
Math 132 Tangent and Velocity Stewart §1.4∗

Instantaneous velocity. We start our study of the derivative with the
velocity problem: If a particle moves along a coordinate line so that at time
t, it is at position f(t), then compute its velocity or speed† at a given instant.

Velocity means distance traveled, divided by time elapsed (e.g. feet per
second). If the velocity changes during the time interval, then this quotient
is the average velocity. From time t = a to t = b, the distance traveled is the
change in position f(b)− f(a), and the time elapsed is b− a, so the average
velocity is:

vavg =
f(b)− f(a)

b− a
.

What do we mean by the instantaneous velocity at time t = a? We
cannot compute this directly, since the particle does not move at all in an
instant. Rather, we find the average velocity from t = a to t = a+h, where
h is a small time increment, and take the instantaneous velocity v to be the
limiting value approached by the average velocities:

v = lim
h→0

f(a+h)− f(a)

h
,

where lim
h→0

means “the limit as h approaches 0” of the quantity on the right.

Another way to say this is that velocity is the rate of change of position
with respect to time: how fast the position f(x) is changing per unit change
in time t. Thus, vavg is the average rate of change over an interval t ∈ [a, b],
while v is the instantaneous rate of change at a particular t = a.

Falling stone example. A stone dropped off a bridge has position approx-
imately f(t) = 16t2 feet below the bridge after falling for t seconds. The
average velocity between t = 3 and t = 4 is:

vavg =
f(4)− f(3)

4− 3
=

16(42)− 16(32)

1
= 112.

That is, the stone has an average velocity of 112 ft/sec, although it starts
slower than this at t = 3 and speeds up steadily throughout the interval.

Now, what is the instantaneous velocity at t = 3? We compute the
average velocity over a short time interval from t = 3 to t = 3 + h, for
example h = 0.1:

vavg =
f(3.1)− f(3)

3.1− 3
=

16(3.12)− 16(32)

0.1
= 97.6 .

∗Notes by Peter Magyar magyar@math.msu.edu, with sections corresponding to James
Stewart’s Calculus, 7th ed.
†Velocity can be positive or negative, depending on the direction of motion. Speed is

the absolute value of velocity.



This is a pretty good estimate of the velocity, but to be more precise we
take shorter intervals:

h 1 0.1 0.01 0.001 0.0001 0.00001

vavg 112 97.6 96.16 96.016 96.0016 96.00016

It is pretty clear that as the interval gets shorter and shorter, the average
velocity approaches the limiting value v = 96, and we define this to be the
instantaneous velocity.

Let us prove this algebraically: instead of trying sample values of the
time increment h, we let h be a variable:

vavg =
f(3+h)− f(3)

(3+h)− 3
=

16(3+h)2 − 16(32)

h
= 16 · (3+h)2 − 32

h

= 16 · (32 + 2(3h) + h2)− 32

h
= 16 · 6h + h2

h
= 16(6 + h) = 96 + 16h .

As we take h smaller and smaller, the error term 16h approaches zero, and
the average velocity approaches the limiting value 96, which by definition is
the instantaneous velocity:

v = lim
h→0

f(3+h)− f(3)

h
= 96 .

Tangent Slope. We have described velocity on three conceptual levels: as a
physical quantity, a numerical approximation, and an algebraic computation.
Velocity also has a geometric meaning in terms of the graph y = f(t).
Consider a secant line which cuts the graph at points (a, f(a)) and (b, f(b)).

The slope msec of the secant line is the rise in the graph per unit of
horizontal run, which means distance traversed divided by time elapsed,
which is the average velocity:

msec =
f(b)− f(a)

b− a
= vavg .



The reason for this coincidence is that slope is the rate of vertical rise with
respect to horizontal run, just as velocity is the rate of change of position
(drawn on the vertical axis) with respect to time (on the horizontal axis).

As we move the point (b, f(b)) to (a+h, f(a+h)), closer and closer to a,
the secant lines approach the tangent line which touches the curve at the
single point (a, f(a)).

The tangent slope m is the limit of the secant slopes, so it is equal to
the instantaneous velocity:

m = lim
h→0

f(a+h)− f(a)

h
= v .

Trig Function Example: We model average daily temperature through
the year by the sinusoidal function:

T (x) = 55− 40 cos( 2π
365x) degrees F on day x.

How quickly is the weather warming at x = 100 (April 10), in degrees/day?
We can only approximate the instantaneous rate of change r by looking at
average rates near the given x = 100, for example over x ∈ [100, 110]:

r1 =
T (110)− T (100)

110− 100
=

(55−40 cos( 2π
365110))− (55−40 cos( 2π

365100))

10
≈ 0.668

Or over x ∈ [90, 100], giving r2 = 0.686. We can get a better approximation
for r by averaging the underestimate and the overestimate:

r ≈ 1
2(r1 + r2) = 0.677 .

Of course, the accuracy of this model is way less than 3 decimal places, so
we should say the model predicts warming of about 0.7 degree F per day.


