Name: _

Section: ____

Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. Fill-in-the-Blank. No work needed. No partial credit available

Identify the following quadric surfaces from the list: Cylinder, Elliptical Cone, Elliptical Paraboloid, Ellipsoid, Hyperbolic Paraboloid, Hyperboloid of 1 sheet, Hyperboloid of 2 sheets.

(a)	(2 points)	Elliptical Cone	describes $z^2 + y^2 = \frac{x^2}{4}$.
(b)	(2 points)	Ellipsoid	describes $z^2 + \frac{y^2}{100} + x^2 = 3.$
(c)	(2 points)	Hyperboloid of 1 sheet	describes $x^2 + y^2 - z^2 = 5$.

Extra Work Space.

2. (a) (2 points) Find a vector function for the curve of intersection between the cylinder $x^2 + y^2 = 4$ and the plane x + y + z = 4. Remember to include bounds for t.

Solution: From Calc 2 we know $x = 2\cos t$ and $y = 2\sin t$ well satisfy $x^2 + y^2 = 4$. Plugging these parametrizations into x + y + z = 4 we can solve for z.

$$x + y + z = 4$$

$$2\cos t + 2\sin t + z = 4$$

$$z = 4 - 2\cos t - 2\sin t$$

Giving us the final solution $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, 4 - 2\cos t - 2\sin t \rangle$

(b) (2 points) Find the derivative of the vector function at $t = \pi$.

Solution:

$$\mathbf{r}(t) = \langle 2\cos t, 2\sin t, 4 - 2\cos t - 2\sin t \rangle$$
$$\mathbf{r}'(t) = \langle -2\sin t, 2\cos t, 2\sin t - 2\cos t \rangle$$
$$\mathbf{r}'(\pi) = \boxed{\langle 0, -2, 2 \rangle}$$