
Math 132 Sigma Notation Stewart §4.1/II

Notation for sums. In Notes §4.1, we define the integral
∫ b
a f(x) dx as a limit of

approximations. That is, we split the interval x ∈ [a, b] into n increments of size
∆x = b−a

n , we choose sample points x1, x2, . . . , xn, and we take:∫ b

a
f(x) dx = lim

n→∞
f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x.

The sum which appears on the right is called a Riemann sum. Similar sums appear
frequently in mathematics, and we define a special notation to handle them.

In the most general situation, we have a sequence of numbers q0, q1, q2, q3, . . .
so that for any i = 0, 1, 2, 3, . . . we have a number qi. We consider an interval of
integers i = m,m+1,m+2, . . . , n, and we introduce a notation for the sum of all
the qi for i = m to n:

n∑
i=m

qi = qm + qm+1 + qm+2 + · · ·+ qn.

The summation symbol Σ is capital sigma, the Greek letter S meaning sum. The
variable i is called the index of summation.

Examples

� Letting qi=
√
i, we have q0 =

√
0 = 0, q1 =

√
1 = 1, q2=

√
2, q3=

√
3, . . . ,

and taking the interval of integers i = 2, 3, 4, 5, we have:

5∑
i=2

√
i =

√
2 +

√
3 +

√
4 +

√
5 ≈ 7.38 .

� Letting qi = 1, we have:
∑10

i=1 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
10 terms

= 10.

� Given the sum of the first ten square numbers 1+ 4+ 9+ 16+ · · ·+100, we
wish to write this compactly in sigma notation. Considering the terms as a
sequence qi = i2, we get:

1 + 4 + 9 + · · ·+ 100 = 12 + 22 + 32 + · · ·+ 102 =

10∑
i=1

i2 .

� Given the sum of the first five odd numbers 1 + 3 + 5 + 7 + 9, we can write
this in sigma notation by considering the terms as qi = 2i−1:

1 + 3 + 5 + 7 + 9 = (2(1)−1) + (2(2)−1) + · · ·+ (2(5)−1) =

5∑
i=1

(2i−1) .

Another way would be to consider the terms as qi = 2i+1:

1 + 3 + 5 + 7 + 9 = (2(0)+1) + (2(1)+1) + · · ·+ (2(4)+1) =

4∑
i=0

(2i+1) .
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� The sum of the first n odd numbers, where n is an unspecified whole number:

1 + 3 + 5 + · · ·+ (2n−1) =
n∑

i=1

(2i−1).

� For a sum with alternating plus and minus terms, use (−1)i−1 =
{

1 for odd i
−1 for even i.

1− 3 + 5− 7 + · · · ± (2n−1) =
n∑

i=1

(−1)i−1(2i−1).

� Riemann sum for
∫ b
a f(x) dx with ∆x = b−a

n and sample points xi = a+i∆x:

f(x1)∆x+f(x2)∆x+· · ·+f(xn)∆x =

n∑
i=1

f(xi)∆x =

n∑
i=1

f
(
a+ i

n(b− a)
)

b−a
n .

Summation Rules. As we did for limits and derivatives, we can sometimes
compute summations by starting with known Basic Summations, and combining
them by Summation Rules.

� Sum:

n∑
i=m

(qi+pi) =

n∑
i=m

qi +

n∑
i=m

pi .

� Difference:
n∑

i=m

(qi−pi) =
n∑

i=m

qi −
n∑

i=m

pi .

� Constant Multiple:
n∑

i=m

C qi = C ·
n∑

i=m

qi , where C does not depend on i.

Like all facts about summations, these formulas can be understood by writing out
the terms in dot-dot-dot (ellipsis) notation, for example:

n∑
i=m

(qi+pi) = (qm+pm) + (qm+1+pm+1) + · · ·+ (qn+pn)

= (qm + qm+1 + · · ·+ qn) + (pm + pm+1 + · · ·+ pn)

=
n∑

i=m

qi +
n∑

i=m

pi .

Note that n is a constant not depending on i, so we may factor it out of a
summation:

∑n
i=1 ni

2 = n
∑n

i=1 i
2. Specifically for n = 3, this means 3(12) +

3(22)+ 3(32) = 3(12+22+32). However, the variable i has no meaning outside the
summation, and cannot be factored out:

∑3
i=1 i2

i ??
= i

∑3
i=1 2

i is nonsense: the left
side means 1(21)+2(22)+3(23), but the right side should mean a constant i times
21+22+23, but i is not a constant.

Warning: the summation of a product
∑

qipi is NOT equal to the product of
summations (

∑
qi)(

∑
pi). For example: 1 · 1 + 2 · 2 + 3 · 3 ̸= (1+2+3)(1+2+3).



Basic Summations. We can get a few surprisingly neat formulas:

(a)

n∑
i=1

1 = n;

(b)
n∑

i=1

i = 1 + 2 + · · ·+ n = 1
2n(n+1);

(c)

n∑
i=1

i2 = 12 + 22 + · · ·+ n2 = 1
6n(n+1)(2n+1).

Proof. (a)
∑n

i=1 1 = 1 + · · ·+ 1 with n terms, which indeed equals n.

(b) Taking two copies of
∑n

i=1 i, we can pair each term with its complement:

2 ·
n∑

i=1

i = 1 + 2 + · · · + n−1 + n

+ n + n−1 + · · · + 2 + 1

= n+1 + n+1 + · · · + n+1 + n+1 = n(n+1).

The equation 2 ·
∑n

i=1 i = n(n+1), divided by 2, gives the desired formula.

(c) Consider that (i+1)3 = i3 + 3i2 + 3i+ 1, so that:∑n
i=1(i+1)3 − i3 =

∑n
i=1(3i

2 + 3i+ 1)

= 3
∑n

i=1 i
2 + 3

∑n
i=1 i+

∑n
i=1 1

= 3
∑n

i=1 i
2 + 3

2n(n+1) + n.

On the other hand, we have a “collapsing sum”:∑n
i=1(i+1)3 − i3 = (n+1)3−n3 + n3−(n−1)3 + · · · + 33−23 + 23−13

= (n+1)3 − 13 .

Solving the equation:

3 ·
n∑

i=1

i2 + 3
2n(n+1) + n = (n+1)3 − 1

gives, as desired:

n∑
i=1

i2 = 1
3((n+1)3 − 3

2n(n+1)− (n+1)) = 1
6n(n+1)(2n+1) .

A similar computation will produce a formula for
∑n

i=1 i
3, etc.


