
Math 132 Optimization Stewart §3.7

Rectangle example. Suppose we have 40 meters of fence to make a rectangular
corral. What length and width will fence off the largest area? The range of
possiblilities is illustrated below:

It appears that the square with length and width ` = w = 10 gives the maximum
area A = `w =100 m2. To prove this algebraically, we note that the perimeter is
constant, P = 2`+ 2w = 40; so the length controls the width and also the area:

w = 1
2(40−2`) = 20− `, A = `w = `(20−`) = 20`− `2 .

That is, the quantity we aim to maximize, A, is a function of the variable `, which
is allowed to vary between ` = 0 and ` = 20 (corresponding to w = 0). This is a
familiar problem: find the absolute maximum of

A(`) = 20`− `2 over the interval ` ∈ [0, 20].

The critical points are given by dA
d` = 20 − 2` = 0, i.e. ` = 10 with output

A(10) =100, and the endpoint outputs are A(0) = 0, A(20) = 0. The largest of
these is the absolute maximum: ` = 10 with A(`) = 100; also w = 20− ` = 10.

Method for optimization. We aim to find the maximum or minimum possible
value of a target quantity within the constraints of a (usually geometric) situation.

1. Draw a picture labeled with numerical constant values and with letters for
varying quantities, including: controlling variables to determine the shape;
constrained variables required to have a fixed value; the target variable we
aim to maximize or minimize.

2. Write equations relating variables according to the geometry of the picture.

3. Choose one of the controlling variables (say, x) as the independent variable,
and write all other variables as functions of it by solving the above equations.
Also determine the relevant domain x ∈ [a, b], which is usually restricted by
requiring all lengths to be positive.

4. Find the absolute maximum/minimum of the target variable over its domain,
say T = T (x) over x ∈ [a, b]. That is, solve T ′(x) = 0 or undef, to find the
critical points x = c1, c2, . . . , as well as the endpoints x = a, b. Take the
output values T (x) at these candidate points: the largest/smallest output is
the desired maximum/minimum.

5. If needed, find values of the other variables at the optimum x. Make sure
the answer is physically plausible to check for mistakes.
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Bucket example. Consider a 10-quart bucket with cylindrical sides and circular
bottom. What radius and height will minimize surface area of sides and bottom?

1.

The target variable is the surface area S (square inches), to be minimized.
The controlling variables are radius r (inches) and height h (inches). The
constant volume is expressed by the constrained variable V = 10 quarts; to
make this comparable to the other variables, we must convert to V = 577.5
cubic inches.

2. Equations. The volume V is the base area πr2 times the height h. For the
surface S: the sides, if unrolled, form a rectangle with the same height h as
the cylinder, and width equal to the perimeter of the bottom, 2πr; and we
also add the bottom area πr2. Thus:

V = πr2h = 577.5 , S = πr2 + 2πrh = min.

3. Do we choose r or h as the indendent variable? Here r is harder to solve for,
so we make it independent and solve for the other variables instead:

h =
577.5

πr2
, S = πr2 + 2πr

577.5

πr2
= πr2 +

1155

r
.

The only restriction on r is r > 0. (Radius can be huge if height is corre-
spondingly tiny: this is clearly not optimal, but still possible.) Thus, the
domain is the open interval r ∈ (0,∞).

4. We must find the absolute minimum of S(r) = πr2 + 1155
r over r ∈ (0,∞).

To find the critical points:

dS

dr
= 2πr− 1155

r2
= 0 =⇒ 2πr =

1155

r2
=⇒ r =

3

√
1155

2π
≈ 5.68 .

This is the only critical point, with output value S(r) ≈ 304 .

Since the endpoint values S(0) and S(∞) are not defined, we must consider
the limiting values near these points: limr→0+ S(r) =∞ and limr→∞ S(r) =
∞. This means S(r) has no absolute maximum, but can get as large as
desired if we make r large or small enough.

The remaining candidate must be the absolute minimum point, r = 3

√
1155
2π .



5. At the minimum point, the other variable is:

h =
577.5

π
(

3

√
1155
2π

)2 ≈ 5.68 .

In fact, we can simplify to show h = r, meaning the optimal bucket is twice
as wide as it is high.

This is plausible. However, an actual 10-quart bucket has dimensions about
as wide as it is high, about r = 1

2h = 4.5 in, which uses more plastic than
necessary. Try to explain what other factors might influence the design.

Ants example. A line of ants marches across a 10cm× 10cm square of carpet
from the lower left to the upper right corner (where someone dropped a jellybean).
Part of their path is along the edge next to the carpet, where their speed is 1
cm/sec, and part diagonally across the carpet, where their speed is 1

2 cm/sec.
What path should they take along the edge before entering the carpet, so as to
minimize (a) the total distance; and (b) the total travel time.

1.

Controlling variables are e, the distance traveled along the edge, and c, the
distance traveled across the carpet. The target variable to minimize for each
question is: (a) total distance L in cm; and (b) total time T in sec.

2. Equations:
c2 = 102 + (10−e)2 , L = e+ c .

Also, we know speed× time = distance, so time = distance/speed. The
travel time along the edge is e/1 = e, along the carpet c/12 = 2c, with total:

T = e+ 2c .

3. The obvious independent variable is e, since we can easily write the other
variables in terms of it, including the target variables:

c =
√

102+(10−e)2 =
√

200−20e+e2 ,

L = e+
√

200−20e+e2 , T = e+ 2
√

200−20e+e2 .

The relevant domain is e ∈ [0, 10].



4. For question (a), the critical points are given by:

dL

de
= 1+ 1

2(200−20e+e2)−1/2(200−20e+e2)′ = 1− 10− e√
200−20e+e2

= 0 ,∗

which reduces to
√

200−20e+e2 = 10 − e, then to 200−20e+e2 = (10−e)2,
which cancels to the impossible equation 200 = 100. Thus, there are no
critical points, and the absolute minimum must be one of the endpoints.
Since L(0) = 10

√
2 ≈ 14.1 < L(10) = 20, the minimum is at e = 0.

For question (b), the critical points are given by:

dT

de
= 1− 2(10−e)√

200−20e+e2
= 0 =⇒

√
200−20e+e2 = 20− 2e

=⇒ 200− 20e+ e2 = (20− 2e)2 =⇒ 3e2 − 60e+ 200 = 0 .

The Quadratic Formula then gives:

e =
60±
√

602−4(3)(200)
2(3) = 10± 10

3

√
3 ≈ 4.2, 15.8 .

The second solution is outside the domain e ∈ [0, 10], so the only relevant
critical point is e = 10− 10

3

√
3 ≈ 4.2, with value T (e) = 10 + 10

√
3 ≈ 27.3 .

Comparing to endpoints T (0) = 20
√

2 ≈ 28.3 and T (10) = 30, we find the
absolute minimum at e = 10−10

3

√
3 ≈ 4.2 with T (e) = 10+10

√
3 ≈ 27.3.

5. For question (a), the minimum distance at e = 0 is obvious in retrospect:
the straight diagonal is the shortest path between opposite corners.

For question (b), the minimum time is about T (4.2) ≈ 27.3 sec: that is, at
a speed between 0.5 and 1 cm/sec, the ants can cross the 10 cm× 10 cm
square in about 27 sec, which is reasonable. This is a slight saving over the
straight diagonal path, which takes about 28 sec. (This assumes they move
at carpet speed along the right edge of the square; if they moved at floor
speed, they would do much better to go around the carpet, at 20 sec.)

A line of ants will usually find the minimum distance path over a landscape by
gradually tightening their curves; what do you think they would do in this case?

Maximizing profit. The Acme Company produces widgets for $10 each and sells
them for s dollars each. The number of widgets sold is modeled by the market
demand function m(s) = 100− s: for example, if they charge $25, customers will
buy m(25) = 75 widgets, but price $100 is too high for the market: m(100) = 0.

Problem: What selling price s will maximize total profits?

The independent variable is s ∈ [10, 100]. Profit per widget is s − 10. Total
profit is P (s) = m(s) (s−10) = (100−s)(s−10) = −1000 + 110s− s2. The critical
point P ′(s) = 110 − 2s = 0 is s = 55, which is clearly the maximum point, since
P (55) = 2025 but the endpoints produce P (10) = P (100) = 0. Thus the most
profitable selling price is s = $55.

∗ Note dL
de

is defined over the whole domain e ∈ [0, 10], since 200−20e+e2 = 102+(10−e)2 > 0.


