
Math 132 Limits Stewart §1.5

Definition of limits. The key technical tool in the previous section was
the idea of a limiting value approached by approximations. We need limits
for all the definitions of calculus, so we must understand them clearly.

Preliminary definition: Consider a function f(x) and numbers L,
a. Then the limit of f(x) equals L as x approaches a, in symbols
limx→a f(x) = L, whenever f(x) can be forced arbitrarily close
to L by making x sufficiently close to (but unequal to) a.

That is, f(x) approximates L to within any desired error tolerance, for all
values of x within some small distance from a (but x 6= a). One more way
to say it: if we make a table of f(x) for any sample values of x getting
closer and closer to a (such as x = a+ 0.1, a+ 0.01, etc.), then the values
of f(x) will get as close as we like to L (though they might never reach L).
Graphically:

Evaluating limits. Some limits are easy because we can plug in x = a
to get the limiting value limx→a f(x) = f(a), in which case we say f(x) is
continuous at x = a. Graphically, as in the above picture, this means the
curve has no jump or hole at (a, f(a)). For example,

lim
x→5

x2 = 52 = 25,

as we could see from the graph of y = x2. Algebraically, if x is close enough
to 5, say x = 5 + h for some small h, then

x2 = (5+h)2 = 52 + 2(5h) + h2 = 25 + 10h + h2,

which is forced as close as we like to L = 25 if h is small enough (positive
or negative).

Sometimes f(x) does not approach any limiting value at x = a, in which
case we say the limit does not exist, and the symbol limx→a f(x) has no
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meaning. For example, define the signum function sgn(x) as:

sgn(x) =
x

|x|
=


+1 for x > 0
−1 for x < 0

undefined for x = 0,

with graph:

Near x = 0, the function cannot be forced close to any single output value.
That is, limx→0 sgn(x) 6= 1, since no matter how close x gets to 0, there
are some x (namely negative) for which sgn(x) is far from 1; and similarly
limx→0 sgn(x) is not −1, nor 0, nor any other value. In particular, it is false
that limx→0 sgn(x) = sgn(0), and the function is not continuous at x = 0.

An important feature of limx→a f(x) is that it does not depend on f(a),
even if f(a) is undefined: the limit only notices values of f(x) for x 6= a.
For example, define g(x) = 1 for x 6= 3, and g(3) = 2, having the graph:

Then limx→3 g(x) = 1, since if x is close enough to (but unequal to) 3, then
g(x) is arbitrarily close to L = 1 (in fact g(x) = L). Again, limx→3 g(x) 6=
g(3) = 2, and g(x) is not continuous at x = 3.

The important limits in calculus, such as instantaneous velocity, are
cases where the function is not defined at x = a. For example, consider
limx→1

x2−1
x−1 . Plugging in x = 1 gives the meaningless expression 0

0 , so this
function is not continuous, but the limit still exists. Indeed, plotting points
gives the graph:

It seems the limit is L = 2: the graph approaches (1, 2), so if x is sufficiently
close to (but not equal to) 1, then f(x) is forced as close as desired to 2. We



can prove this algebraically:

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x−1)(x+1)

x−1
= lim

x→1
x+1 = 1 + 1 = 2,

since x+1 is continuous.

One-sided and infinite limits. We define another type of limit. One-
sided limits (from the right or left) notice only values of x on one side of
a. That is, the limit of f(x) equals L as x approaches a from the right,
denoted limx→a+ f(x) = L, whenever f(x) can be forced arbitrarily close to
L by making x sufficiently close to (but greater than) a. The limit from the
left, denoted limx→a− f(x) = L, is the same, except with x less than a.

If we have the ordinary limit limx→a f(x) = L, then clearly the left
and right limits have the same value L. Thus, in the above examples, we
have limx→5+ x2 = limx→5− x2 = 52, and limx→1+ g(x) = limx→1− g(x) = 0,

and limx→1+
x2−1
x−1 = limx→1−

x2−1
x−1 = 2. However, limx→0+ sgn(x) = 1 and

limx→0− sgn(x) = −1, even though limx→0 sgn(x) does not exist.
Finally, we define infinite limits: limx→a f(x) =∞ means that f(x) can

be forced larger than any bound (for instance f(x) > 1000) by making x
sufficiently close to (but not equal to) a. The symbol ∞ has no meaning
by itself: this is just a way of saying that f(x) becomes as large a number
as we like. For example, we have limx→0

1
|x| = ∞, since 1

tiny = huge, so the

graph y = 1
|x| shoots upward toward the vertical asymptote x = 0.

However, for the function 1
x , we have limx→0

1
x 6= ∞, since no matter how

close x is to 0, we cannot force 1
x above a given positive bound: rather, for

x a tiny negative number, 1
x = 1

−tiny = −huge, a large negative number. In
fact, the graph shoots upward to the right of the vertical asymptote, and
downward to the left of the asymptote, so we have one-sided infinite limits:

lim
x→0−

1

x
= −∞ lim

x→0+

1

x
= ∞



Vertical asymptotes. We determine the asymptotic behavior of:

f(x) =
2x− 4

x2 − 4x + 3
=

2(x−2)

(x−1)(x−3)
.

Given the first form of the function, we immediately factor to see the van-
ishing of the numerator at x = 2 and the denominator at x = 1, 3. (These
x-values are different, so no factors cancel.) The vanishing of the numerator
shows when f(x) = 0, namely at the x-intercept x = 2.

The vanishing of the denominator shows when f(x) becomes huge, namely
near the vertical asymptotes x = 1 and x = 3. To see whether the function
goes up or down near the asymptotes, we keep track of the signs.

For x < 1, we have x−1, x−2, x−3 < 0 all negative:

f(x) =
2(x−2)

(x−1)(x−3)
=

2(−)

(−)(−)
= (−) so lim

x→1−
f(x) = −∞.

For 1 < x < 2, we have x−1 > 0 and x−2, x−3 < 0:

f(x) =
2(x−2)

(x−1)(x−3)
=

2(−)

(+)(−)
= (+) so lim

x→1+
f(x) =∞.

Similarly, lim
x→3−

f(x) = −∞ and lim
x→3+

f(x) =∞. The graph is:

Of course, as for all limits we can approximate by plugging in sample inputs:
for example, f(.9) ≈ −10.5, f(.99) ≈ −100.5, so it seems lim

x→1−
f(x) = −∞.

note: In the slightly different function 2x−2
x2−4x+3

= 2(x−1)
(x−1)(x−3) , both numer-

ator and denominator vanish at x = 1. The (x−1) factors cancel, and the
function has neither an asymptote nor an intercept at x = 1, only a hole in
the graph where f(1) = 0

0 is undefined.


