Math 132 Differentiation Formulas Stewart §2.3

So far, we have seen how various real-world problems (rate of change) and geometric prob-
lems (tangent lines) lead to derivatives. In this section, we will see how to solve such
problems by computing derivatives (differentiating) algebraically.

Notations. We have seen the Newton notation f’(x) for the derivative of f(x). The al-

ternative Leibnitz notation for the derivative is %, meant to remind us of the definition of
f'(x) as the limit of difference quotients:
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Here Af = f(x+h) — f(x), the difference* in f(z) produced by the difference Az =
(x4+h)—x = h. Also, df and dx are meant to suggest very small Af and Az, but % is
not literally the quotient of two small quantities, just a complicated symbol meaning the
limit of such quotients.

To illustrate: for f(z) = 22, the formula f’(z) = (2?)" = 2z can be written in Leibnitz

notation as:

df  d

dx dx
The symbol % means the function f/(z); for a particular value of a derivative at x = a, we
write f'(a) = % L The notation f’ = Df is also used, and f'(z) = Df(z).

(%) = 2.

Basic Derivatives. To compute derivatives without a limit analysis each time, we use
the same strategy as for limits in Notes §1.6: we establish the derivatives of some basic
functions, then we show how to compute the derivatives of sums, products, and quotients
of known functions.

Theorem: (i) For a constant function f(x) = ¢, we have d%(c) = (¢) =0.
(ii) For f(x) = x, we have %(m) =(z) =1
(iii) For f(x) = xP with p any real number, we have:

@) = @) =pat

The picture below shows the change in the area f(z) = 22 due to increment h = Az is
about Af = 2xAx, so f/(x) = ﬁ—i = 2x. Similarly for volume f(z) = 23, with f/(x) = 322.
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The same holds for the growth of an n-dimensional cube, giving f’(z) = nz" !, but we can
only compute this algebraically, not picture it.

Notes by Peter Magyar magyar@math.msu.edu
*A is capital letter delta, the Greek D, standing for “difference”. The small letter delta is ¢.



Proof: (i) and (ii) follow easily from the definition of f’(x). We prove (iii) in stages, for
more and more general powers p, relying repeatedly on the family of formulas: a™ — b" =
(a—b)(a™ ! +a"2b+ a"3b? + --- + b"71), valid for n = 1,2,3,... First, we consider a
whole number p = n, and take a = x+h and b = x:

(z") = lim (z+h)" — 2" — lim ((z4h)—z) ((z+h)" L+ (@+h)" 2z+ - - - +a™ 1)
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= lim (z+h)" 14 (z4+h)" 2o+ 42" = (24+0)" 14 (240)"2a 4 42" = na™h

h—0
Thus, ()" = n2z""!, and (iii) holds for p = n.
Second, we do a similar calculation for a negative integer p = —n, so that P = xin; in
the derivative limit, we combine fractions and apply the o™ — b" formula with ¢ = x and
n—1
b = z+h. The result simplifies to —*7 5~ = (—n)z-m-1

Third, we consider a fraction p = ;> with m a whole number and n an integer, so that

aP =z = ¥/z". We take the derivative limit with numerator %/(z+h)" — V2" = a — b.
As in §2.2 for /z, multiplying top and bottom by a™ ! +a™ 2b+a™3b2 4 - - + b1 gets
rid of the radicals ¥/ , leaving the numerator a™ — b™ = (z+h)"™ — 2", which we handled
previously. Again, the limit eventually simplifies to formula (iii).

Formula (iii) is also valid for an irrational power like p = V2, but this requires more
theory: we will have to wait until Calculus II to even state a clear definiton of zV2,

Having computed all these limits, we never have to do so again. Just from quoting the
Theorem, we get formulas like: (22) = 22! = 22; (2'%) = 1027,
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Derivative Rules. Suppose the functions f(z), g(z) are differentiable at x, so that f’(x)
and ¢'(z) exist. Then we get the following derivatives:

o Sum: (f(z)+g(x)) = f'(z) +g'(x).

o Difference: (f(x) —g(z)) = f'(x) — g'(x).

e Constant Multiple: (c f(z)) = ¢ f'(z) for any constant c.
o Product: (f(z)g(@)) = f/()g(x) + ()g ().

f(l“))’ _ fl=@)g(x) — f(2)g'(x)
9(x) g(x)?

The first three of these Rules, which express the linearity of the derivative operation, are
intuitive and easy to prove. For example the Sum Rule:

e (Quotient: < , where g(z) # 0.

(f(z) + g(z)) = lim (f(z+h)+g(x+h))=(f(x)+9(x))

i SR —f(2) (z+h)—g(z)
Jim W = lim 7 + 4 7 g

_ ’1013%) f(x—&-h]z—f(ar) +}llli% g(z—i—h}z—g(x) = f'(z) +¢'(2).

Here the third equality follows from the Sum Law for limits in Notes §1.6.

Warning: The derivative of a product is NOT the product of derivatives.




We obtain the correct Product Rule from a geometric model: consider a rectangle with
changing sides of lengths f(z) and g(x) depending on some variable z, the upper left rect-
angle below:
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The product f(x)g(z) is the area, and the derivative (f(z)g(z))’ is the rate of change of area
with respect to a change in z. Suppose small increment Az = h produces some positive
increments Af = f(x+h)— f(z) and Ag = g(z+h)—g(x) in the sides, so that the increment
of area, A(f-g) = f(z+h)g(z+h) — f(z)g(z), is the area of the three edge rectangles:

A(f-g9) = (&f)-g(x) + f(2)-(Ag) + (Af)-(Ag).

To get the derivative, we divide by Az to get the difference quotient, and send Az = h — 0:
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= fl@)g(x) + f(x)g'(x) + f(2)(0) = fl(x)g(x)+ f(x)g'(z).

Note that the vanishing third term corresponds to the tiny bottom right rectangle.
Lastly, we prove the Quotient Rule:
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Here, after putting the expression over a common denominator, we have added and sub-
tracted the quantity f(x)g(x) in the numerator, leaving the limit unchanged. Our aim is
to factor the first pair and last pair of terms:

(£01) i, UlashTEN g0+ ) o)t
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e P @)e(@) = f@)g (@)

We have again used several Limit Laws from Notes §1.6. We could give another proof of
the Product Rule in a very similar way.

TWe can check this formula algebraically for any f(z), f(z4h), g(z), g(z+h): just substitute for Af, Ag.



Derivative computations. By repeatedly using these Rules, we can quickly compute the
derivatives of most functions.

EXAMPLE: Find (y/z)' = 4 (\/z). Solution: (y/z)' = (2/2) = $2(1/2-1 = Lp=1/2 = L

where we used the Basic Derivative (2F) = paP~! with p = 3.

EXAMPLE: (1/10)" = 0 since the derivative of any constant, even a complicated one, is zero.

EXAMPLE: For f(x) = (52% + 1)(\/z — 3), find the derivative f'(z) = %:

((51:2—1—1)(\/5—3))/ = (5 +1) (vVo—3) + (5a?+1) (Vz— 3) by Product Rule
= (5(=?)+(1)) (Vz-3) + (52®+1) ((v/z)'—(3)") by Sum & Const Mult Rules
= (5(22Y)40) (v/z—3) + (522+1) (3271/2-0) by Basic Derivatives
= 10z(v/x—3) + (5x? +1)2f tidying up
Note how we used the derivative from the previous example, (y/x)' = %x_l/ 2,

Another way to find the same derivative would be to multiply out first:
f(z) = (62°+1)(vVz—3) = 52>z — 152> + Vo — 3 = 52°/% — 1522 + /% — 3.
Then we get the derivative:
fl(z) = 5(%35(5/2)_1) —15(2z%) + %x(lm_l —0 = Bayz 302+ ﬁ
This agrees with our previous answer, multiplied out.

EXAMPLE: Differentiate g(t) = tt\‘}l Solution by the Quotient Rule:
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where we use tv/t = t3/2,
Solution by multiplying out: \/ =t73/2, s0:

g(t) = (t5+1)t_3/2 — {7/2 4 473/2 and g(t) = %t5/2 _ %t1/2.

ExaMPLE: A block of ice has length 10cm, width 5cm, and height 20cm. Its length and
width are melting at a rate of lem per hour, but its height is melting at 2cm per hour
(because the base is sitting on the warm ground). How fast is the volume decreasing?
Solution: The volume is V = fwh cm?, where V, ¢, w, h are all functions of time t. The
rate of change is the derivative. We use the Product Rule twice, considering fwh = (¢)(wh):

% = V' = (twh) = ) (wh)+(£)(wh)" = Cwh+L(w'h+wh') = Cwh+lw'h+lwh'.

We want the melt rate at the current time ¢ = 0, and we are given: £(0) = 10 cm, ¢(0) = —1
cm/hr; and w(0) =5 cm, w'(0) = —1 cm/hr; and A(0) = 20 cm, A'(0) = —2 cm/hr. Thus:

V/(0) = £(0)w(0)h(0) 4 £(0)w (0)h(0) 4 £(0)w(0)A'(0)
= (=1)(5)(20) + (10)(=1)(20) + (10)(5)(—=2) = —400cm3 /hr.



Higher derivatives. Since the derivative operation turns a function f(z) into another
function f'(z), we can do it again to f’(z), obtaining yet another function denoted f”(z) =
(f'(z)) or % =4 (%), called the second derivative of f(x).

In real-world terms, if f/(z) is the rate of change of f(z), then f”(z) is the rate of
change of f/(z), namely how much the rate f'(x) is speeding up or slowing down.

EXAMPLE: A stone falls f(t) = 162 ft in ¢ seconds. Compute the repeated derivatives of
this function, and interpret their physical meaning.

e The first derivative is f/(t) = (16t%) = 16(2t') = 32t ft/sec. This is the velocity
v(t) = f'(t) = 32t ft/sec, increasing proportional to time.

e The second derivative is f”(t) = (32t) = 32, with units ft/sec per sec = ft/sec?.
It means the rate of change of velocity, how many ft/sec of speed is gained each
second. This is the acceleration of the stone, a(t) = f”(t) = 32 ft/sec?, the constant
acceleration due to gravity.

e The third derivative is f”/(t) = (32)" = 0, meaning the rate of change of a constant
acceleration is zero. The physics term for this quantity is the jerk, and since the jerk
here is zero, we see that gravity does not jerk: it pulls smoothly. All higher derivatives
are also zero; these do not have common names.*

iBut look up “Snap, crackle, pop (physics)”.



