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Abstract. First-kind Volterra problems arise in numerous applications, from inverse problems
in mathematical biology to inverse heat conduction problems. Unfortunately, such problems are also
ill-posed due to lack of continuous dependence of solutions on data. Consequently, numerical methods
to solve first-kind Volterra equations are only effective when regularizing features are built into the
algorithms or used to control stepsize. Classical methods often combine numerical discretization with
Tikhonov regularization, but in doing so the underlying Volterra (or causal) nature of the original
problem is often destroyed. Instead, a “predictor-corrector” type of numerical method is proposed
which combines at each step “local regularization” ideas with the use of small intervals of future
data. The result is a regularized numerical method which retains much of the causal nature of the
Volterra problem and may be solved in fast sequential steps, often improving upon the performance
of classical algorithms such as those based on standard Tikhonov regularization.

In this paper, the discretized local regularization method is described and proofs are given of
convergence of the method, with rate of convergence being “best possible” with regard to the amount
of error in the data. Further, by linking the regularization parameter of the stabilizing method (i.e.,
the length of the “future interval” in the future-sequential method) to the approximation stepsize,
great simplification of the resulting numerical algorithm is obtained. Relevant numerical examples
are included.
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1. Introduction. We consider here the solution of a first-kind Volterra integral
equation of the form ∫ t

0

k(t− s)u(s) ds = f(t), t ∈ (0, 1], (1.1)

where we assume that given data f and convolution kernel k = k(t) are such that a
unique solution u of (1.1) exists in L2(0, 1); very general conditions guaranteeing such
existence/uniqueness may be found, for example, in [6]. Although we only consider
scalar equations here, there is no difficulty in extending our ideas to a vector version
of (1.1).

First-kind Volterra equations of this type occur naturally in many applications, a
classic example being the inverse heat conduction problem (IHCP) or sideways heat
equation, the problem of determining from internal temperature or temperature-flux
measurements the unknown heat (or heat flux) source which is being applied at the
surface of a solid [1]. Unfortunately, first-kind integral equations of the form (1.1)
are well-known to be ill-posed in the sense that solutions are unstable with respect to
L2(0, 1) (or L∞(0, 1)) perturbations fε in the data f . In fact, the Volterra integral

equation associated with the IHCP is so severely ill-posed that closeness of
dj

dtj
fε to

dj

dtj
f for j = 0, . . . , p, still does not guarantee the corresponding closeness of uε to

u, a fact which holds for any p > 0.
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The extreme instability of the IHCP is due to the fact that the kernel k for this
problem belongs to C∞[0, 1] and satisfies k(n)(0) = 0 for all n = 1, 2, . . .. The situation
improves somewhat if the kernel does not degenerate so badly at t = 0, although the
underlying problem is still unstable. We shall say that k is “ν-smoothing” if there
exists an integer ν > 0 such that k ∈ Hν(0, 1) and k(0) = k′(0) = . . . = k(ν−2)(0) = 0,
k(ν−1)(0) 6= 0. It is known that for such finitely-smoothing problems the degree
of instability associated with solving (1.1) increases as the degree ν of smoothing
increases (see, for example, [4, 10]). So long as ν is finite, the resulting instability is
never as severe as it is for problems such as the IHCP, but in fact even with ν small
(e.g., problems with ν = 1 or 2 arise in mathematical biology [3, 6, 15] and many other
fields), the problem is sufficiently unstable as to require regularization techniques in
order to compute reasonably accurate solutions.

Stabilizing the solution of the integral equation (1.1) in the presence of noisy data
may be handled via a classical technique such as Tikhonov regularization [7], where
(for example) one seeks to determine the solution uε

α of the problem

min
u∈L2(0,1)

∫ 1

0

∣∣∣∣∫ t

0

k(t− s)u(s) ds− fε(t)
∣∣∣∣2dt + α

∫ 1

0

|u(t)|2dt

where α is a “regularization parameter” and fε = f(t) + δ(t) is given in L2(0, 1) with
‖δ(·)‖ < ε (here ‖·‖ denotes the L2(0, 1) norm). From the standard theory of Tikhonov
regularization, one obtains a criterion for selecting α = α(ε) which guarantees that
α(ε) → 0 and ‖uε

α(ε) − u‖ → 0 as ε → 0, where u denotes the solution of the original
unperturbed problem.

However, a distinct drawback of Tikhonov regularization for a first-kind Volterra
problem lies in the fact that the normal equation (i.e., necessary condition for the
minimization problem) associated with Tikhonov regularization is non-Volterra, or
noncausal, in structure, even though the original equation (1.1) has Volterra, or
causal, structure. As a consequence, while numerical methods to solve equation (1.1)
can be devised which involve simple, lower-triangular matrices and fast, sequential
techniques, numerical methods to solve the equations associated with Tikhonov regu-
larization generally involve full matrices and more expensive non-sequential solution
techniques. Even in the case where a transformation is made to restore to the regu-
larized problem the lower-triangular structure of the original problem (e.g., [5]), the
transformation still necessitates the use of all of the data at every time-step of the
algorithm, a property which again illustrates how the causal nature of the original
problem has been lost in the process.

In [8] a general “future-sequential” regularization theory is described which en-
ables the stable solution of (1.1) but which also has the advantage of being structure-
preserving in the sense that most of the basic causal properties associated with the
underlying Volterra equation are preserved. Although this method is a generalization
of an extremely simple and effective discretization method used by J. V. Beck for the
stable solution of the IHCP, in its most general form our ideas depart significantly
from those of Beck. Nevertheless, the convergence theory described in the next sec-
tion does apply to the method used by Beck (for 1-smoothing problems) and thus we
provide the first proof of convergence of Beck’s method in this case.

In order to describe our more general approach here, we first let T > 1 be fixed
and make the assumption that equation (1.1) actually holds on the interval (0, T ],
with u, k, f , and fε defined on this extended interval as well; as is discussed in [8],
this assumption is made to simplify the presentation and may actually be avoided via
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slight changes in the theory of that reference. Let ∆R > 0 be a fixed constant with
1 + ∆R ≤ T , and define the regularization parameter for the method by ∆r, where
0 < ∆r ≤ ∆R.

The idea behind future-sequential regularization is this. We know that the “true”
solution u of (1.1) must satisfy the advanced-in-time equation∫ t+ρ

0

k(t + ρ− s)u(s) ds = f(t + ρ), t ∈ (0, 1], ρ ∈ [0,∆r].

In order to regularize the solution of this problem in the presence of perturbed data,
we fix t for the moment and assume that a reasonable solution has already been
obtained on [0, t]; we then seek to find a solution on the interval [t, t + ∆r], asking
that the solution be “regular” in some sense on that interval. For example, one may
seek a solution which is actually constant-valued on that interval, the value of the
constant being given by that ct ∈ R for which the integral is matched locally to data
in a least-squares sense over the interval [t, t + ∆r]; i.e., ct is defined by

ct = arg min
c∈R

∫ ∆r

0

∣∣∣∣∫ t

0

k(t+ρ−s)u(s) ds + c

∫ t+ρ

t

k(t+ρ−s) ds− f(t+ρ)
∣∣∣∣2 dρ.

(1.2)
But in fact we do not a priori know the solution on [0, t] for any t ∈ (0, 1], so we instead
use the above idea to motivate our general approach. That is, we now let t ∈ (0, 1]
be arbitrary and seek a function u such that u(t) = ct for every t ∈ (0, 1], with ct

given by (1.2). The normal equation associated with the t-dependent minimization
problem in (1.2) is given as follows, where we have identified u(t) with ct and reversed
an order of integration:∫ t

0

∫ ∆r

0

k(t+ ρ− s)
(∫ ρ

0

k(ρ−τ) dτ

)
dρ u(s) ds + u(t)

∫ ∆r

0

(∫ ρ

0

k(ρ−τ) dτ

)2

dρ

=
∫ ∆r

0

f(t+ρ)
(∫ ρ

0

k(ρ−τ) dτ

)
dρ, (1.3)

a second-kind equation which may be generalized as follows,∫ t

0

k̃(t− s;∆r)u(s) ds + α(∆r)u(t) = f̃(t;∆r), (1.4)

where

k̃(t;∆r) =
∫ ∆r

0

k(t + ρ) dη∆r
(ρ)

α(∆r) =
∫ ∆r

0

∫ ρ

0

k(ρ− τ)dτ dη∆r
(ρ) (1.5)

f̃(t;∆r) =
∫ ∆r

0

f(t + ρ) dη∆r
(ρ)

and η∆r
is a positive Borel-Stieltjes measure on the Borel subsets of R, with∫∆r

0
(·) dη∆r

(ρ) a Stieltjes integral. In this paper the primary focus will be on two
special cases of η∆r

:
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(i) We consider the case of η∆r
a density, defined via∫ ∆r

0

φ(ρ) dη∆r
(ρ) =

∫ ∆r

0

φ(ρ) ω(ρ) dρ, (1.6)

for φ ∈ C[0,∆r] and ω ∈ L∞[0,∆r], ω(ρ) ≥ ω
min

> 0 for all ρ ∈ [0,∆r]. We note that
for the particular choice ω(ρ) =

∫ ρ

0
k(ρ− τ) dτ , approximating equation (1.4) reduces

to (1.3), the equation generated by the localized least-squares fitting described above.
(ii) We also consider the example of η∆r

a discrete measure, defined by

η∆r
=

K∑
i=1

si δτi∆r
, (1.7)

where K = K(∆r) ≥ 2 is an integer, si > 0 for i = 1, . . . ,K, and 0 ≡ τ1 < τ2 < . . . <
τ

K
≡ 1; here we use the notation δt̂ to denote the usual delta-function centered at

t̂ ∈ [0,∆r]. Depending on the choice of si and τi, the discrete measure may correspond
to a localized discrete least-squares criterion (matching to K discrete present and
future values of data f in the interval [t, t + ∆r] ) for every t ∈ [0, 1]. This particular
formulation will be especially useful when we look at a numerical method for solving
(1.4) and coordinate the numerical grid for the computations with the values of the
parameters τi.

In [8, 10], general conditions on k, u, η∆r
, and ν are given which guarantee the

existence and uniqueness of a solution u(·;∆r) of (1.4) and ensure the convergence of
u(·;∆r) to the solution u of (1.1) as ∆r → 0 (in the case of noise-free data). Further,
because (1.4) is a second-kind Volterra equation, its solution is stable with respect to
perturbations in the data f . Therefore a statement of regularized approximation is
obtained as follows: defining u(·;∆r, f

ε) to be the solution of (1.4) associated with an
ε-perturbation fε of f , there exists a choice of ∆r = ∆r(ε) such that ∆r(ε) → 0 and
u(·;∆r(ε), fε) converges in L2(0, 1) to the solution u(·; f) of (1.1) as the noise level
ε → 0 [8, 10]. Again these results are obtained under prescribed conditions on k, u,
η∆r

, and ν.
The convergence/stabilization theory described above for future-sequential regu-

larization has been developed in [8, 10] in an infinite-dimensional setting. The central
purpose of this paper is to provide a similar analysis of (1.4) in a finite-dimensional
setting, where the resulting numerical algorithm exhibits an interesting “predictor-
corrector” type of regularization. In the next section we set up the finite-dimensional
algorithm and prove convergence of the algorithm for η∆r

given by (1.6) or (1.7). Fi-
nally, in §3 we describe the way in which the numerical algorithm becomes a predictor-
corrector regularization algorithm, presenting there our numerical findings.

2. Finite-Dimensional Approximation. Finite-dimensional approximations
are always regularizing in the sense that an unstable infinite-dimensional inverse prob-
lem is transformed into a stable finite-dimensional inverse problem, with degree of
stability worsening as the dimension of the finite-dimensional approximation space
increases. Thus we may always attempt to regularize the first-kind integral equation
(1.1) via finite-dimensional approximation. When such an approximation converges,
it does so as the approximation stepsize and the level ε of noise in the perturbed data
fε decreases, so that the discretization parameter or approximation stepsize (defined
below to be ∆t) plays the role of a “regularization parameter”. Generally, we must
let ∆t → 0 slowly as ε → 0 and it is this “holding-back” of ∆t which performs the
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regularization. Unfortunately, in many situations the size of ∆t = ∆t(ε) which is
necessitated by the level ε of noise is unacceptably large, with the result that one
is forced to accept crude approximations from finite-dimensional spaces of very low
dimension in order to avoid the highly oscillatory approximations which result from
data or computational error. In contrast, discretization of (1.4) leads to a method
which, from all numerical evidence and from a related conditioning analysis [11], al-
lows for the stable approximation of u using much smaller stepsize than does a method
based on direct discretization of (1.1).

In this section we examine the convergence properties of collocation-based approx-
imations of solutions u(·;∆r) of (1.4), showing that a selection of ∆r = ∆r(ε) and
∆t = ∆t(ε) may be made ensuring that approximations u∆t(ε)(·;∆r(ε)) converge to
u as ε → 0. The theory we develop is limited to integral equations with 1-smoothing
kernels, although (as numerical results later show) convergence appears to obtain
for general ν-smoothing problems as well, and even to infinitely smoothing problems
like the IHCP [1]. Since 1-smoothing first-kind integral equations become well-posed
second-kind equations after a single differentiation of the equation (provided that the
data is smooth), the discretized analog of the first-kind equation may be analyzed
similarly via differencing instead of differentiation; this is the approach taken here,
following [2]. However, we do not make the stringent assumption that the perturbed
data fε is smooth enough to allow differentiation, so we depart significantly from [2]
in our treatment of fε and additionally in the presence of a regularization parameter
∆r which enters into every term in (1.4).

Throughout this section we will make the following assumptions regarding k, u
and perturbed data fε:

Hypothesis 2.1: Let u, k ∈ W 1,∞(0, T ). In addition, let k be 1-
smoothing and such that α(∆r) defined by (1.5) satisfies α(∆r) > 0
for all ∆r ∈ (0,∆R] (conditions which are satisfied if k > 0 on
[0,∆R]). Further, let fε(t) = f(t)+δ(t), where δ ∈ L∞(0, T ) satisfies
‖δ‖∞ ≤ ε for some fixed ε > 0 and where

∫∆r

0
δ(t + ρ) dη∆r

(ρ) is well
defined for all t ∈ (0, 1) and all ∆r ∈ (0,∆R]; here ‖ · ‖∞ denotes the
L∞(0, T ) norm.

In order to implement a discretized approximation of the solution u(·;∆r; fε) of (1.4),
we let N = 1, 2, . . . be fixed and define a gridsize ∆t = 1/N with equally-spaced
gridpoints on [0, 1], tj ≡ j∆t, j = 0, 1, . . . , N . It will also be convenient to extend the
gridpoints past the interval [0, 1] by defining tj in the same way for j = N+1, N+2, . . ..
We define piecewise-constant approximation spaces of the form S−1

∆t = span{φj}N−1
j=0 ,

where φj(t) = 1 on the interval (tj , tj+1], φj(t) = 0 otherwise on [0, 1]. We then seek
u∆t

(·;∆r; fε) ∈ S−1
∆t which exactly matches, or collocates, the regularized equation

(1.4) (with fε in place of f) to N collocation points tj , for j = 1, 2, . . . , N . Writing

u∆t
(t;∆r; fε) =

N−1∑
j=0

αjφj(t), t ∈ [0, 1],

the collocation procedure leads to linear equations in the basis coefficients αj which
are especially simple if we assume that the “future” interval ∆r is exactly proportional
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to gridsize; we henceforth make this assumption and define

∆r = (r − 1)∆t,

where r ≥ 2 is a fixed integer.
If equation (1.4) is to be exactly satisfied at tj+1 for j = 0, . . . , N−1, the equation

in αj then becomes

α(∆r) αj +
∫ tj+1

0

k̃(tj+1 − s;∆r)

(
j∑

µ=0

αµφµ(s)

)
ds

=
∫ ∆r

0

fε(tj+1 + ρ) dη∆r
(ρ), j = 0, . . . , N − 1, (2.1)

a lower-triangular linear system in (α0, . . . , αN−1)> for which the governing matrix has
nonzero diagonal (for ∆t sufficiently small), guaranteeing existence and uniqueness
of a solution u∆t

(·;∆r; fε) ∈ S−1
∆t of (2.1) for all small ∆t. We note that piecewise-

polynomial spaces more general than S−1
∆t may be used in this collocation proce-

dure, however piecewise-constant functions are ideally suited as approximations for a
method which regularizes by temporarily holding solutions constant over the interval
[t, t+∆r] (as was discussed in motivating the future-sequential regularization method
in §1).

We consider the question of convergence for the above approximation scheme,
beginning with the case of η∆r

satisfying (1.6) and then turning to the case of discrete
η∆r

given by (1.7). We note that under the conditions of the theorem, we obtain an
O(ε1/2) rate of convergence as the level ε of error in data goes to zero, which is the
best possible rate of convergence with respect to ε that one can expect in the case of
a 1-smoothing kernel k, u ∈ H1(0, 1), and for error in data measured in an L2(0, 1)
sense, conditions which hold in the theorems of this section (see, e.g., [13, 14] for a
discussion of “best possible” convergence rates for ill-posed problems, and [10] for a
discussion of 1-smoothing Volterra problems).

Theorem 2.1. Assume k, u, and f ε satisfy Hypothesis 2.1 for ε > 0, and let
∆r = (r − 1)∆t, where r ≥ 2 is a fixed integer and ∆t > 0. Suppose further that η∆r

is defined via ∫ ∆r

0

φ(ρ) dη∆r
(ρ) =

∫ ∆r

0

φ(ρ) ω(ρ) dρ, φ ∈ C[0,∆r],

where ω ∈ L∞[0,∆r] and ω(ρ) ≥ ω
min

> 0 for all ρ ∈ [0,∆r] and all ∆r ∈ [0,∆R],
and that u∆t

(·;∆r, f
ε) denotes the solution of (2.1) associated with η∆r

and perturbed
data fε.

Then if ∆t = c
√

ε, for any c > 0, convergence of approximations u∆t(t;∆r, f
ε)

to the true solution u(t) occurs at collocation points as ε → 0, with best possible rate
with regard to ε; i.e.,

|u∆t(tj ;∆r, f
ε)− u(tj)| ≤ ε1/2C(r) +O(ε), for j = 1, . . . , N(ε),

as ε → 0, where C(r) is a positive constant and N(ε) = 1/∆t(ε).
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Proof. Subtracting (2.1), evaluated at tj , j = 1, . . . , N , from the same equation
evaluated at tj+1 yields the differenced equation

α(∆r) αj +
∫ tj+1

tj

k̃(tj+1 − s;∆r)αjφj(s) ds (2.2)

=
∫ ∆r

0

[fε(tj+1 + ρ)− fε(tj + ρ)] dη∆r
(ρ)

−
j−1∑
µ=0

∫ tµ+1

tµ

(
k̃(tj+1 − s;∆r)− k̃(tj − s;∆r)

)
αµφµ(s) ds + α(∆r) αj−1,

valid for j = 1, . . . , N−1. But for ∆r ∈ (0,∆R], the true solution u of equation (1.1)
satisfies∫ ∆r

0

(∫ t+ρ

0

k(t + ρ− s)u(s) ds

)
dη∆r

(ρ) =
∫ ∆r

0

f(t + ρ) dη∆r
(ρ), t ∈ (0, 1],

or, splitting the inner integral at t in the first term and switching the order of inte-
gration, ∫ t

0

k̃(t− s;∆r)u(s) ds +
∫ ∆r

0

(∫ ρ

0

k(ρ− s)u(t + s) ds

)
dη∆r

(ρ)

=
∫ ∆r

0

f(t + ρ) dη∆r
(ρ), t ∈ (0, 1]. (2.3)

We evaluate (2.3) at t = tj for j = 1, . . . , N , and subtract this from the same equation
evaluated at tj+1; subtracting the resulting differenced equation in u from (2.2), one
obtains

α(∆r)[u(tj+1)− αj ] +
∫ tj+1

tj

k̃(tj+1 − s;∆r)[u(s)− αjφj(s)] ds

= −
∫ ∆r

0

[δ(tj+1 + ρ)− δ(tj + ρ)] dη∆r
(ρ)

−
j−1∑
µ=0

∫ tµ+1

tµ

(
k̃(tj+1 − s;∆r)− k̃(tj − s;∆r)

)
[u(s)− αµφµ(s)] ds

+ α(∆r) [u(tj)− αj−1] (2.4)

−

{∫ ∆r

0

∫ ρ

0

k(ρ− s)[u(tj+1+s)−u(tj+1)] ds dη∆r
(ρ)

−
∫ ∆r

0

∫ ρ

0

k(ρ− s)[u(tj +s)−u(tj)] ds dη∆r
(ρ)

}
.

Using a Taylor expansion, we write u(t)− αjφj(t) = ∆t

[
βj +

(t− tj+1)
∆t

u′(zj(t))
]

for

t ∈ (tj , tj+1], j = 0, 1, . . . , N −1, where βj =
u(tj+1)− αj

∆t
and zj(t) ∈ (t, tj+1). Then
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(2.4) becomes

βjα(∆r) +
∫ tj+1

tj

k̃(tj+1 − s;∆r)
[
βj +

(s− tj+1)
∆t

u′(zj(s))
]

ds

= − 1
∆t

∫ ∆r

0

[δ(tj+1 + ρ)− δ(tj + ρ)] dη∆r
(ρ)

−
j−1∑
µ=0

∫ tµ+1

tµ

[
k̃(tj+1 − s;∆r)− k̃(tj − s;∆r)

] [
βµ +

(s− tµ+1)
∆t

u′(zµ(s))
]

ds

+ βj−1α(∆r) (2.5)

− 1
∆t

{∫ ∆r

0

∫ ρ

0

k(ρ− s)[u(tj+1 + s)− u(tj+1)] ds dη∆r
(ρ)

−
∫ ∆r

0

∫ ρ

0

k(ρ− s)[u(tj + s)− u(tj)] ds dη∆r
(ρ)

}
.

But, making the change of variable s → s/∆t in α(∆r) ≡
∫∆r

0

∫ ρ

0
k(ρ− s) ds dη∆r

(ρ),
and making the changes of variable in (2.5) of s → (s− tj)/∆t and s → (s− tµ)/∆t
(for appropriate j and µ), we have

βj = W (r, ∆t)βj−1 − ∆t

j−1∑
µ=0

Vj,µ(r, ∆t)βµ (2.6)

− 1
∆t2

Ej(ε, r, ∆t)− Zj(r, ∆t), j = 1, . . . , N − 1,

where, for appropriate ξ-variables,

W (r, ∆t) =

∫∆r

0

∫ ρ/∆t

0
k(ρ− s∆t) ds dη∆r

(ρ)
d(r, ∆t)

, (2.7)

Vj,µ(r, ∆t) =

∫ 1

0

∫∆r

0
k′(ξj,µ,∆t(s, ρ)) dη∆r

(ρ) ds

d(r, ∆t)
, (2.8)

Ej(ε, r,∆t) =

∫∆r

0
[δ(tj+1 + ρ)− δ(tj + ρ)] dη∆r

(ρ)
d(r, ∆t)

, (2.9)

Zj(r, ∆t) =
rj(r, ∆t)
d(r, ∆t)

, (2.10)
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for j = 1, . . . , N − 1, µ = 0, . . . , j − 1, and

d(r, ∆t) =
∫ ∆r

0

∫ ρ/∆t

0

k(ρ− s∆t) ds dη∆r
(ρ) +

∫ 1

0

∫ ∆r

0

k((1− s)∆t + ρ) dη∆r
(ρ) ds,

rj(r, ∆t) =
∫ ∆r

0

∫ ρ/∆t

0

k(ρ− s∆t)u′(ξj,∆t(s)) ds dη∆r
(ρ)

−
∫ ∆r

0

∫ ρ/∆t

0

k(ρ− s∆t)u′(ξj(s)) ds dη∆r
(ρ)

+∆t

j−1∑
µ=0

∫ 1

0

∫ ∆r

0

k′(ξj,µ,∆t(s, ρ)) dη∆r
(ρ)(s− 1)u′(zµ(tµ + s∆t)) ds

+
∫ 1

0

∫ ∆r

0

k((1− s)∆t + ρ) dη∆r
(ρ)(s− 1)u′(zj(tj + s∆t)) ds.

If we repeat the above steps for the collocation equation at t1, a similar equation
is obtained for β0,

β0 = − 1
∆t2

E0(ε, r,∆t)− Z0(r, ∆t), (2.11)

where

E0(ε, r,∆t) =

∫∆r

0
δ(t1 + ρ) dη∆r

(ρ)
d(r, ∆t)

, (2.12)

Z0(r, ∆t) =
r0(r, ∆t)
d(r, ∆t)

, (2.13)

and where r0 is defined for appropriate ξ1,∆t(·) by

r0(r, ∆t) =
∫ 1

0

∫ ∆r

0

k((1− s)∆t + ρ) dη∆r
(ρ)(s− 1)u′(z0(s∆t)) ds

+
∫ ∆r

0

∫ ρ/∆t

0

k(ρ− s∆t)u′(ξ1,∆t(s)) s ds dη∆r
(ρ).

We claim that, if certain uniform (in ∆t) bounds can be obtained, namely,

|W (r, ∆t)| ≤ w(r), (2.14)
|Vj,µ(r, ∆t)| ≤ v(r), j = 1, . . . , N−1; µ = 0, . . . , j−1, (2.15)
|Ej(ε, r, ∆t)| ≤ e(r)ε, j = 0, . . . , N−1, (2.16)
|Zj(r, ∆t)| ≤ z(r), j = 0, . . . , N−1, (2.17)

where v(r), z(r), and e(r) are nonnegative and 0 ≤ w(r) < 1, then the results of the
theorem are true. Indeed, an induction argument may be used in this case to argue
that |βj | ≤ Bj for j = 0, . . . , N−1, where

B0 =
1

∆t2
e(r)ε + z(r),

Bj = w(r)Bj−1 + ∆t v(r)
j−1∑
µ=0

Bµ +
1

∆t2
e(r)ε + z(r), j = 1, . . . , N−1, (2.18)
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and where each coefficient above is bounded in the limit as ε → 0 provided ∆t =
∆t(ε) is selected such that ∆t(ε) → 0 and e(r)ε/∆t(ε)2 remains bounded as ε → 0.
Simplifying (2.18) one obtains a second order difference equation in Bj ,

B0 =
1

∆t2
e(r)ε + z(r),

B1 = (w(r) + ∆t v(r))B0 +
1

∆t2
e(r)ε + z(r),

Bj = (1 + w(r) + ∆t v(r))Bj−1 − w(r)Bj−2, j = 2, . . . , N−1,

so that the theory of difference equations may be used to obtain

|βj | ≤ C1(ε, r,∆t) [τ1(r, ∆t)]j + C2(ε, r, ∆t) [τ2(r, ∆t)]j ,

for j = 0, . . . , N−1, where

τ1(r, ∆t) = 1 + ∆t
v(r)

1− w(r)
+O(∆t2),

τ2(r, ∆t) = w(r)
(

1−∆t
v(r)

1− w(r)

)
+O(∆t2),

C1(ε, r,∆t) =
z(r) + e(r)ε/∆t2

1− w(r)
+O(∆t), (2.19)

C2(ε, r,∆t) = −w(r)
z(r) + e(r)ε/∆t2

1− w(r)
+O(∆t).

Thus

|βj | ≤ 2 C1(ε, r,∆t) exp
(

2v(r)
1− w(r)

)
, j = 0, . . . , N−1,

for ∆t sufficiently small. Using the definition of βj we thus have the error estimate

|αj − u(tj+1)| ≤ 2 ∆t C1(ε, r,∆t) exp
(

2v(r)
1− w(r)

)
, j = 0, . . . , N−1, (2.20)

for ∆t sufficiently small, where αj = u∆t(tj+1;∆r, f
ε). Thus, if we can show that

the bounds in (2.14)–(2.17) hold for η∆r
given by the statement of the theorem, the

convergence estimate (2.20) then holds when ∆t = c
√

ε.

To verify (2.14)–(2.17), we substitute the representation of η∆r
(as a density) into

(2.7) and make a change of integration variable to obtain

W (r, ∆t) =

∫ r−1

0

∫ ρ

0
k((ρ− s)∆t) ds ω(ρ∆t) dρ∫ r−1

0

∫ ρ

0
k((ρ− s)∆t) ds ω(ρ∆t) dρ +

∫ 1

0

∫ r−1

0
k((ρ + 1− s)∆t)ω(ρ∆t) dρ ds

so that W (r, ∆t) ≤ w(r) where

w(r) =
‖k‖ ‖ω‖(r − 1)

2k
min

ω
min

+ ‖k‖ ‖ω‖(r − 1)

(for simplicity in what follows, we will use ‖ · ‖ ≡ ‖ · ‖∞ throughout). Making similar
changes of integration variable in quantities in (2.8)–(2.10) and (2.12)–(2.13), we
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calculate

v(r) =
2‖k′‖ ‖ω‖

k
min

ω
min

(r + 1)
,

e(r) =
4‖ω‖

k
min

ω
min

(r + 1)
,

z(r) =
‖u′‖ ‖ω‖

k
min

ω
min

(r + 1)
(3‖k‖(r − 1)2 + ‖k′‖),

where k
min

≡ inf{ k(t) : t ∈ [0, T ] } > 0. Since 0 < w(r) < 1 for r ≥ 1, we have shown
that the needed bounds in (2.14)–(2.17) hold in the case of η∆r

a density, and thus
the proof of the theorem is complete.

In the the proof of the last theorem we obtained sufficient conditions for conver-
gence of the approximation method, and we state these here as a corollary.

Corollary 2.2. Assume u, k, and fε satisfy Hypothesis 2.1, for ε > 0. Let
∆r = (r − 1)∆t for some fixed integer r ≥ 2 and assume that ∆t-independent bounds
exist for the quantities defined in (2.7)–(2.10), (2.12)–(2.13), namely

|W (r, ∆t)| ≤ w(r)
|Vj,µ(r, ∆t)| ≤ v(r), j = 1, . . . , N−1; µ = 0, . . . , j−1
|Ej(ε, r,∆t)| ≤ e(r)ε, j = 0, . . . , N−1,

|Zj(r, ∆t)| ≤ z(r), j = 0, . . . , N−1,

where v(r), z(r), and e(r) are nonnegative and 0 ≤ w(r) < 1. Then, if ∆t = ∆t(ε)
is selected such that ∆t(ε) → 0 and such that e(r)ε/∆t(ε)2 remains bounded as
ε → 0, then there exists C1 = C1(ε, r,∆t) (given by (2.19)) such that the solution
u∆t

(·;∆r; fε) of the discretized future-sequential equations associated with perturbed
data fε satisfies

|u∆t
(tj ;∆r, f

ε)− u(tj)| ≤ 2 ∆t(ε) C1(ε, r,∆t(ε)) exp
(

2v(r)
1− w(r)

)
, j = 1, . . . , N,

for ∆t sufficiently small. In particular, the choice ∆t = c
√

ε for any c > 0 yields

|u∆t(tj ;∆r, f
ε)− u(tj)| ≤ ε1/2C(r) +O(ε), for j = 1, . . . , N(ε),

where N(ε) = 1/∆t(ε) and C(r) is a positive constant.

We turn now to a consideration of the discrete measure η∆r
given by (1.7), and

additionally allow the possibility of r = 1 (defining in this case K(1) = 1 and η∆r
=

s1 δ0 for some s1 > 0); thus r = 1 implies ∆r = 0 (no future interval) and that (1.4)
in this case is equivalent to collocation of the original problem (1.1).

Theorem 2.3. Assume u, k, and fε satisfy Hypothesis 2.1 for ε > 0, and let
∆r = (r − 1)∆t, where r ≥ 1 is a fixed integer and ∆t > 0. Assume further that η∆r

is given by

η∆r
=

K(r)∑
i=1

siδτi∆r

where K(r) is an integer (K(r) ≥ 2 for r ≥ 2, si = si(r) > 0 and 0 ≡ τ1 < τ2 <
. . . < τK ≡ 1, τi = τi(r), while for r = 1 we assume K(1) = 1, s1 > 0, and τ1 = 0 ).
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Then if ∆t = c
√

ε for any constant c > 0, we have convergence of approximations
u∆t

(t;∆r, f
ε) to the true solution u(t) at collocation points as ε → 0, with best possible

rate with respect to ε; i.e.,

|u∆t
(tj ;∆r, f

ε)− u(tj)| ≤ ε1/2C(r) +O(ε), j = 1, 2, . . . , N(ε),

as ε → 0, where C(r) is a positive constant and N(ε) = 1/∆t(ε).
Proof. Substitution of

∫∆r

0
φ(ρ) dη∆r

(ρ) ≡
∑K(r)

i=1 siφ(τi∆r) (for φ continuous on
[0,∆r]) into (2.7)–(2.10) and (2.12)–(2.13) yields the needed bounds in (2.14)–(2.17),
namely,

w(r) =
λ(r)

λ(r) + k
min

/‖k‖
,

v(r) = σ0(r)‖k′‖/k
min

, (2.21)
e(r) = 2σ0(r)/k

min
,

z(r) = ‖u′‖
(

1
2
(‖k‖+ ‖k′‖)σ0(r) + 2‖k‖σ1(r) + ‖k‖σ2(r)/2)

)
/k

min
,

and where the quantities λ(r) and σ
`
(r) are defined by

λ(r) =
(r − 1)

∑K(r)
i=1 siτi∑K(r)

i=1 si

, σ
`
(r) =

∑K(r)
i=1 si[τi(r − 1)]`∑K(r)

i=1 si + (r − 1)
∑K(r)

i=1 siτi

.

Then λ ∈ [0, r − 1] for all r ≥ 1, λ(1) = 0, while σ0(r) satisfies σ0(r) = 1/(1 + λ(r)),
σ0(r) ∈ [ 1r , 1] for all r ≥ 1, σ0(1) = 1. Thus 0 ≤ w(r) < 1 for all r ≥ 1, and w(r) = 0
at r = 1.

The selection of ∆t = c
√

ε for c > 0 guarantees that the conditions of Corollary 2.2
hold for r ≥ 2. Further, using r = 1 we obtain η∆r

= s1δ0 so that proof of convergence
in this case is merely a proof of convergence of collocation for the original first-kind
problem (in the absence of future-sequential regularization). Repeating the arguments
from the proof of Corollary 2.2 in the case of the original first-kind problem, we find
that the bounds for the quantities in (2.7)–(2.10) and (2.12)–(2.13) are the same as
those given by (2.21) using there the value of r = 1. Thus the results of the theorem
are also true for the case of r = 1.
Remark 2.1. We have found that collocation-based discretizations of (1.4), with
typical choices of η∆r

converge at a “best possible” asymptotic rate O(C(r)ε1/2) as
ε → 0, provided that ∆t is chosen appropriately, i.e., ∆t = c ε1/2, with c > 0 an
arbitrary constant. The fact that the last theorem is valid in the case of r = 1
gives that standard collocation of equation (1.1) also yields an approximation which
converges at the best possible asymptotic rate, for the same choice of ∆t. However,
as numerical examples in the next section indicate, the same choice of ∆t which is
suitable in practice for r > 1 is often associated with highly oscillatory, inaccurate
approximations in the case of r = 1. Thus it is evident that the way in which the
leading constant C(r) depends on r in our convergence estimates is relevant. But C(r)
is only an upper bound in these estimates and, indeed, it is generally quite difficult
to determine the way in which the actual convergence rate depends on r.

One relevant aspect of the question of dependence of approximations on r is
addressed in [11], where an analysis of the condition number of the matrix Ar,∆t

(as it depends on r) is performed; here Ar,∆t denotes the governing matrix in the
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linear system associated with (2.1), where η∆r
is the discrete measure used in the

next section (we note that this particular choice of η∆r
is one of the most effective

and simple in practice, and additionally satisfies the conditions of Theorem 2.3). The
results in [11] apply to general ν-smoothing kernels k and show (under conditions on
k and ν) that stability of the linear system sharply improves as r increases, for the
same choice of ∆t. Indeed, it is shown that

cond∞(Ar,∆t) < cond∞(A1,∆t), for r = 2, 3, . . .

(where cond∞(Ar,∆t) denotes the usual RN infinity-norm condition number of Ar,∆t ),
and that

cond∞(Ar,∆t) ≤ η(r)2(
1

∆t−1)cond∞(A1,∆t), for r = 3, 4, . . . ,

where η(r) < 1 is a decreasing function of r for r = 3, 4, . . .. We note that the precise
choice of r to use in practice, for a given value of ε, remains a difficult question.

3. A “Predictor-Corrector” Regularization Algorithm. Here we shall dis-
cuss implementation of the method described in §2, and illustrate the way in which a
“predictor-corrector” type of numerical regularization scheme obtains.

For each example in this section, ∆r = (r − 1)∆t (for integer r ≥ 1) and η∆r

denotes the discrete measure given by η∆r
=
∑r

i=1 siδτi∆r , where, for i = 1, . . . , r,

si =

∫ i∆t

0
k(i∆t− s) ds∫∆t

0
k(∆t− s) ds

,

and τi =
(i− 1)
(r − 1)

in the case of r ≥ 2; τ1 = 0 in the (unregularized) case of r = 1. For

this choice of η∆r
, it can be shown that the collocation-based approximation described

in the last section is equivalent to the following “predictor-corrector” regularization
algorithm: That is, let u∆t

(t;∆r; fε) =
∑N−1

j=0 αjφj(t), as before, and solve sequen-
tially for α0, α1, . . ., such that each αj is the optimal value one would use if forced to
retain αj as the value of the present basis coefficient, as well as of r − 1 future coef-
ficients while performing data-fitting to 1 present and r − 1 future data points. For
example, in the first (“predictor”) step we select α0 minimizing J0, the least-squares
criterion associated with discrete data points on the interval [0, tr], i.e.,

J0(α0) ≡
∣∣∣∣∫ t1

0

k(t1 − s)α0φ0(s) ds− f(t1)
∣∣∣∣2

+
∣∣∣∣∫ t2

0

k(t2 − s)α0 (φ0(s) + φ1(s) ) ds− f(t2)
∣∣∣∣2 + . . .

+
∣∣∣∣∫ tr

0

k(tr − s)α0 (φ0(s) + . . . + φr−1(s) ) ds− f(tr)
∣∣∣∣2 .

After computing the optimal α0, we hold this value fixed on [0, t1] but (now, in the
“corrector” step) we do not retain the value of α0 on the remaining subinterval
(t1, tr]; instead we continue to the second step of the process where α1 is selected in a
similar manner. That is, we now choose α1 minimizing J1, the least squares functional
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associated with the interval [t1, tr+1], i.e.,

J1(α1) ≡
∣∣∣∣∫ t2

0

k(t2 − s) [α0φ0(s) + α1φ1(s)] ds− f(t2)
∣∣∣∣2

+
∣∣∣∣∫ t3

0

k(t3 − s) [α0φ0(s) + α1 (φ1(s) + φ2(s) )] ds− f(t3)
∣∣∣∣2 + . . .

+
∣∣∣∣∫ tr+1

0

k(tr+1 − s) [α0φ0(s) + α1 ( φ1(s) + . . . + φr(s) )] ds− f(tr+1)
∣∣∣∣2 ,

and we then retain this optimal value on the interval [t1, t2] only. And so on, until all
αj are selected. This is exactly the method used with much success by Beck for the
IHCP. As can be seen, the coordination of the length ∆r of the future interval with
the stepsize ∆t (through ∆r = (r−1)∆t ) leads to a very simple routine. In addition,
the local regularization is apparent in the process, accomplished via the temporary
“thickening” of the basis element φj(·) in the determination of αj .

Making other choices of η∆r
leads to other predictor-corrector regularization

methods for Volterra equations, each of which is based on predicting a new regu-
larized value on a small (future) time interval, and then correcting the prediction via
a shortening of the interval over which the new value is to be assumed. One such
variation of this approach is a sequential Tikhonov regularization method, where a
Tikhonov problem is solved on each subinterval of length ∆r, retaining the optimal
value only on the initial subinterval of length ∆t; the details of this method may be
found in [12].

For the following test examples, the kernel k and true solution u were selected a
priori, and the unperturbed data function f was then constructed from the (exact)
integration of f(t) =

∫ t

0
k(t − s)u(s) ds; varying amounts of random noise were then

added to f , with the noise uniformly distributed in the interval [−s‖f‖∞, s‖f‖∞] for
some positive number s (representing the amount of relative error in the resulting
perturbed data). A noise level of roughly 1% is evidently quite common for some
applications, including the IHCP; thus the noise levels of 5% used below are extreme
for such applications and useful in verifying the effectiveness of the regularization
method. For more reasonable levels of 1% or so, one can expect to use a much smaller
regularization parameter r than is exhibited below.

For the first two examples, the kernel k satisfies the conditions of the last section
(i.e., k is 1-smoothing), while the third example shows that the method applies to
more general k; the last example is for u more general than that needed for the theory
of the last section, i.e., for u piecewise continuous. In all cases, N = 20.

Example 3.1. For this example, we use k(t) = 1+ t2 and u(t) = t2 +cos(t). Random
noise is added to f at the level of 5% relative error (s = .05). Our findings are shown
in Figure 3.1, with standard collocation on equation (1.1) given by the results for
r = 1, and regularized approximation given for r = 2, . . . , 8.

Example 3.2. Here we use k(t) = 1 + 2t4 and the more oscillatory u(t) = 11 +
5 sin(8t). Random noise is added to f at the level of 3% relative error, and the results
given in Figure 3.2. We note that this example clearly shows that r too large leads
to “over-regularization” of the solution via excessive smoothing. This phenomenon is
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Fig. 3.1. Results from Example 3.1.



16 P. K. LAMM

a common feature in all regularization methods, including Tikhonov regularization.

Example 3.3. For this example, we use a kernel which does not satisfy the assump-
tions of the last section, namely, k(t) = t5 + t2 (such a kernel is 3-smoothing in the
language of §1, meaning that the resulting integral equation is more ill-posed than the
two previous examples). We let u(t) = cos(4t) and add random noise to f at the level
of both 5% and 1%. Our findings are shown in Figures 3.3 and 3.4; it is not surpris-
ing that, for this example, the additional ill-posedness of (1.1) in this case requires a
larger value of r (as high as r = 14) in order to effectively implement regularization
in the presence of 5% noise.

Example 3.4. Finally, we consider a situation in which u is piecewise continuous
and thus does not satisfy the assumptions of the theory in the last section; we show
in Figure 3.5 our numerical findings for the example of

u =

 1 + 2.5 t, 0 ≤ t < .2,
2− 2.5 t, .2 ≤ t < .4,
t− .5, t ≥ .4,

and k(t) ≡ 1 (the results are similar in our tests of other 1-smoothing k). The first
column of graphs in that figure represents the results for a 5% level of perturbation
in the data and r = 1, 2, 3, while in the second column we display our results for
the same values of r but with 1% level of noise in the data. We note that our usual
manner of displaying output in previous figures (i.e., using piecewise linear curves
for approximations) suggests continuity that should not be assumed for this problem;
on the other hand, replacing piecewise-linear curves by discrete points (plotted at
collocation locations) gives way to graphs that are very difficult to read, especially
in the highly oscillatory r = 1 case. We have therefore chosen to display the results
in Figure 3.5 via piecewise-linear curves as before, but with an artificially-generated
break in the approximate solution curve at the true location of the discontinuity
(t = .4). This break is for display purposes only and is not intended to imply that
the numerical method introduced in this paper is able to resolve discontinuities. In-
deed, like many regularization methods, this method also fails to accurately predict
locations of discontinuity; however, as can be seen from the graphs in Figure 3.5, the
method does apparently still improve upon collocation alone in the determination of
the approximate shape of a desired solution.

4. Conclusion. To summarize the major results of this paper, we have examined
the convergence properties of a collocation-based regularization method for the stable
numerical solution of first-kind Volterra equations of convolution type. For standard
implementations of the method, we find that convergence obtains at a “best possible”
rate with respect to error in the data when the method is applied to 1-smoothing
Volterra problems . In addition, our numerical investigations indicate how regulariza-
tion via this approach allows for the use of much smaller approximation stepsize than
may be used for the stable approximate solution of the original equation, and how a
“predictor-corrector” form of numerical regularization obtains.

In related work [11], we have examined the conditioning of the linear system
associated with the discretization in Section 4, showing that stability of the system
improves as the value of the regularization parameter (i.e., the length of the “future
interval” ∆r, or the size of r) increases. Work is also in progress on extensions of these
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Fig. 3.2. Findings for Example 3.2.
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Fig. 3.3. Results from Example 3.3 with 5% Noise.
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Fig. 3.4. Results from Example 3.3 with 1% Noise.
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general regularization ideas to non-Volterra problems, allowing for a local regulariza-
tion method for general integral equations of the first kind. In addition, in joint work
with L. Eldén [12], we consider a sequential Tikhonov regularization method that is
also of “predictor-corrector” type and in which Tikhonov regularization is performed
sequentially over small future intervals of length ∆r. This work is considered in a
more abstract setting in [9].
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