}+1}{\sqrt[3]{x^{2}-1}} & =-x^{2}\left(1-x^{2}\right)^{-1 / 3}-\left(1-x^{2}\right)^{-1 / 3} \\
& =-x^{2} \sum_{n=0}^{\infty}\binom{-1 / 3}{n}\left(-x^{2}\right)^{n}-\sum_{n=0}^{\infty}\binom{-1 / 3}{n}\left(-x^{2}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n+1}\binom{-1 / 3}{n} x^{2 n+2}-\sum_{n=0}^{\infty}(-1)^{n}\binom{-1 / 3}{n} x^{2 n} \\
& =\sum_{n=1}^{\infty}(-1)^{n}\binom{-1 / 3}{n-1} x^{2 n}-\sum_{n=0}^{\infty}(-1)^{n}\binom{-1 / 3}{n} x^{2 n} \\
& =-1+\sum_{n=1}^{\infty}(-1)^{n}\left[\binom{-1 / 3}{n-1}-\binom{-1 / 3}{n}\right] x^{2 n} .
\end{aligned}
$$

A tricky point is the index shift from $n=0$ to $n=1$ in the left summation: you can see in dot-dot-dot notation that the two ways of indexing produce the same terms:

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n+1}\binom{-1 / 3}{n} x^{2 n+2} & =(-1)^{1}\binom{-1 / 3}{0} x^{2}+(-1)^{2}\binom{-1 / 3}{1} x^{4}+(-1)^{3}\binom{-1 / 3}{2} x^{6}+\cdots \\
& =\sum_{n=1}^{\infty}(-1)^{n}\binom{-1 / 3}{n-1} x^{2 n}
\end{aligned}
$$

Also, in the term $-\sum_{n=0}^{\infty}(-1)^{n}\binom{-1 / 3}{n} x^{2 n}$ on the fourth line of the computation, we broke off the $n=0$ term $-(-1)^{0}\binom{-1 / 3}{0}=-1$, leaving a summation starting at $n=1$.

EXAMPLE: Find the explicit Maclaurin series of $f(x)=x \sin \left(x^{2}\right)-x+x^{3}$. We write this in terms of the known trig series $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$.

$$
\begin{aligned}
x \sin \left(x^{2}\right)-x+x^{3} & =-x+x^{3}+x \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x^{2}\right)^{2 n+1} \\
& =-x+x^{3}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{4 n+3} \\
& =-x+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{4 n+3} .
\end{aligned}
$$

Here $-x^{3}$ canceled the $n=0$ term $\frac{(-1)^{0}}{(2(0)+1)!} x^{4(0)+3}=x^{3}$, leaving $n \geq 1$.
EXAMPLE: Find the explicit Maclaurin series of the indefinite integral $\int e^{-x^{2}} d x$, the Gaussian error function. This integral cannot be computed algebraically, though of course we could numerically approximate $F(x)=\int_{0}^{x} e^{-t^{2}} d t$ for a given x using Riemann sums. An alternative is the Taylor series, whose finite sums give approximations to the integral function $F(x)$ for all x :

$$
\int e^{-x^{2}} d x=\int \sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int x^{2 n} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)} .
$$

Bounding the remainder to determine accuracy. For a function with Taylor series $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, we define the remainder term as the difference between a function and its Taylor polynomial approximation:

$$
R_{N}(x)=f(x)-T_{N}(x)=\sum_{n=N+1}^{\infty} c_{n}(x-a)^{n}
$$

Thus $f(x)=T_{N}(x)+R_{N}(x)$, so that $R_{N}(x)$ is the error in approximating $f(x) \approx T_{N}(x)$.
Lagrange Remainder Formula: For any Taylor polynomial approximation $f(x)=T_{N}(x)+R_{N}(x)$, the remainder term is equal to:

$$
R_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!}(x-a)^{N+1}
$$

for some point c between a and x.
This allows an a priori estimate of the error, provided we can find an upper bound for the derivative: if $\left|f^{(N+1)}(t)\right| \leq M$ for all $t \in[a, x]$ or $[x, a]$, then this holds for the particular value $t=c$ in the Remainder Formula, and:

$$
\left|R_{N}(x)\right| \leq \max _{t \in[a, x]}\left|\frac{f^{(N+1)}(t)}{(N+1)!}(x-a)^{N+1}\right| \leq \frac{M}{(N+1)!}|x-a|^{N+1} .
$$

This generalizes the error estimate for the linear approximation (Calculus I §2.9 end and $\S 3.2$ end). Note the error expression $\frac{1}{(N+1)!} f^{(N+1)}(c)(x-a)^{N+1}$ is almost the same as the next series term $\frac{1}{(N+1)!} f^{(N+1)}(a)(x-a)^{N+1}$: the only difference is taking $f^{(N+1)}$ at a middle point $c \in(a, x)$ instead of the endpoint a. We give proofs below.

EXAMPLE: In $\S 11.10$ we computed $\sin \left(\frac{\pi}{18}\right)=T_{3}\left(\frac{\pi}{18}\right)+R_{3}\left(\frac{\pi}{18}\right)=0.1736468+R_{3}\left(\frac{\pi}{18}\right)$, centered at $a=0$. We have the upper bound:

$$
\left|f^{(N+1)}(t)\right|=\left|\sin ^{(4)}(t)\right|=|\sin (t)| \leq M=1 \quad \text { for } \quad t \in\left[0, \frac{\pi}{18}\right]
$$

Thus, the error term is at most:

$$
\left|R_{3}\left(\frac{\pi}{18}\right)\right| \leq \frac{M}{(N+1)!}|x-a|^{N+1}=\frac{1}{4!}\left(\frac{\pi}{18}\right)^{4} \approx 4 \times 10^{-5} .
$$

Approximation to n decimal places means with error smaller than 0.5×10^{-n}, so our approximation $\left(\pm 0.4 \times 10^{-4}\right)$ is accurate to at least 4 places (though actually 5 places).

EXAMPLE: In $\S 11.10$ we computed $\sqrt{2}=T_{4}(2)+R_{4}(2)=1.4142143+R_{4}(2)$, centered at $a=\frac{9}{4}$. We have the upper bound:

$$
\left|f^{(N+1)}(t)\right|=\left|\frac{d^{5}}{d t^{5}}\left(t^{1 / 2}\right)\right|=\frac{1 \cdot 1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot 7}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} t^{-9 / 2} \leq \frac{1 \cdot 1 \cdot \cdot \cdot \cdot \cdot 5 \cdot 7}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} 2^{-9 / 2} \approx 0.15<M=0.2
$$

for $t \in\left[2, \frac{9}{4}\right]$: we plug in the left endpoint $t=2$ since $t^{-9 / 2}$ is a decreasing function. Thus, the error term is at most:

$$
\left|R_{4}(2)\right| \leq \frac{M}{(N+1)!}|x-a|^{N+1}=\frac{0.2}{5!}\left|2-\frac{9}{4}\right|^{5} \approx 2 \times 10^{-6}
$$

Our approximation is accurate to at least 5 decimal places.
EXAMPLE: Smooth but not analytic. The function $f(x)=e^{-1 / x^{2}}$ is undefined at $x=0$ because $1 / x^{2}$ is undefined. However, we can easily check that $\lim _{x \rightarrow 0} f(x)=0$, so $x=0$ is a removable discontinuity (§1.8), and we can just define $f(0)=0$. The resulting function is continuous and has all derivatives zero: $f^{(n)}(0)=\lim _{x \rightarrow 0} f^{(n)}(x)=0$.

Does $f(x)$ have a Taylor series centered at $x=0$? If so, it would have coefficients $c_{n}=\frac{1}{n!} f^{(n)}(0)=0$, producing the trivial Taylor series $f(x) \stackrel{? ?}{=} 0+0 x+0 x^{2}+\cdots$, which is clearly nonsense. We say that this function is smooth at $x=0$ since it has derivatives of all orders, but not analytic since it has no convergent Taylor series.

The Lagrange Remainder Formula still holds for the trivial series, but it does not provide a useful ceiling for $R_{N}(x)$: for a fixed small $|x|>0$ and $N \rightarrow \infty$, the factor $\frac{|x|^{N+1}}{(N+1)!}$ gets very small, but the numerator $f^{(N+1)}(c)$ gets very large, and instead of shrinking, $R_{N}(x)$ stays constant as $N \rightarrow \infty$. The problem is that very near $x=0$, the derivative $\left|f^{(N+1)}(x)\right|$ has a very steep canyon with bottom $f^{(N+1)}(0)=0$ between two very tall spikes, allowing large $f^{(N+1)}(c)$.
challenge problem: Prove the described behavior of $f^{(N)}(x)$ near $x=0$, and show that the spikes are at approximately $x= \pm \sqrt{2 / N}$. Hint: Consider the substitution $z=1 / x$, and use the techniques of $\S 6.8$.

Proof of Remainder Bound. The First Fundamental Theorem (§4.3) gives $f(x)=f(a)+$ $\int_{a}^{x} f^{\prime}(t) d t$. Integrating by parts, $\int_{a}^{x} u d v=\left.u v\right|_{t=a} ^{t=x}-\int_{a}^{x} v d u$ with $u=f^{\prime}(t), d u=f^{\prime \prime}(t) d t$, $v=x-t, d v=-d t:$

$$
\begin{aligned}
f(x) & =f(a)-\int_{a}^{x} f^{\prime}(t)(x-t)^{\prime} d t \\
& =f(a)-\left(f^{\prime}(x)(x-x)-f^{\prime}(a)(x-a)\right)+\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t \\
& =f(a)+f^{\prime}(a)(x-a)+\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t
\end{aligned}
$$

which means $R_{1}(x)=\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t$. Repeating with $u=f^{\prime \prime}(t)$ and $v=\frac{1}{2}(x-t)^{2}$:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{2} \int_{a}^{x} f^{\prime \prime \prime}(t)(x-t)^{2} d t
$$

so that $R_{2}(x)=\frac{1}{2} \int_{a}^{x} f^{\prime \prime \prime}(t)(x-t)^{2} d t$. Continuing in this way gives:

$$
R_{N}(x)=\frac{1}{N!} \int_{a}^{x} f^{(N+1)}(t)(x-t)^{N} d t
$$

Thus $\left|f^{(N+1)}(t)\right|<M$ implies the weak bound $\left|R_{N}(x)\right| \leq \frac{M}{N!}(x-a)^{N+1}$, omitting factor $\frac{1}{N+1}$.
To get the full Lagrange remainder formula and the consequent remainder bound, hold x constant and define the function $r(t)=\frac{1}{N!} f^{(N+1)}(t)(x-t)^{N}$, so that $R_{N}(x)=\int_{a}^{x} r(t) d t$ by the above computations. Applying the integral form of the Cauchy Mean Value Theorem (see $\S 3.2$ $\& \S 4.4)$ to the functions $r(t)$ and $g(t)=(x-t)^{N}$, we find that there exists $c \in(a, x)$ such that $r(c) / g(c)=\left(\int_{a}^{x} r(t) d t\right) /\left(\int_{a}^{x} g(t) d t\right)$, i.e.

$$
\frac{\frac{1}{N!} f^{(N+1)}(c)(x-c)^{N}}{(x-c)^{N}}=\frac{R_{N}(x)}{-\frac{1}{N+1}(x-x)^{N+1}+\frac{1}{N+1}(x-a)^{N+1}}
$$

Simplifying gives $R_{N}(x)=\frac{1}{(N+1)!} f^{(N+1)}(c)(x-a)^{N+1}$ as desired.
Quadratic convergence of Newton's Method. Recall our other main numerical method from Calculus I, $\S 3.8$: Newton's Method finds approximate solutions to an equation $g(x)=0$ by repeatedly solving a linear approximation of $g(x)=0$ to improve an approximate solution x_{n} to:

$$
x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}
$$

For example, we saw in $\S 11.10$ how to approximate $\sqrt{2}$ either by finding a Taylor series for $f(x)=$ \sqrt{x} and plugging in $x=2$; or by using Newton's Method to solve the equation $g(x)=x^{2}-2=0$. (However, Newton's Method cannot compute transcendental functions like $\sin (x)$ or e^{x}.)

Using the Lagrange Remainder Formula, we can show that each term of a Taylor series adds about a constant number of accurate decimal places to the approximation. Newton's Method is much more powerful: each iteration roughly doubles the number of accurate decimal places.

Newton's Method error bound: Suppose for x in some interval, the function $g(x)$ has a root $g(r)=0$, and for all $x=c_{1}, c_{2}$ it obeys $g^{\prime}\left(c_{2}\right) \neq 0$ and $\left|g^{\prime \prime}\left(c_{1}\right) / g^{\prime}\left(c_{2}\right)\right|<M$.
Then the errors of approximate root x_{n} and the improved approximation x_{n+1} obey:

$$
\left|x_{n+1}-r\right| \leq \frac{1}{2} M\left|x_{n}-r\right|^{2} .
$$

Proof. The Lagrange Remainder Formula centered at $x=x_{n}$ says that for some $c \in\left(x_{n}, r\right)$:

$$
\begin{gathered}
0=g(r)=g\left(x_{n}\right)+g^{\prime}\left(x_{n}\right)\left(r-x_{n}\right)+\frac{1}{2} g^{\prime \prime}(c)\left(r-x_{n}\right)^{2} \\
\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}=x_{n}-r-\frac{g^{\prime \prime}(c)\left(x_{n}-r\right)^{2}}{2 g^{\prime}\left(x_{n}\right)}, \\
x_{n+1}-r=\left(x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}\right)-r=\frac{g^{\prime \prime}(c)}{2 g^{\prime}\left(x_{n}\right)}\left(x_{n}-r\right)^{2} .
\end{gathered}
$$

Hence the bound $\left|g^{\prime \prime}(c) / g^{\prime}\left(x_{n}\right)\right| \leq M$ implies: $\left|x_{n+1}-r\right| \leq \frac{1}{2} M\left|x_{n}-r\right|^{2}$ as desired.

[^0]: Notes by Peter Magyar magyar@math.msu.edu
 *The Lagrange Remainder Formula below bounds the error in the approximation $f(x) \approx T_{N}(x)$. By the Ratio Test, the series $f(x)=\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$ will converge if $|x-a|<R$, where the radius of convergence is: $R=\lim _{n \rightarrow \infty}\left|c_{n} / c_{n+1}\right|$. If R is finite, the open interval of convergence is $x \in(a-R, a+R)$.
 ${ }^{\dagger}$ The symbol $\binom{p}{n}$ is usually read " p choose n " because if p is a whole number, it turns out that $\binom{p}{n}$ is the number of ways, given a set of p objects, to choose a subset of n of them. For example, $\binom{4}{2}=\frac{6 \cdot 5}{2 \cdot 1}=6$ counts 6 ways to choose 2 numbers from $\{1,2,3,4\}$, i.e. $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$.

