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Abstract. We consider the local regularization problem for integral equations
of the first kind, generalizing previous work which applied only to problems of
Volterra type. Our approach allows for local control of the regularization process,
allowing for resolution of fine/sharp features of solutions without having to resort to
nondifferentiable optimization techniques. In addition we present examples illustrating
the numerical implementation of one version of the resulting local regularization
algorithm and show that, under quite reasonable assumptions, the operation count
of the local method compares well with that of standard Tikhonov regularization.
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1. Introduction

We consider the problem of solving

Au = f, (1.1)

where for Ω = [0, 1], A is the bounded linear operator on L2(Ω) given by

Au(t) =

∫
Ω

k(t, s)u(s) ds, a.a. t ∈ Ω. (1.2)

Here k ∈ L2(Ω×Ω) satisfies

|k(t, s)− k(τ, s)| ≤ Lk(s)|t− τ |µk , a.a. t, τ, s ∈ Ω, (1.3)

for µk > 0 and Lk ∈ L2(Ω). We assume that the “true” data f is in the range of A, and

we will let ū ∈ L2(Ω) denote the (unique) minimum norm solution of (1.1) associated

with f . Clearly f ∈ L∞(Ω), and we will assume ū ∈ L∞(Ω).

As an example of the types of problems of interest here, consider an application

from image processing in which equation (1.1) models the blurring of an image u. In this

case, f = f(t) and u = u(t) denote the grey-level values of blurred and original (one-

dimensional) images, respectively, over all t ∈ Ω, and A denotes the blurring operator

with Gaussian convolution kernel

k(t, s) =
γ

π
exp(−γ(t− s)2), t, s ∈ Ω, (1.4)

(γ > 0 denotes the amount of blurring) [3]. This choice of k leads to a very simple

model of blurring, but one that nevertheless provides for many of the features present

in more complex imaging problems (see [7], for example, for generalizations). As noted

in [3], surveillance photo enhancement is handled with a similar model, while electrical

impedance tomography requires a nonlinear operator with properties similar to the

above A.

We note that A as defined in (1.2) is a compact operator on L2(Ω), and that the

problem of solving (1.1) is an ill-posed problem (due to lack of continuous dependence

on data f) if and only if the kernel k is nondegenerate (see, e.g., [5]). The focus of this

paper will be on the solution of the equation (1.1) in this case and in the usual situation

where the data f is only known approximately, i.e., where we only have available a

perturbation f δ of f . We will present a local regularization method for the solution of

(1.1) which allows for variable regularization of the solution over different parts of the

domain Ω. We note that the ideas of local regularization have extension to suitable

Ω ⊂ Rm, but the details of this extension will be studied elsewhere.

Our work in this paper is in contrast to earlier treatments of local regularization

methods in which the operator A was restricted to be of Volterra type (i.e., A is given

by (1.2) with the kernel such that k(t, s) = 0 for s > t); see [2, 9, 10, 11, 13, 14, 15]

for various types of local regularization methods for Volterra problems. The goal of
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this paper is to analyze local regularization methods which are applicable to general

non-Volterra integral equations. This is done in Sections 2 and 3, with numerical

examples of the (non-Volterra) blurring problem given in Section 4. Although the

theory we develop in Sections 3–4 automatically applies to Volterra problems, in Section

5 we will show how the theory may be tailored to give more efficient results in the

Volterra case. We note that the resulting numerical method for Volterra problems is

iterative in nature, in contrast to the sequential local regularization methods developed

in [2, 9, 10, 11, 13, 14, 15]. However, the iterative theory developed in this paper applies

to general Volterra problems while the theory for sequential methods is at present limited

to special Volterra operators and indeed may not be applicable to all Volterra problems

[17].

1.1. Motivation

In order to motivate the local regularization method of interest in this paper, we consider

the following (formal) construction. We will make all definitions precise in the next

section.

First we define the functional “local regularization parameter” r = (r−1, r1), where

ri : Ω → [0,∞) is a sufficiently smooth function for i = ±1, and where for each t ∈ Ω

we assume that the t-dependent local regularization interval (t − r−1(t) , t + r1(t)] is

nontrivial and contained in Ω. We note that the local regularization interval could be

more simply defined as the intersection of (t− r, t+ r] with Ω, for a fixed scalar r > 0,

however such a construction would not allow for variable local regularization throughout

the domain Ω of the solution ū.

For a.a. t ∈ Ω, we define the t-dependent “local part” of ū to be the restriction of

ū to the local regularization interval (t− r−1(t) , t+ r1(t)]. More precisely, given t ∈ Ω,

we define the map ρ 7→ ϕ̄r(t)(ρ), with ϕ̄r(t) ∈ L2(−r−1(t), r1(t)), via

ϕ̄r(t)(ρ) = ū(t+ ρ), a.a. ρ ∈ (−r−1(t), r1(t)].

If ū is smooth, then once we are given ϕ̄r(t) for all t ∈ Ω, we can recover ū(t) exactly

from ϕ̄r(t) via a map Tr, where, for example,

Trϕ̄r(t) ≡ ϕ̄r(t)(0)

= ū(t).

But such a Tr is unbounded when applied to nonsmooth functions, so in the general case

we will only recover ū from ϕ̄r approximately using a bounded linear operator Tr. For

example, Trϕ̄(t) could compute an integral average of ϕ̄(t)(·) over a small subinterval

of (−r−1(t), r1(t)]. A more precise construction of Tr will be given in the next section.
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We now look for an equation in ϕ̄r. We know that ū satisfies Aū(t+ ρ) = f(t+ ρ),

for a.a. ρ ∈ (−r−1(t), r1(t)], or∫ 1

0

k(t+ ρ, s)ū(s) ds = f(t+ ρ), a.a. ρ ∈ (−r−1(t), r1(t)], t ∈ Ω. (1.5)

That is,∫ t−r−1(t)

0

k(t+ ρ, s)ū(s) ds+

∫ t+r1(t)

t−r−1(t)

k(t+ ρ, s)ū(s) ds+

∫ 1

t+r1(t)

k(t+ ρ, s)ū(s) ds

= f(t+ ρ), a.a. ρ ∈ (−r−1(t), r1(t)], t ∈ Ω, (1.6)

where we may rewrite∫ t+r1(t)

t−r−1(t)

k(t+ ρ, s)ū(s) ds =

∫ r1(t)

−r−1(t)

k(t+ ρ, t+ s)ū(t+ s) ds. (1.7)

We can then use (1.6)–(1.7) to motivate an “approximating equation” for ϕ̄r,∫ t−r−1(t)

0

k(t+ ρ, s)Trϕ̄r(s) ds+

∫ r1(t)

−r−1(t)

k(t+ ρ, t+ s)ϕ̄r(t)(s) ds (1.8)

+

∫ 1

t+r1(t)

k(t+ ρ, s)Trϕ̄r(s) ds = f(t+ ρ), a.a. ρ ∈ (−r−1(t), r1(t)], t ∈ Ω.

The middle term on the left-hand side of equation (1.8) represents the action of A on

the t-dependent “local part” of ū, so that equation (1.8) suggests a decomposition of the

operator A into “global” and “local” parts, for each t ∈ Ω. This splitting of A, which

will be made more precise in the next section, is the basis of the local regularization

method.

2. Basic Definitions

Throughout shall use use the notation | · | and 〈·, ·〉 to indicate the usual norm and inner

product, respectively, on L2(Ω). We shall also use the notation L(H) to denote the

space of bounded linear operators on a Hilbert space H.

2.1. The local regularization parameters r and α

Let ∆ > 0 be fixed, and let r ≡ (r−1, r1) denote a local regularization parameter in S,

S ≡ {r = (r−1, r1) | ri ∈ C(Ω) ∩ C1(int(Ω)), 0 < ri(t) < ∆, t ∈ int(Ω), i = ±1;

t− r−1(t), t+ r1(t) ∈ Ω, t ∈ Ω}.

Note that the possibility exists for ri(t) = 0 at the endpoints t = 0, 1, of the interval

Ω = [0, 1] for i = ±1, and indeed it is required that r−1(0) = 0 and r1(1) = 0. We will

use the notation

‖r‖∞ ≡ max
i=±1

‖ri‖∞ = max
i=±1

max
t∈Ω

|ri(t)|.
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For t ∈ int(Ω) and r(t) ≡ (r−1(t), r1(t)) ∈ R2, let I−1[r(t)], I1[r(t)], I[r(t)], and I[r(t)]{

designate intervals in [−∆,∆], given respectively by

I−1[r(t)] ≡ (−r−1(t), 0], I1[r(t)] ≡ (0, r1(t)],

I[r(t)] ≡ (−r−1(t), r1(t)], I[r(t)]{ ≡ (−∆,∆] \ I[r(t)].
A second local regularization parameter will be given by α ∈ Λ, where

Λ ≡ {α ∈ L∞(Ω) |α(t) ≥ αmin ≡ inf
s∈Ω

α(s) > 0, a.a. t ∈ Ω}.

2.2. The spaces X, X , and Xr

Let X = L2(−∆,∆) and let the usual norm and inner product on X be designated by

| · |X and 〈·, ·〉X , respectively. We shall define

X ≡ L2(Ω;X)

to be the Hilbert space of measurable “functions” ϕ̃ on Ω with range in X, with norm

‖ϕ̃‖2
X ≡

∫
Ω

|ϕ̃(t)|2X dt =

∫
Ω

∫ ∆

−∆

|ϕ̃(t)(ρ)|2 dρ dt,

for ϕ̃ ∈ X . Let 〈·, ·〉X denote the associated inner product on X .

We make the definition jr ∈ L(X ) via

jrϕ(t)(ρ) ≡

{
ϕ(t)(ρ), a.a. ρ ∈ I[r(t)], t ∈ Ω

0, a.a. ρ ∈ I[r(t)]{, t ∈ Ω,

and define X̃r ≡ jrX . Finally, we define Xr ⊆ X̃r to be the completion of

X̃r ∩ C (Ω;C[−∆,∆]) with respect to the norm

‖ϕ‖2
r ≡

∫
Ω

∑
i=−1,1

[
1

ri(t)

∫
Ii[r(t)]

|ϕ(t)(ρ)|2 dρ
]
dt.

Given α ∈ Λ, it will also be useful to define an equivalent weighted norm ‖ · ‖r,α on Xr.

We define

‖ϕ‖2
r,α ≡

∫
Ω

α(t)
∑

i=−1,1

[
1

ri(t)

∫
Ii[r(t)]

|ϕ(t)(ρ)|2 dρ
]
dt,

for ϕ ∈ Xr. Whenever the norm is clear from the context we will use the notation Xr

to designate both (Xr, ‖ · ‖r) and (Xr, ‖ · ‖r,α).

2.3. The isomorphism Er : Xr 7→ X

For simplicity and without loss of generality we shall henceforth take

∆ ≡ 1.

Let Er be defined, for ϕ ∈ Xr, via

Erϕ(t)(ρ) ≡

{
ϕ(t)(ρ r−1(t)), a.a. ρ ∈ (−1, 0], t ∈ Ω,

ϕ(t)(ρ r1(t)), a.a. ρ ∈ (0, 1], t ∈ Ω.
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Then Er performs a coordinate transformation and is a bounded linear operator from

Xr to X (with respect to either ‖ · ‖r or ‖ · ‖r,α on Xr); in fact,

‖Erϕ‖X = ‖ϕ‖r, ϕ ∈ Xr.

2.4. Construction of Fr, F̄r, F
δ
r , F̄ δ

r , Ur, Ūr ∈ Xr

The data function f may be used to define Fr, F̄r via

Fr(t)(ρ) ≡

{
f(t+ ρ), a.a. ρ ∈ I[r(t)], t ∈ Ω,

0, a.a. ρ ∈ I[r(t)]{, t ∈ Ω,
(2.1)

F̄r(t)(ρ) ≡

{
f(t), a.a. ρ ∈ I[r(t)], t ∈ Ω,

0, a.a. ρ ∈ I[r(t)]{, t ∈ Ω.
(2.2)

It is easy to show that Fr, F̄r ∈ Xr, with ‖Fr‖2
r ≤ 2‖f‖2

∞ and ‖F̄r‖2
r = 2|f |2 ≤ 2‖f‖2

∞.

Definitions similar to (2.1)–(2.2) may be made for F δ
r and F̄ δ

r , respectively (where

f δ ∈ L∞(Ω) replaces f in the above), and for Ur and Ūr (where ū replaces f).

2.5. Operators Ar, Br, `, T , Tr and Cr

The operators Ar and Br are defined to facilitate a decomposition of the original operator

A, following the discussion in Section 1. In particular, Ar : Xr 7→ Xr is given, for ϕ ∈ Xr

and a.a. t ∈ Ω, by

Arϕ(t)(ρ) ≡

{ ∫ r1(t)

−r−1(t)
k(t+ ρ, t+ s)ϕ(t)(s) ds, a.a. ρ ∈ I[r(t)],

0, a.a. ρ ∈ I[r(t)]{.
(2.3)

Then

‖Arϕ‖2
r =

∫
Ω

∑
i=−1,1

[
1

ri(t)

∫
Ii[r(t)]

|Arϕ(t)(ρ)|2 dρ
]
dt

≤
∫

Ω

∑
i=−1,1

1

ri(t)

∫
Ii[r(t)]

(∫ r1(t)

−r−1(t)

k2(t+ ρ, t+ s) ds

)(∫ r1(t)

−r−1(t)

(ϕ(t)(s))2 ds

)
dρ dt

≤ 4‖k‖2
∞‖r‖2

∞‖ϕr‖2
r,

so that Ar is a bounded linear operator on (Xr, ‖ · ‖r), with

‖Ar‖ ≤ C‖k‖∞ ‖r‖∞, (2.4)

for ‖ · ‖ the operator norm and for C independent of r.

We define Br : L2(Ω) 7→ Xr by the following, for η ∈ L2(Ω) and a.a. t ∈ Ω,

Brη(t)(ρ)≡

{∫ t−r−1(t)

0
k(t+ρ, s)η(s) ds+

∫ 1

t+r1(t)
k(t+ρ, s)η(s) ds, a.a. ρ ∈ I[r(t)],

0, a.a. ρ ∈ I[r(t)]{.
(2.5)

Using arguments similar to those for Ar, we have that Br is a bounded linear operator

from L2(Ω) to (Xr, ‖ · ‖r) with operator norm

‖Br‖ ≤ C‖k‖∞, (2.6)
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for C again independent of r.

Let ` ∈ X? be fixed and normalized so that `(1) = 1, where 1 ∈ X is given by

1(ρ) = 1, for a.a. ρ. Let γ` denote the unique (nonzero) element of X satisfying

`(x) = 〈x, γ`〉X , x ∈ X. (2.7)

Define T ∈ L(X , L2(Ω)) by

T ϕ̃(t) ≡ `(ϕ̃(t)), a.a. t ∈ Ω, (2.8)

for ϕ̃ ∈ X , and the bounded linear operator Tr from (Xr, ‖ · ‖r) to L2(Ω) via

Tr ≡ TEr.

We note that `(1) = 1 gives

TrŪr = ū (2.9)

where Ūr is defined above.

Example 2.1 Consider, for example, ` ∈ X? given by the local averaging operator

`(x) =
1

2c

∫ c

−c

x(ρ) dρ, x ∈ X,

for some 0 < c� 1. Then, in this case, Trϕ(t) computes the mean of the integral average

of ϕ(t) over a small subinterval of I−1[r(t)] and I1[r(t)], respectively, for a.a. t ∈ Ω; that

is,

Trϕ(t) =
1

2

[
1

c r−1(t)

∫ 0

−c r−1(t)

ϕ(t)(ρ) dρ+
1

c r1(t)

∫ c r1(t)

0

ϕ(t)(ρ) dρ

]
,

for a.a. t ∈ Ω and ϕ ∈ Xr.

Example 2.2 For the discrete algorithm described in Section 4, it is useful to consider

another example, namely,

`(x) =
1

c

∫ 0

−c

x(ρ) dρ, x ∈ X,

for 0 < c� 1, from which we obtain

Trϕ(t) =
1

c r−1(t)

∫ 0

−c r−1(t)

ϕ(t)(ρ) dρ,

for a.a. t ∈ Ω and ϕ ∈ Xr. We note (for the later discussion on discretization) that for

x constant on (−c, 0], we have `(x) = x(0).

Finally, we make the definition of the bounded linear operator Cr on (Xr, ‖ · ‖r) via

Cr ≡ Ar +BrTr.
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2.6. The local regularization problem Pδ
r,α

Using the spaces and operators constructed above, we define the local regularization

problem of interest in this paper.

Definition 2.1 Let r ∈ S, α ∈ Λ, and δ > 0, and assume that f δ ∈ L∞(Ω) is given

satisfying ‖f − f δ‖∞ < δ. Then Problem Pδ
r,α is the problem of finding ϕδ

r,α ∈ Xr such

that

ϕδ
r,α = arg min

ϕ∈Xr

{
‖Crϕ− F δ

r ‖2
r + ‖ϕ‖2

r,α

}
where F δ

r and Cr are defined in §2.4 and §2.5, respectively.

The following theorem follows from classical Tikhonov regularization theory (see,

for example, [5, 6]) and the continuity of the operator Tr.

Theorem 2.1 Let r ∈ S, α ∈ Λ, δ > 0, and let f δ ∈ L∞(Ω) be given satisfying

‖f − f δ‖∞ < δ. Then there exists a unique solution ϕδ
r,α of Problem Pδ

r,α. Both

ϕδ
r,α ∈ Xr and ηδ

r,α ≡ Trϕ
δ
r,α ∈ L2(Ω) depend continuously on F δ

r ∈ Xr and thus on

data f δ ∈ L∞(Ω).

In the next lemma we use the optimality of ϕδ
r,α to establish bounds on some relevant

quantities.

Lemma 2.1 Let r, α, δ, and f δ satisfy the conditions of Theorem 2.1, and let ϕδ
r,α

denote the solution of Problem Pδ
r,α. Then

‖Crϕ
δ
r,α − F δ

r ‖2
r + ‖ϕδ

r,α ‖2
r,α ≤ C

[
(‖k‖2

∞‖r‖2
∞ + ‖α‖∞)‖ū‖2

∞ + δ2
]
,

for some C > 0 independent of r, α, and δ.

Proof: The definition of ϕδ
r,α gives

‖Crϕ
δ
r,α − F δ

r ‖2
r + ‖ϕδ

r,α ‖2
r,α ≤ ‖CrŪr − F δ

r ‖2
r + ‖ Ūr ‖2

r,α

≤ 2(‖Ar(Ūr−Ur) ‖r + ‖ArUr +BrTrŪr − Fr ‖r)2 + 2‖Fr−F δ
r ‖2

r + ‖Ūr‖2
r,α,

where (2.9) gives

‖ArUr +BrTrŪr − Fr ‖2
r

=

∫
Ω

∑
i=−1,1

1

ri(t)

∫
Ii[r(t)]

[∫ r1(t)

−r−1(t)

k(t+ ρ, t+ s)ū(t+ s) ds

+

∫ t−r−1(t)

0

k(t+ ρ, s)ū(s) ds+

∫ 1

t+r1(t)

k(t+ ρ, s)ū(s) ds− f(t+ ρ)

]2

dρ dt

=

∫
Ω

∑
i=−1,1

[
1

ri(t)

∫
Ii[r(t)]

(∫
Ω

k(t+ ρ, s)ū(s) ds− f(t+ ρ)

)2

dρ

]
dt

= 0.
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Thus,

‖Crϕ
δ
r,α − F δ

r ‖2
r + ‖ϕδ

r,α ‖2
r,α

≤ 2‖Ar ‖2(‖ Ūr ‖r + ‖Ur ‖r)2 + 4‖ f − f δ ‖2
∞ + ‖α‖∞‖ Ūr ‖2

r.

The result then follows from the bound on ‖Ar‖ in (2.4), and from the fact that ‖Ūr‖2
r,

‖Ur‖2
r ≤ 2‖ū‖2

∞. 2

3. Convergence

Our main convergence result is as follows:

Theorem 3.1 Let {δn}∞n=1 ⊆ R+ with δn → 0 as n → ∞. Let {rn}∞n=1 ⊆ S,

rn = ((rn)−1, (rn)1), and {αn}∞n=1 ⊆ Λ be given such that ‖rn‖∞, ‖αn‖∞ → 0 as n→∞.

Assume further that there is M > 0 such that

(i) δ2
n/αn,min → 0.

(ii) ‖rn‖∞/δn ≤M , and

(iii) ‖αn‖∞/αn,min → 1,

as n → ∞. For each n = 1, 2, . . ., let f δn ∈ L∞(Ω) be given with ‖f − f δn‖∞ < δn, let

ϕδn
rn, αn

∈ Xrn denote the solution of problem Pδn
rn, αn

associated with f δn, and let

ηn ≡ Trnϕ
δn
rn, αn

. (3.1)

Then

ηn → ū in L2(Ω)

as n→∞, where ū is the solution of the original problem (1.1).

Remark 3.1 The assumptions (i) and (ii) in Theorem 3.1 are analogous to those in

standard regularization theorems in that the regularization parameters rn and αn must

converge to zero at a rate which is relative to the level δn of noise in the problem.

Assumption (iii) says that αn may vary with t so long as there is noise in the problem

(i.e., for δn > 0); however, in the limit as δn → 0, αn must tend toward zero like a

constant function.

To simplify the notation in what follows, we will henceforth write ϕn ≡ ϕδn
rn, αn

,

Pn ≡ Pδn
rn, αn

, Xn ≡ Xrn , Fn ≡ Frn , F δ
n ≡ F δn

rn
, Un ≡ Urn , Ūn ≡ Ūrn , En ≡ Ern , Tn ≡ Trn ,

An ≡ Arn , and so on.

We will postpone the proof of Theorem 3.1 until the end of the section, after a

number of preliminary lemmas have been established. The first result establishes weak

subsequential convergence of ηn defined in (3.1) above.



Variable-smoothing regularization methods 10

Lemma 3.1 Let {δn}∞n=1 ⊆ R+, {rn}∞n=1 ⊆ S, and let {αn}∞n=1 ⊆ Λ and assume there

exists M > 0 such that

(i) δ2
n/αn,min ≤M ,

(ii) ‖rn‖∞/δn ≤M ,

(iii) ‖αn‖∞/αn,min ≤M ,

as n→∞. For each n = 1, 2, . . ., let f δn ∈ L∞(Ω) be given with ‖f−f δn‖∞ < δn, and let

ϕn ∈ Xn denote the solution of problem Pn associated with f δn, with ηn ≡ Tnϕn ∈ L2(Ω).

Let ϕ̃n ≡ Enϕn ∈ X . Then there is ϕ̃ ∈ X and a subsequence of {ϕ̃n} which

converges weakly in X to ϕ̃. That is, relabelling the subsequential indices,

ϕ̃n ⇀ ϕ̃ in X as n→∞.

Further, η ∈ L2(Ω) defined by

η ≡ T ϕ̃

is such that (using the same relabelling of indices as above)

ηn ⇀ η in L2(Ω) as n→∞.

Proof: We note that

‖Enϕn‖2
X = ‖ϕn‖2

rn

≤ 1

αn,min

(
‖Cnϕn − F δ

n‖2
rn

+ ‖ϕn‖2
r,αn

)
,

we may use Lemma 2.1 and assumptions (i)–(iii) (along with the fact that the quantity

‖rn‖2
∞/αn,min = (‖rn‖2

∞/δ
2
n) · (δ2

n/αn,min) is uniformly bounded from hypotheses (i) and

(ii)) to obtain that ‖ϕ̃n‖X = ‖Enϕn‖X is uniformly bounded for all n = 1, 2, . . .. The re-

maining statements of the lemma follow from the fact that X is a Hilbert space, and the

observation that ηn ≡ Tnϕn = T ϕ̃n for n = 1, 2, . . ., where we recall that T : X → L2(Ω)

is a bounded linear operator. 2

Our next lemma examines properties of the quantities η and ϕ̃ defined in Lemma

3.1.

Lemma 3.2 Assume {δn}, {rn}, {αn} and {f δn} are given satisfying the conditions of

Lemma 3.1, where we additionally assume that δn → 0, ‖rn‖∞ → 0, and ‖αn‖∞ → 0,

as n → ∞. Then for η and ϕ̃ given by Lemma 3.1, it follows that η is a solution of

Au = f and ϕ̃ is a solution of Ãψ = f , for Ã ∈ L(X , L2(Ω)) defined by Ã = AT .

Proof: For n = 1, 2, . . ., define the operator Ān ∈ L(L2(Ω),Xn) via

Ānx(t)(ρ) =

{
Ax(t), a.a. ρ ∈ I[rn(t)], t ∈ Ω,

0, a.a. ρ ∈ I[rn(t)]{, t ∈ Ω,
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for A the original integral operator defined in (1.2) and x ∈ L2(Ω). Then, for η given

by Lemma 3.1, we have

|Aη − f |2 =
1

2

∫
Ω

∑
i=−1,1

1

(rn)
i
(t)

∫
Ii[rn(t)]

|Aη(t)− f(t)|2 dρ dt

=
1

2

∫
Ω

∑
i=−1,1

1

(rn)
i
(t)

∫
Ii[rn(t)]

|Ānη(t)(ρ)− F̄n(t)(ρ)|2 dρ dt

=
1

2
‖Ānη − F̄n‖2

rn
,

for F̄n ≡ F̄rn defined as usual. But

‖Ānη − F̄n‖rn ≤ T n
1 + T n

2 + T n
3 + T n

4 + T n
5 ,

where, using ϕn and ηn as defined in Lemma 3.1,

T n
1 = ‖Anϕn +BnTnϕn − F δ

n‖rn ,

T n
2 = ‖Anϕn‖rn ,

T n
3 = ‖Ānη −BnTnϕn‖rn ,

T n
4 = ‖F δ

n − Fn‖rn ,

T n
5 = ‖Fn − F̄n‖rn .

In the remainder of the proof we will show that T n
i → 0 as n → ∞, i = 1, . . . , 5, so

that |Aη − f | = 0, or η is a solution of Au = f . The fact that ϕ̃ solves Ãψ = f follows

immediately since Ãϕ̃ = ATϕ̃ = Aη = f .

We first note that

(T n
1 )2 = ‖Cnϕn − F δ

n‖2
rn
,

so that Lemma 2.1 may be used along with δn → 0, ‖rn‖∞ → 0, ‖αn‖∞ → 0, to show

T n
1 → 0 as n→∞. Also,

T n
2 ≤ ‖An‖‖ϕn‖rn

where ‖ϕn‖rn = ‖Enϕn‖X = ‖ϕ̃n‖X is bounded (using the results in the proof of

Lemma 3.1) and, using (2.4), ‖An‖ ≤ C‖k‖∞‖rn‖∞ → 0 as n → ∞. Further, for

ηn = Tnϕn ∈ L2(Ω),

T n
3 = ‖Ānη −Bnηn‖rn

≤ ‖Ān(η − ηn)‖rn + ‖(Ān −Bn)ηn‖rn (3.2)

where it is easily seen that

‖Ān(η − ηn)‖2
rn

= 2|A(η − ηn)|2

and |A(η − ηn)| → 0 as n → ∞ from compactness of A on L2(Ω) and the weak

convergence of ηn ⇀ η in L2(Ω), from Lemma 3.1. In bounding the second term in
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(3.2) we note that for a.a. ρ ∈ I[rn(t)], t ∈ Ω,[
(Ān −Bn)ηn(t)(ρ)

]2
=

[∫ 1

0

k(t, s)ηn(s) ds−
∫ t−(rn)−1 (t)

0

k(t+ ρ, s)ηn(s) ds

−
∫ 1

t+(rn)1 (t)

k(t+ ρ, s)ηn(s) ds

]2

=

[∫ 1

0

[k(t, s)− k(t+ ρ, s)]ηn(s) ds+

∫ t+(rn)1 (t)

t−(rn)−1 (t)

k(t+ ρ, s)ηn(s) ds

]2

≤ 2

∫ 1

0

[k(t, s)− k(t+ ρ, s)]2 ds

∫ 1

0

η2
n(s) ds

+ 2

∫ t+(rn)1 (t)

t−(rn)−1 (t)

k2(t+ ρ, s) ds

∫ t+(rn)1 (t)

t−(rn)−1 (t)

η2
n(s) ds

≤ 4|ηn|2
(
ρ2µk |Lk|2 + ‖rn‖∞‖k‖2

∞
)
,

where we have used (1.3) in the first term above. Thus

‖(Ān −Bn)ηn‖2
rn
≤ 4|ηn|2

∫
Ω

∑
i=−1,1

1

(rn)i(t)

∫
Ii[rn(t)]

(
ρ2µk |Lk|2 + ‖rn‖∞‖k‖2

∞
)
dρ dt

≤ 8|ηn|2
∫

Ω

∑
i=−1,1

(
|Lk|2

2µk+1
(rn) 2µk

i (t) + ‖rn‖2
∞‖k‖2

∞

)
dt.

Since |ηn| = |T ϕ̃n| ≤ ‖T‖‖ϕ̃n‖X , where ‖ϕ̃n‖X is bounded as n → ∞, it follows that

‖(Ān −Bn)ηn‖2
rn
→ 0 and T n

3 → 0 as n→∞.

Finally,

(T n
4 )2 ≤ 2‖f δn − f‖2

∞ ≤ 2δ2
n,

and

(T n
5 )2 =

∫
Ω

∑
i=−1,1

1

(rn)i(t)

∫
Ii[rn(t)]

[f(t+ ρ)− f(t)]2 dρ dt

=

∫
Ω

∑
i=−1,1

1

(rn)i(t)

∫
Ii[rn(t)]

[∫ 1

0

[k(t+ ρ, s)− k(t, s)] ū(s) ds

]2

dρ dt

≤ |Lk|2|ū|2
∫

Ω

∑
i=−1,1

1

(rn)i(t)

∫
Ii[rn(t)]

ρ2µk dρ dt

≤ |Lk|2|ū|2

2µk + 1
2‖rn‖2µk

∞ ,

so that T n
4 , T

n
5 → 0 as n→∞. This completes the proof of the lemma. 2

We conclude the section with the proof of Theorem 3.1.
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Proof of Theorem 3.1: From Lemmas 3.1 and 3.2 we have that ηn ⇀ η, for η ∈ L2(Ω)

a solution of Au = f , and ϕ̃n ≡ Enϕn ⇀ ϕ̃ for ϕ̃ ∈ X a solution of Ãψ ≡ ATψ = f ,

ψ ∈ X . In both cases the convergence is subsequential (the indices have been relabeled).

We will begin by proving the claim that ϕ̃ = Ũ where Ũ ∈ X is given by

Ũ(t)(ρ) =
ū(t)γ`(ρ)

|γ`|2X
, a.a. ρ ∈ [−1, 1], t ∈ Ω. (3.3)

(The quantity γ` ∈ X is defined in (2.7).) The proof of this claim will take several steps.

First of all, TŨ(t) = ` (ū(t)γ`(·)/|γ`|2X) = ū(t) for a.a. t ∈ [0, 1], so it follows that

that Ũ solves Ãψ = ATψ = f . In fact, we will show that Ũ ∈ (ker Ã)⊥ ⊆ X , i.e., that

Ũ is the minimum norm solution of Ãψ = f [16]. Indeed, let ψ̃ ∈ ker Ã. Then

〈Ũ , ψ̃〉X =
1

|γ`|2X

∫
Ω

ū(t)

∫ 1

−1

γ`(ρ)ψ̃(t)(ρ) dρ dt

=
1

|γ`|2X

∫
Ω

ū(t)`(ψ̃(t)) dt

=
1

|γ`|2X
〈ū, T ψ̃〉L2(Ω).

But ψ̃ ∈ ker Ã implies that T ψ̃ ∈ kerA. Since ū is a minimum norm solution of Au = f

and thus ū ∈ (kerA)⊥, it follows that 〈Ũ , ψ̃〉X = 0, or Ũ ∈ (ker Ã)⊥.

We next show that ‖ϕ̃‖X ≤ ‖Ũ‖X . Indeed, since ϕ̃n = Enϕn, it follows that

‖ϕ̃n‖2
X = ‖ϕn‖2

rn

≤ 1

αn,min

[
‖Cnϕn − F δ

n‖2
rn

+ ‖ϕn‖2
rn,αn

]
≤ 1

αn,min

[
‖CnE

−1
n Ũ − F δ

n‖2
rn

+ ‖E−1
n Ũ‖2

rn,αn

]
where E−1

n Ũ ∈ Xn with ‖E−1
n Ũ‖2

rn,αn
≤ ‖αn‖∞‖E−1

n Ũ‖2
rn

= ‖αn‖∞‖Ũ‖2
X =

‖αn‖∞|ū|2/|γ`|2X . Further, since TnE
−1
n Ũ = TŨ = ū,

‖CnE
−1
n Ũ − F δ

n‖2
rn

= ‖AnE
−1
n Ũ +Bnū− F δ

n‖2
rn

≤ 4‖An(E−1
n Ũ − Un)‖2

rn
+ 4‖AnUn +Bnū− Fn‖2

rn
+ 2‖Fn − F δ

n‖2
rn

where ‖AnUn +Bnū−Fn‖2
rn

= 0 (see the proof of Lemma 2.1), ‖Fn−F δ
n‖2

rn
≤ 2δ2

n, and

‖An(E−1
n Ũ − Un)‖2

rn
≤ 2‖An‖2

(
‖E−1

n Ũ‖2
rn

+ ‖Un‖2
rn

)
≤ 2C2‖k‖2

∞‖rn‖2
∞

(
|ū|2

|γ`|2X
+ 2‖ū‖2

∞

)
.

Therefore,

‖ϕ̃n‖2
X ≤ 8C2‖k‖2

∞
‖rn‖2

∞
αn,min

(
|ū|2

|γ`|2X
+ 2‖ū‖2

∞

)
+ 4

δ2
n

αn,min

+
‖αn‖∞
αn,min

|ū|2

|γ`|2X
.
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It follows that

‖ϕ̃‖2
X ≤ lim inf

n→∞
‖ϕ̃n‖2

X (3.4)

≤ lim sup
n→∞

{
8C2‖k‖2

∞
‖rn‖2

∞
δ2
n

δ2
n

αn,min

(
|ū|2

|γ`|2X
+2‖ū‖2

∞

)
+4

δ2
n

αn,min

+
‖αn‖∞
αn,min

|ū|2

|γ`|2X

}
(3.5)

= |ū|2/|γ`|2X (3.6)

= ‖Ũ‖2
X , (3.7)

under the assumptions of the theorem, so that ‖ϕ̃‖X ≤ ‖Ũ‖X . By uniqueness of the

minimum norm solution of Ãψ = f , it follows that ϕ̃ = Ũ .

All the inequalities in (3.4)–(3.7) must then be equalities, so it follows that

‖ϕ̃n‖X → ‖ϕ̃‖X as n→∞.

This fact combined with the weak convergence ϕ̃n ⇀ ϕ̃ in the Hilbert space X guarantees

the strong convergence in X of ϕ̃n → ϕ̃ as n→∞. Thus

ηn = T ϕ̃n → T ϕ̃ = TŨ = ū, as n→∞,

so that η = ū.

Finally, all convergence statements above are subsequential convergence. A stan-

dard argument (see, e.g., #11, p. 37 of [18]) may be used to extend these results to full

sequential convergence. 2

4. Numerical Implementation

4.1. The discrete local regularization problem

We describe here a practical implementation of the local regularization method studied

in the previous sections. Let ∆t = 1/N for fixed N = 1, 2, . . ., and let tj = j∆t,

j = 0, 1, . . . , N , ρ` = `∆t, ` = −N,−N + 1, . . . ,−1, 0, 1, . . . , N . For ` =−N+1,

−N + 2, . . . , 0, . . . , N , t ∈ [0, 1], we will let χ`(t) ≡ χ(ρ`−1, ρ`](t), denote the usual

characteristic function; i.e., χ`(t) = 1, t ∈ (ρ`−1, ρ`], and χ`(t) = 0 otherwise.

As a discrete approximation of the regularization parameter α, we will let

α(t) =
N∑

j=1

αj χj(t), t ∈ [0, 1], (4.1)

where αj > 0, j = 1, . . . , N , and corresponding to the regularization parameters ri,

i = ±1, we will define the discretizations

ri(t) =
N∑

j=1

(Ri,j ∆t) χj(t), t ∈ [0, 1], i = ±1, (4.2)
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where, for i = ±1 and j = 1, . . . , N , the Ri,j are non-negative integers. Note that by

definition ri(0) = 0 for i = ±1. We reformulate the conditions on ri given in Section 2.1

to make them more appropriate in the setting of a discrete approximation. In this case

we require

ri(tj) ∈ (0, 1), j = 1, . . . , N−1, i = ±1,

tj − r−1(tj) ∈ [0, 1], j = 0, 1, . . . , N,

tj + r1(tj) ∈ [0, 1], j = 0, 1, . . . , N.

(4.3)

The smoothness conditions on ri given in Section 2.1 are not enforced in our construction

given above. Indeed we could have ensured ri ∈ C([0, 1]) ∩ C1(0, 1) by taking a C1

piecewise polynomial as the discrete form of ri; however this adds significantly to the

complexity of the algorithm we describe below. We will instead aim for simplicity and

adjust certain definitions to accommodate the less regular parameters ri(t) that we use

here. (A more complete algorithm development and discrete convergence theory will be

given elsewhere.) Fortunately, the discrete algorithms appear to perform quite well in

numerical tests even without the stronger hypotheses on ri needed in earlier sections

describing the convergence theory in the continuous setting.

Returning to the conditions on ri, i = ±1, given in (4.3) above, we note that these

conditions lead to requirements on the Ri,j, i = ±1, j = 1, . . . , N , namely

1 ≤ R−1,j ≤ j, j = 1, . . . , N ;

1 ≤ R1,j ≤ N − j, j = 1, . . . , N − 1; R1,N = 0.
(4.4)

Strictly speaking one only requires 0 ≤ R−1,N ≤ N , but because R1,N = 0, the choice of

R−1,N = 0 means that there is no regularization whatsoever around tN = 1, a situation

that we choose to avoid here.

We note that, for m = 1, 2, . . . , N − 1,

I[r(tm)] = (−R−1,m∆t, R1,m∆t]

=
⋃

`∈i[m]

(ρ`−1, ρ`]

where i[m] = {−R−1,m + 1, . . . , 0, . . . , R1,m}. Similarly, for m = 1, 2, . . . , N − 1,

Ij[r(tm)] =
⋃

`∈ij [m]

(ρ`−1, ρ`], j = ±1,

I[r(tm)]{ =
⋃

`∈i[m]{

(ρ`−1, ρ`],

where

i−1[m] = {−R−1,m + 1, . . . , 0}

i1[m] = {1, . . . , R1,m}

i[m]{ = {−N + 1, . . . ,−R−1,m, R1,m + 1, . . . , N}.
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Since r−1(tN) 6= 0, the intervals I[r(tN)], I−1[r(tN)], and I[r(tN)]{ are well-defined so we

will make the additional definitions

i[N ] ≡ {−R−1,N + 1, . . . , 0}

i−1[N ] ≡ i[N ]

i[N ]{ ≡ {−N + 1, . . . ,−R−1,N , 1, . . . , N},

where we have used the fact that r1(tN) = 0.

Letting len(m) denote the number of elements in i[m], we have

len(m) = R−1,m +R1,m, m = 1, . . . , N − 1,

len(N) = R−1,N .

We will make the standing hypothesis that len(m) < N for all m = 1, . . . , N , so that

the regularization is truly “local”.

Given the discretized parameters ri and α, we define the discrete regularization

problem to be that of finding a solution of the minimization problem

min
ϕN∈XN

r

{
‖Crϕ

N − FN,δ
r ‖2

N,r + ‖ϕN‖2
N,r,α

}
. (4.5)

where XN
r ⊂ Xr is given by

XN
r =

ϕ : ϕ(t)(ρ) =
N∑

j=1

∑
`∈i[j]

cj` χj(t)χ`(ρ), a.a. ρ ∈ [−1, 1], t ∈ [0, 1], cj` ∈ R

 .

In addition, FN,δ
r ∈ XN

r is given by

FN,δ
r (t)(ρ) ≡

N∑
j=1

∑
`∈i[j]

f δ(tj + ρ`)χj(t)χ`(ρ), a.a. ρ ∈ [−1, 1], t ∈ [0, 1],

while ‖ · ‖N,r and ‖ · ‖N,r,α are discrete forms of the integral norms ‖ · ‖r and ‖ · ‖r,α,

respectively, which we define below. For smooth g ∈ Xr we may approximate for i = ±1,∫
Ii[r(tm)]

|g(tm)(ρ)|2 dρ .
=

∫
Ii[r(tm)]

∑
n∈ii[m]

|g(tm)(ρn)|2χn(ρ) dρ

=
∑

n∈ii[m]

|g(tm)(ρn)|2∆t.

Making a similar approximation when integrating with respect to the t variable, we

define

‖g‖2
N,r,α =

∫
Ω

∑
i=±1

 N∑
m=1

ri(tm) 6=0

α(tm)

ri(tm)

(∫
Ii[r(tm)]

N∑
n=1

|g(tm)(ρn)|2χn(ρ) dρ

)χm(t) dt

= ∆t
N−1∑
m=1

∑
i=±1

αm

Ri,m

∑
n∈ii[m]

|g(tm)(ρn)|2 + ∆t
αN

R−1,N

∑
n∈i−1[N ]

|g(tN)(ρn)|2,
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where the form of the last term in ‖ · ‖2
N,r,α is necessitated by the fact that R1,N = 0.

The norm ‖ · ‖N,r is defined similarly (using αm = 1 in the above, for all m = 1, . . . , N).

We let Cr = Ar +BrTr as usual, making use here of the definition of Tr as given in

Example 2.2, with c ≡ ∆t in that example. Thus, for ϕ ∈ XN
r and t ∈ (0, 1],

Trϕ(t) =
1

∆t r−1(t)

∫ 0

−∆t·r−1(t)

N∑
j=1

∑
`∈i[j]

cj` χj(t)χ`(ρ) dρ

=
N∑

j=1

cj0χj(t),

so that in the discrete case,

Trϕ(t) = ϕ(t)(0).

Fix m = 1, 2, . . . , N . For ϕ ∈ XN
r we have Arϕ(tm)(ρn) = 0 when n ∈ i[m]{, while

for n ∈ i[m],

Arϕ(tm)(ρn) =

∫ r1(tm)

−r−1(tm)

k(tm + ρn, tm + s)ϕ(tm)(s) ds

=
N∑

j=1

∑
`∈i[j]

cj` χj(tm)

∫ R1,m∆t

−R−1,m∆t

k(tm + ρn, tm + s)χ`(s) ds,

=
∑

`∈i[m]

cm` ∆m+n,m+`

where

∆i,j ≡
∫ ρj

ρj−1

k(ti, s) ds. (4.6)

Thus for fixed m and n ∈ i[m],

Arϕ(tm)(ρn) = (Amcm)n,

the entry in Amcm ∈ Rlen(m) associated with component n ∈ i[m], where cm ∈ Rlen(m)

is the column vector cm = (ĉim)i∈i[m], ĉim ≡ cmi, and Am is the len(m)× len(m) matrix,

Am = (∆m+i , m+j)i,j∈i[m] .

Similarly for ϕ ∈ XN
r and fixed m = 1, . . . , N , it follows that BrTrϕ(tm)(ρn) = 0

for n ∈ i[m]{, while for n ∈ i[m],

BrTrϕ(tm)(ρn)

=

∫ tm−r−1(tm)

0

k(tm + ρn, s)
N∑

j=1

cj0 χj(s) ds+

∫ 1

tm+r1(tm)

k(tm + ρn, s)
N∑

j=1

cj0 χj(s) ds,

=

m−R−1,m∑
j=1

cj0 ∆m+n,j +
N∑

j=m+R1,m+1

cj0 ∆m+n,j,
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where we use the convention
∑b

j=a = 0 for a > b. Thus, for fixed m and n ∈ i[m],

BrTrϕ(tm)(ρn) = (Bmc)n,

the entry of Bmc ∈ Rlen(m) associated with the component n ∈ i[m], where

c = (c10, c20, . . . , cN0)
T ∈ RN ,

and Bm ∈ Rlen(m)×N is a partitioned matrix with the following construction: If R−1,m

and R1,m satisfy m − R−1,m ≥ 1 and m + R1,m + 1 ≤ N , then Bm = (B−1,m |0 |Bm),

where

B−1,m =


∆m−R−1,m+1 , 1 · · · ∆m−R−1,m+1 , m−R−1,m

∆m−R−1,m+2 , 1 · · · ∆m−R−1,m+2 , m−R−1,m

...
...

...

∆m+R1,m , 1 · · · ∆m+R1,m , m−R−1,m

 ∈ Rlen(m)×(m−R−1,m)

B1,m =


∆m−R−1,m+1 , m+R1,m+1 · · · ∆m−R−1,m+1 , N

∆m−R−1,m+2 , m+R1,m+1 · · · ∆m−R−1,m+2 , N

...
...

...

∆m+R1,m , m+R1,m+1 · · · ∆m+R1,m , N

 ∈ Rlen(m)×(N−m−R1,m),

and 0 ∈ Rlen(m)×len(m). If m−R−1,m = 0 and m+R1,m+1 ≤ N , then Bm = (0 |B1,m) for

B1,m given above and 0 ∈ Rlen(m)×len(m). Finally if m−R−1,m ≥ 1 and m+R1,m + 1 =

N + 1, then Bm = (B−1,m |0) for B−1,m given above and 0 ∈ Rlen(m)×len(m). (We note

that all possibilities have been exhausted since otherwise would give [0, 1] ⊆ I[r(tm)]

which is impossible under the assumption that len(m) < N).

Also we define for m = 1, . . . , N , fm ∈ Rlen(m) via

fm = (f(tm + ρn))n∈i[m] . (4.7)

Thus, for ϕ ∈ XN
r ,

‖Arϕ+BrTrϕ− FN,δ
r ‖2

N,r + ‖ϕ‖2
N,r,α

= ∆t
N−1∑
m=1

 1

R−1,m

0∑
n=−R−1,m+1

|(Amcm + Bmc− fm)n|
2 +

1

R1,m

R1,m∑
n=1

|(Amcm + Bmc− fm)n|
2


+∆t

 1

R−1,N

0∑
n=−R−1,N+1

|(ANcN + BNc− fN)n|
2


+∆t

N−1∑
m=1

 αm

R−1,m

0∑
n=−R−1,m+1

|cmn|2 +
αm

R1,m

R1,m∑
n=1

|cmn|2


+∆t

 αN

R−1,N

0∑
n=−R−1,N+1

|cNn|2
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= ∆t
N∑

m=1

Hm(cm; c),

where for each m = 1, . . . , N ,

Hm(cm; c) = |||Amcm + Bmc− fm|||2N,m,r + αm|||cm|||2N,m,r,

for ||| · |||N,m,r a weighted Euclidean norm on Rlen(m).

We will consider a relaxation type of minimization method for solving the discrete

regularization problem. The idea is to set initial values for the vectors c1, . . . , cN

(e.g., cm = 0 ∈ RR−1,m+R1,m for m = 1, . . . , N), and to update the value of each

cm one by one. To set some notation useful in describing the resulting algorithm,

we will let m = 1, . . . , N be fixed and assume for the moment that the vectors cj

are known for all j 6= m. It will then be useful to describe the dependence of the

summation
∑N

j=1Hj(cj, c) on the remaining unknown vector cm. To this end we make

the definitions

Jm(cm) ≡ Hm(cm; c), cm ∈ Rlen(m),

noting that form of Bm gives that Hm(cm; c) depends on the vector cm only through the

first component of Hm (i.e., Bmc is independent of cm0 since the mth column of Bm is

zero). The remaining Hj functions (j 6= m) depend on cm only through the component

cm0 in c, and this is the case for only those j such that Bjc depends on cm0. We thus

make the definition

Ĵm(cm0) =
∑
j∈Im

Hj(cj, (c10, . . . , cm0, . . . , cN0)
T ).

where Im = {j |mth column of Bj nonzero}. Thus, if cj is known for j 6= m, then

1

∆t

{
‖Arϕ+BrTrϕ− FN,δ

r ‖2
N,r + ‖ϕ‖2

N,r,α

}
=

N∑
m=1

Hm(cm; c)

= Jm(cm) + Ĵm(cm0) +Km

where Km is a constant independent of cm.

We now turn to an an iterative relaxation-type minimization algorithm for the

solution of the discrete regularization problem.



Variable-smoothing regularization methods 20

Local Tikhonov Regularization Algorithm:

(1) Initialize vectors c1, c2, . . ., cN .

(2) Do for m = 1, . . . , N :

(a) Holding the previously determined values of cj, j 6= m, fixed, find β̄ ∈ Rlen(m)

solving

min
{
Jm(β) + Ĵm(β0), β = (βi)i∈i[m] ∈ Rlen(m)

}
. (4.8)

(b) Set cm = β̄.

(3) Go to step (2).

Under reasonable conditions, convergence of the relaxation-type minimization algorithm

is guaranteed [1], and the quantities c10, c20, . . . , cN0, in the 0th component of the

converged vectors c1, . . . , cN correspond to approximations for ū(t1), ū(t2), . . . , ū(tN).

A more precise study of convergence (for the discrete regularization method) is beyond

the scope of this paper, and will be presented elsewhere.

We also consider a variation of the iteration algorithm given above, which appears

to work well in numerical tests (see examples given below). In this case we replace the

minimization of Jm(β) + Ĵm(β0) in (4.8) (Step 2(a) above) with the minimization of

Jm(β) = |||Amβ + Bmc− fm|||N,m,r +αm|||β|||2N,m,r only. We note that in Jm(β), the term

Bmc depends only on previously computed vectors cj, j 6= m, and does not depend on

cm. Thus we do not need a priori initialization of all of the vectors c1, . . . , cN , only the

0th components in each (namely, c10, c20, . . . cN0).

Modified Local Tikhonov Regularization Algorithm:

(1) Initialize the scalars c10, c20, . . .. cN0.

(2) Do for m = 1, . . . , N :

(a) Holding the previously determined values of cj0, j 6= m, fixed and using these

vectors to define

dm ≡ (c10, . . . , cm−R−1,m,0, 0, . . . , 0, cm+R1,m+1,0, . . . , cN0)
T ,

find β̄ ∈ Rlen(m) solving

min
{
|||Amβ + Bmdm − fm|||2N,m,r + αm|||β|||2N,m,r, β ∈ Rlen(m)

}
. (4.9)

(b) Set cm = β̄.

(3) Go to step (2).

Convergence of this modified algorithm will be the subject of a future study (although

numerical examples below indicate that it works well in tests). As before, the

quantities c10, c20, . . . , cN0, in the 0th component of the vectors c1, . . . , cN correspond

to approximations for ū(t1), ū(t2), . . . , ū(tN). See Figure 1.
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Step m:

h h h h h h h x x x h h h h h h

���
���

previously-computed
values

HHH
HHj

�
���

These values are updated at this
step using local regularization.
Only the middle value is retained
for use in step m+ 2 and after.

Step m+1:

h h h h h h h h x x x h h h h h
�

�����

previously-computed
values

H
HHHHj

6

These values are updated at this step
using local regularization, retaining
the middle value for later use

Step m+2:

h h h h h h h h eh x x x h h h h

���
���

previously-computed values,
including a value from step m

HH
HHHj

6

These values are updated at this step
using local regularization, retaining
the the middle value for later use.

6�
�

�
�

�
�

�
�from

step m

Figure 1. Example of the Modified Local Tikhonov Regularization Algorithm
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4.2. Count of Floating Point Operations

Because we use the modified local Tikhonov regularization algorithm in our numerical

examples below, we will briefly describe the operation count for this particular algorithm

and compare the result to standard Tikhonov regularization. In what follows we assume

that the quantities ∆i,j in (4.6) and f(tm + ρn) in (4.7) are already computed. All

operation counts are to highest order.

Fix a value of m = 1, 2, . . . N in the modified regularization algorithm. Then

it is not difficult to show that the computation of Bmdm − fm ∈ Rlen(n) requires

O (N len(m)− len(m)2) operations. Solving the Tikhonov problem (4.9) using the

efficient method of [4] requires O(len(m)3) computations (see [5]). Thus for each full

iteration of the entire local algorithm, the cost (to highest order) is

O

(
N∑

m=1

(
len(m)3 +N len(m)

))
operations. Letting R̄ = maxi,j Ri,j and letting Kiter denote the total number of

iterations, we have that the overall cost of the modified Tikhonov regularization

algorithm is

O
(
NKiterR̄

3 +N2KiterR̄
)

operations.

Thus if R̄ = O
(
N1/2

)
andKiter = O

(
N1/2

)
(reasonable assumptions for most of the

numerical examples below), it follows that the modified local Tikhonov regularization

algorithm requires O (N3) operations, the same cost (to highest order) as standard

Tikhonov regularization applied to the original problem (1.1) [5]. (We note that to

compare the leading constants in these O (N3) counts, it is necessary to have more

information about the constants in the O
(
N1/2

)
assumptions on R̄ and Kiter.)

For R̄ and/or Kiter smaller than O
(
N1/2

)
, the modified local algorithm is

an improvement over standard Tikhonov regularization. Furthermore, if A has

special structure then the cost of the modified algorithm can potentially be reduced

dramatically. For instance, if the kernel k is of convolution type (k(t, s) = κ(t − s)),

then the matrices Am are identical for those m with the same values of Ri,m, i = ±1.

(For example, in our numerical simulations below the kernel is of convolution type and

the Ri,m are the same for nearly all values of m, i = ±1.) In such a situation a good bit

of pre-processing of Am can be performed in advance, resulting in considerable savings

in numerical costs.

4.3. Numerical Examples

In the following examples we consider an operator A of the form (1.2) where the kernel

k comes from the one-dimensional image deblurring example in Section 1, with the
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blurring parameter γ set at γ = 5. In each example, a “true” solution ū was selected

a priori and the data f δ used in the regularization process is a (uniformly distributed)

random perturbation of f = Aū (computed using Mathematica), where f δ differs from

f with approximately 1% relative error. In all examples, N = 20.

Example 4.1 Here we use ū(t) = 3t(1 − t) in order to compare standard Tikhonov

regularization against local Tikhonov regularization on a problem with smooth solution

ū. In Figure 2 we show the results of standard Tikhonov regularization using various

choices of the associated Tikhonov parameter α. In Figure 3, we show the “converged”

solution using the Modified Local Tikhonov Regularization Algorithm given above, for

various choices of local regularization parameters r1(·), r−1(·), and α(·). In this each

figure we use these parameters of the form given by (4.1) and (4.2), where, for given

values of alpha> 0 and r≥ 1 (integer-valued),

αj = alpha, j = 1, . . . , N, (4.10)

R−1,j = min{r, j}, j = 1, . . . , N, (4.11)

R1,j = min{r, N − j}, j = 1, . . . , N. (4.12)

That is, the regularization function α(·) is constant valued, taking the value alpha, while

r−1(·) and r1(·) are constant-valued (taking the value r) except near the boundary of Ω.

In Figure 3 we show the results for (1) r=1 and alpha=.001, (2) r=2 and

alpha=.00005, and (3) r=4 and alpha=.0002. In each case we show the 20th iterate

in the local regularization algorithm, although “convergence” appears to occur much

earlier (by about the 5th iterate in each example).

0.2 0.40.6 0.8 1

0.2
0.4
0.6
0.8
1

alpha=.01

0.2 0.40.6 0.8 1

0.2
0.4
0.6
0.8
1

alpha=.001

0.2 0.40.6 0.8 1

0.2
0.4
0.6
0.8
1

alpha=.00001

Figure 2. Results for Example 4.1 using Tikhonov regularization
for various α values

Example 4.2 Our next example is of a ū with both “steep” and “flat” features,

something that is not handled well by standard Tikhonov regularization with its scalar



Variable-smoothing regularization methods 24

0.2 0.40.6 0.8 1

0.2
0.4
0.6
0.8
1
r=1, alpha=.001

0.2 0.40.6 0.8 1

0.2
0.4
0.6
0.8
1
r=2, alpha=.00005

0.2 0.40.6 0.8 1

0.2
0.4
0.6
0.8
1
r=4, alpha=.0002

Figure 3. Results for Example 4.1 using the Modified Local
Regularization Algorithm

regularization parameter. In this case,

ū(t) =



0, 0 ≤ t ≤ .3

10(t− .3) .3 < t ≤ .4

1 .4 < t ≤ .5

10(.6− t) .5 < t ≤ .6

0 .6 < t ≤ 1

See Figure 4 for the results of standard Tikhonov regularization using various choices

of the regularization parameter. In Figure 5.2 we show that, using a constant-valued

regularization function α(t) =alpha, the performance of local regularization is roughly

comparable to that of standard Tikhonov regularization with α = .000003. We illustrate

using r−1(·), r1(·), and α(·) as defined in (4.10)–(4.12), with (1) r=1 and alpha= 5×10−7

(with “convergence” by iterate #8), and (2) r=2 and alpha= 10−5 (with “convergence”

by iterate #3).

In Figure 5.2, we repeat the same choices of r as above, but now use a variable

α(t).

5. The Volterra problem

The Volterra problem is a special case of the problem given in (1.1) where k(t, s) = 0

for 0 ≤ t < s ≤ 1. In this case, the operator A becomes

Au(t) =

∫ t

0

k(t, s)u(s) ds, a.a. t ∈ Ω, (5.1)

but all the theory developed in Sections 2–3 still applies. Thus from Theorem 3.1 we are

guaranteed convergence of an iterative-type numerical method of local regularization for

the Volterra problem under very general conditions on the kernel k. This is in contrast to

results found in [2, 9, 10, 11, 14, 15, 17] for the sequential local regularization of Volterra

problems. Indeed, despite the fact that sequential methods are easier to implement

and result in very fast numerical schemes, the convergence theory for such methods is

at present limited to mildly smoothing operators A (i.e., those A given by (5.1) with

further restrictions on the kernel k along the line t = s; see, e.g., [11, 17]).
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Figure 4. Results from standard Tikhonov regularization for various α values
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0.2 0.4 0.6 0.8 1
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1

1.25
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r=1: Iterates #1, #2, and #10 for this case, using alpha= 5× 10−7.

“Convergence” appears to have occurred by iterate #8, with only slight changes in iterates after #5.
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-0.5
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1
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r=2: Iterates #1, #2, and #10 for this case, with using alpha= 1× 10−5.

“Convergence” appears to have occurred by iterate #3.

Figure 5. Example 4.2: Local regularization for various choices of constant-valued
regularization functions r−1, r1 (constant, except near the boundary of Ω), and α.
Compare with Figure 5.2, where a variable α = α(t) was used for this same example.
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r=1: Iterates #1, 2, and 10 for this case, using variable α.

“Convergence” appears to have occurred by iterate #3.
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r=2: Iterates #1, 2, and 10 for this case, using variable α.

“Convergence” appears to have occurred by iterate #2.

0.2 0.4 0.6 0.8 1

-0.5
-0.25

0.25
0.5
0.75

1
1.25

iter #4

0.2 0.4 0.6 0.8 1

-0.5
-0.25

0.25
0.5
0.75

1
1.25

iter #5

0.2 0.4 0.6 0.8 1

-0.5
-0.25

0.25
0.5

0.75
1

1.25
iter #35

0.2 0.4 0.6 0.8 1

-0.5
-0.25

0.25
0.5
0.75

1
1.25

iter #1

0.2 0.4 0.6 0.8 1

-0.5
-0.25

0.25
0.5
0.75

1
1.25

iter #2

0.2 0.4 0.6 0.8 1

-0.5
-0.25

0.25
0.5

0.75
1

1.25
iter #3

r=4: Iterates #1–5 and #35 for this case, using variable α.

“Convergence” apparently occurs at iterate #35, with only slight changes in iterates #21–35.

Figure 6. Local Tikhonov regularization for various choices of the (constant-valued)
local regularization parameters r−1, r1, and t-dependent α = α(t).
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The theory developed in Sections 2–3 can be further simplified in the case of the

Volterra operator. In this particular case it makes more sense to replace the local

regularization intervals (−r−1(t), r1(t)] by the half-intervals (0, r1(t)] due to the fact

that the problem Au = f is now a causal problem. That is, the value of the true

solution ū at time t has no impact on the data f(t+ρ) for ρ ∈ (−r−1(t), 0), thus there is

no reason to use data on this earlier interval to estimate ū at time t. This simplification

in the Volterra case results in the following revised definitions of spaces, norms, and

operators needed in Sections 2–3:

X = L2(0, 1); X = L2(Ω;X);

r(·) = r1(·); I[r(t)] = (0, r1(t)]; I[r(t)]{ = (r1(t), 1];

‖ϕ‖2
r,α =

∫
Ω

α(t)

∫
I[r(t)]

|ϕ(t)(ρ)|2 dρ dt, ϕ ∈ Xr

Erϕ(t)(ρ) = ϕ(t)(ρ r1(t)), a.a. ρ ∈ (0, 1], t ∈ Ω, ϕ ∈ Xr.

The definitions of Ar, Br, `, Tr, Cr, Fr, F̄r, etc., are all unchanged from before, except

that now they are constructed using the new definitions of I[r(t)] and I[r(t)]{ given

here. It is straightforward to show that the theory carries over as before with these new

definitions. For more details, see [12].

6. Conclusion

We have proposed a method for the local regularization of linear integral equations of the

first kind. The approach allows for local control of the regularization process, meaning

that there is potential for the resolution of fine/sharp features of solutions without having

to resort to nondifferentiable optimization techniques. Regularization parameters for

this method are functional in nature, and the selection of these parameters is a critical

issue. See [13] for an initial study into this question, which is presently the subject of

an on-going study.
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non différentiables. Numerische Mathematik 18 213–223

[2] Cinzori A C and Lamm P K 2000 Future polynomial regularization of first-kind Volterra operators,
SIAM J. Numerical Analysis 37 949–979

[3] Dobson D C and Santosa F 1996 Recovery of blocky images from noisy and blurred data SIAM
J. Applied Math. 56 1181–1198

[4] Eldén L 1977 Algorithms for the regularization of ill-conditioned least squares problems BIT 17
134–145.

[5] Engl H W, Hanke M, and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht, The
Netherlands: Kluwer Academic Publishers)

[6] Groetsch C W 1984 The Theory of Tikhonov Regularization for Fredholm Equations of the First
Kind (Boston: Pitman)

[7] Hanke, M 2000 Iterative regularization techniques in image reconstruction, in Surveys on Solution
Methods for Inverse Problems, Colton, et al, Eds., Springer, Vienna, pp 35–52.

[8] Lamm P K 1999 A survey of regularization methods for first-kind Volterra equations, preprint.
[9] Lamm P K 1996 Approximation of ill-posed Volterra problems via predictor–corrector

regularization methods SIAM J. Appl. Math. 56 524–541
[10] Lamm P K 1995 Future-sequential regularization methods for ill-posed Volterra equations:

applications to the inverse heat conduction problem J. Math. Anal. Appl. 195 469–494
[11] Lamm P K 1997 Regularized inversion of finitely smoothing Volterra operators: predictor–corrector

regularization methods Inverse Problems 13 375–402
[12] Lamm P K 1997 Solution of ill-posed Volterra equations via variable-smoothing Tikhonov

regularization, Inverse problems in geophysical applications (Yosemite, CA, 1995) SIAM,
Philadelphia, PA, 92–108.

[13] Lamm P K 1999 Variable-smoothing regularization methods for inverse problems, Theory and
Practice of Control and Systems (A. Tornambè, G. Conte and A. M. Perdon, editors), World
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