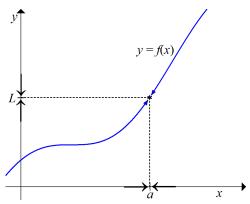
Definition of limits. The key technical tool in the previous section was the idea of a limiting value approached by approximations. We need limits for all the definitions of calculus, so we must understand them clearly.

Preliminary definition: Consider a function f(x) and numbers L, a. Then the limit of f(x) equals L as x approaches a, in symbols $\lim_{x\to a} f(x) = L$, whenever f(x) can be forced arbitrarily close to L by making x sufficiently close to (but unequal to) a.

That is, f(x) approximates L to within any desired error tolerance, for all values of x within some small distance from a (but $x \neq a$). One more way to say it: if we make a table of f(x) for any sample values of x getting closer and closer to x (such as x = x + 0.1, x + 0.01, etc.), then the values of x + 0.01 will get as close as we like to x + 0.01 they might never reach x + 0.01 Graphically:



Evaluating limits. Some limits are easy because we can plug in x = a to get the limiting value $\lim_{x\to a} f(x) = f(a)$, in which case we say f(x) is continuous at x = a. Graphically, as in the above picture, this means the curve has no jump or hole at (a, f(a)). For example,

$$\lim_{x \to 5} x^2 = 5^2 = 25,$$

as we could see from the graph of $y = x^2$. Algebraically, if x is close enough to 5, say x = 5 + h for some small h, then

$$x^2 = (5+h)^2 = 5^2 + 2(5h) + h^2 = 25 + 10h + h^2,$$

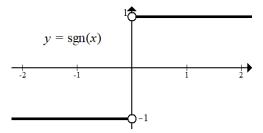
which is forced as close as we like to L=25 if h is small enough (positive or negative).

Sometimes f(x) does not approach any limiting value at x = a, in which case we say the limit *does not exist*, and the symbol $\lim_{x\to a} f(x)$ has no

meaning. For example, define the signum function sgn(x) as:

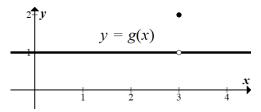
$$\operatorname{sgn}(x) = \frac{x}{|x|} = \begin{cases} +1 & \text{for } x > 0\\ -1 & \text{for } x < 0\\ undefined & \text{for } x = 0, \end{cases}$$

with graph:



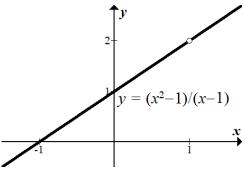
Near x = 0, the function cannot be forced close to any single output value. That is, $\lim_{x\to 0} \operatorname{sgn}(x) \neq 1$, since no matter how close x gets to 0, there are some x (namely negative) for which $\operatorname{sgn}(x)$ is far from 1; and similarly $\lim_{x\to 0} \operatorname{sgn}(x)$ is not -1, nor 0, nor any other value. In particular, it is false that $\lim_{x\to 0} \operatorname{sgn}(x) = \operatorname{sgn}(0)$, and the function is not continuous at x = 0.

An important feature of $\lim_{x\to a} f(x)$ is that it does not depend on f(a), even if f(a) is undefined: the limit only notices values of f(x) for $x \neq a$. For example, define g(x) = 1 for $x \neq 3$, and g(3) = 2, having the graph:



Then $\lim_{x\to 3} g(x) = 1$, since if x is close enough to (but unequal to) 3, then g(x) is arbitrarily close to L = 1 (in fact g(x) = L). Again, $\lim_{x\to 3} g(x) \neq g(3) = 2$, and g(x) is not continuous at x = 3.

The important limits in calculus, such as instantaneous velocity, are cases where the function is not defined at x=a. For example, consider $\lim_{x\to 1}\frac{x^2-1}{x-1}$. Plugging in x=1 gives the meaningless expression $\frac{0}{0}$, so this function is not continuous, but the limit still exists. Indeed, plotting points gives the graph:



It seems the limit is L=2: the graph approaches (1,2), so if x is sufficiently close to (but not equal to) 1, then f(x) is forced as close as desired to 2. We

can prove this algebraically:

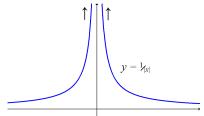
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} x + 1 = 1 + 1 = 2,$$

since x+1 is continuous.

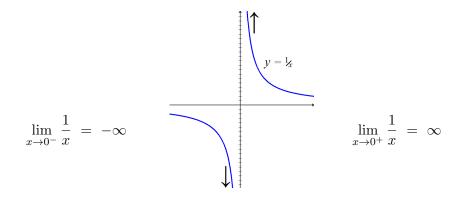
One-sided and infinite limits. We define another type of limit. One-sided limits (from the right or left) notice only values of x on one side of a. That is, the limit of f(x) equals L as x approaches a from the right, denoted $\lim_{x\to a^+} f(x) = L$, whenever f(x) can be forced arbitrarily close to L by making x sufficiently close to (but greater than) a. The limit from the left, denoted $\lim_{x\to a^-} f(x) = L$, is the same, except with x less than a.

If we have the ordinary limit $\lim_{x\to a} f(x) = L$, then clearly the left and right limits have the same value L. Thus, in the above examples, we have $\lim_{x\to 5^+} x^2 = \lim_{x\to 5^-} x^2 = 5^2$, and $\lim_{x\to 1^+} g(x) = \lim_{x\to 1^-} g(x) = 0$, and $\lim_{x\to 1^+} \frac{x^2-1}{x-1} = \lim_{x\to 1^-} \frac{x^2-1}{x-1} = 2$. However, $\lim_{x\to 0^+} \operatorname{sgn}(x) = 1$ and $\lim_{x\to 0^-} \operatorname{sgn}(x) = -1$, even though $\lim_{x\to 0} \operatorname{sgn}(x)$ does not exist.

Finally, we define infinite limits: $\lim_{x\to a} f(x) = \infty$ means that f(x) can be forced larger than any bound (for instance f(x) > 1000) by making x sufficiently close to (but not equal to) a. The symbol ∞ has no meaning by itself: this is just a way of saying that f(x) becomes as large a number as we like. For example, we have $\lim_{x\to 0} \frac{1}{|x|} = \infty$, since $\frac{1}{\text{tiny}} = \text{huge}$, so the graph $y = \frac{1}{|x|}$ shoots upward toward the vertical asymptote x = 0.



However, for the function $\frac{1}{x}$, we have $\lim_{x\to 0} \frac{1}{x} \neq \infty$, since no matter how close x is to 0, we cannot force $\frac{1}{x}$ above a given positive bound: rather, for x a tiny negative number, $\frac{1}{x} = \frac{1}{-\text{tiny}} = -\text{huge}$, a large negative number. In fact, the graph shoots upward to the right of the vertical asymptote, and downward to the left of the asymptote, so we have one-sided infinite limits:



Vertical asymptotes. We determine the asymptotic behavior of:

$$f(x) = \frac{2x-4}{x^2-4x+3} = \frac{2(x-2)}{(x-1)(x-3)}$$
.

Given the first form of the function, we immediately factor to see the vanishing of the numerator at x = 2 and the denominator at x = 1, 3. (These x-values are different, so no factors cancel.) The vanishing of the numerator shows when f(x) = 0, namely at the x-intercept x = 2.

The vanishing of the denominator shows when f(x) becomes huge, namely near the vertical asymptotes x = 1 and x = 3. To see whether the function goes up or down near the asymptotes, we keep track of the signs.

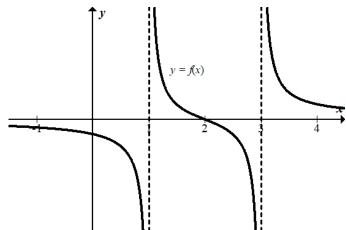
For x < 1, we have x-1, x-2, x-3 < 0 all negative:

$$f(x) = \frac{2(x-2)}{(x-1)(x-3)} = \frac{2(-)}{(-)(-)} = (-)$$
 so $\lim_{x \to 1^{-}} f(x) = -\infty$.

For 1 < x < 2, we have x-1 > 0 and x-2, x-3 < 0:

$$f(x) = \frac{2(x-2)}{(x-1)(x-3)} = \frac{2(-)}{(+)(-)} = (+)$$
 so $\lim_{x \to 1^+} f(x) = \infty$.

Similarly, $\lim_{x\to 3^-} f(x) = -\infty$ and $\lim_{x\to 3^+} f(x) = \infty$. The graph is:



Of course, as for all limits we can approximate by plugging in sample inputs: for example, $f(.9) \approx -10.5$, $f(.99) \approx -100.5$, so it seems $\lim_{x \to 1^{-}} f(x) = -\infty$.

NOTE: In the slightly different function $\frac{2x-2}{x^2-4x+3} = \frac{2(x-1)}{(x-1)(x-3)}$, both numerator and denominator vanish at x=1. The (x-1) factors cancel, and the function has neither an asymptote nor an intercept at x=1, only a hole in the graph where $f(1)=\frac{0}{0}$ is undefined.