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Abstract. We examine a new discrete method for regularizing ill-posed Volterra problems.
Unlike many classical regularization techniques (such as Tikhonov regularization), this method pre-
serves the Volterra (causal) nature of the problem allowing the regularized solution to be produced
sequentially in near real time as data arrives. We analyze the method and, for an important class of
Volterra problems, prove that regularized solutions converge to the true solution at the best possible
rate with respect to error in the data.

In fact, the future polynomial regularization method discussed here may be applied to quite
general operator equations provided that the operator may be discretized by a lower-triangular
matrix of Toeplitz type. This enlarges the class of operator equations that may be approximated
using the method, but also introduces degenerate situations in which the future polynomial method
is no more regularizing than an ordinary discretization method. We characterize these degenerate
cases and argue that we are unlikely to see them for the problems of interest here. In particular,
such degeneracies cannot occur for the class of Volterra problems for which we are able to prove the
future polynomial method converges.

Finally we present numerical evidence that this method works well in the recovery of sharp and
discontinuous features in the true solution, features that can be oversmoothed by classical regular-
ization techniques.
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1. Introduction. We consider an inverse problem based on a first-kind Volterra
integral equation of the form

Au = f(1.1)

where A is a bounded linear operator defined on L2(0, 1) by

Au(t) =
∫ t

0

k(t− s)u(s) ds, a.e. t ∈ [0, 1].(1.2)

We will assume that the data function f ∈ L2(0, 1) and the convolution kernel k
are such that (1.1) has a unique solution ū ∈ L2(0, 1) [9]. The usual situation in
applications is that the range of A is not closed; in this case, the inverse problem
defined by (1.1) is ill-posed due to lack of continuous dependence of solutions on data.

A classic example of a problem with this sort of instability is the Inverse Heat
Conduction Problem (IHCP). Consider an insulated semi-infinite bar coincident with
the non-negative x-axis. An unknown, time-varying heat source u(t) is applied to the
end of the bar at x = 0, and the temperature of the bar at position x = 1 is recorded
by the time-varying function f(t). The unknown heat source u(t) is then the solution
of the first-kind equation (1.1), where the kernel k in A is given by

k(t) =
1

2
√
πt3/2

e−1/4t.
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The IHCP is an example of an extremely unstable ill-posed problem. In general,
the level of instability of a first-kind Volterra problem like (1.1) is characterized by
the following property of the kernel k. The kernel k is called ν-smoothing if there
exists an integer ν > 0 such that k ∈ Hν(0, 1) with k(0) = k′(0) = · · · = k(ν−2)(0) = 0
and k(ν−1)(0) 6= 0. As ν increases, the level of instability of the problem increases as
well. The extreme instability of IHCP is illustrated by the fact that k(ν)(0) = 0 for
all ν = 0, 1, 2, . . .. However, as is well known in the literature (and as will be seen in
the numerical examples), even 1-smoothing problems can be sufficiently unstable as
to require some kind of regularization technique in order to obtain useful solutions.

A classical regularization technique such as Tikhonov regularization may be used
to stabilize problems such as (1.1), but such techniques tend to destroy the causal
nature of the Volterra problem. By causal we mean that the original problem (1.1) has
the property that, given t0 ∈ (0, 1), the solution u on the interval [0, t0) is determined
only from the values of f on that same interval; i.e., the solution only depends on
information from the past. In the course of applying a classical method such as
Tikhonov regularization, the problem is transformed in such a way that all values of
f , past and future, are required to find the solution at a given t.

A second drawback of classical methods such as Tikhonov regularization is that
such methods tend to oversmooth solutions. An illustration of the problem may be
seen in Figure 1.1. Here the true solution ū is given by the dashed line and the reg-
ularized solution is given by the solid line. The lack of stability in the problem is
illustrated by the highly oscillatory behavior of the solution provided by simple col-
location. As Tikhonov’s α increases, providing more stability, the Tikhonov solution
loses the peaks in the true solution. Recently other regularization techniques such as
the idea of bounded variation regularization [1, 4, 7, 10, 11, 24] and that of regular-
ization for curve representations [22, 23], have been used to effectively circumvent the
problem of oversmoothing. In addition, better results may be obtained with standard
Tikhonov regularization if the basis elements are chosen to better suit the particular
problem of interest (instead of the somewhat generic piecewise-constant function ap-
proximations used in Figure 1.1). However, none of these methods preserve the causal
nature of Volterra problems and, additionally, several can require a reformulation of
the original linear problem (or quadratic problem, if viewed in a least-squares sense)
into a nondifferentiable or nonquadratic optimization problem.

We present here a regularization method which both preserves the causal nature
of the original problem (1.1) and avoids oversmoothing of the regularized solution. In
addition, the regularization is performed in least-squares setting, avoiding a reformu-
lation into a nondifferentiable or nonquadratic optimization problem.

2. Discrete regularization methods. For simplicity in what follows, we will
assume henceforth that the convolution kernel k in (1.1) is real-valued and continuous,
and that k(t) 6= 0 for all t > 0 sufficiently small.

We let N = 1, 2, . . . be fixed and define the discretization stepsize h = 1/N , with
ti = ih for i = 0, 1, . . . , N . For i = 2, 3, . . . , N , let χi(t) be the indicator function on
the interval (ti−1, ti] (i.e., χi(t) = 1, t ∈ (ti−1, ti], and χi(t) = 0, otherwise), and let
χ1 be the indicator function on [t0, t1]. Let SN = span{χi} denote an approximation
space of piecewise constant functions on [0, 1].

To motivate our ideas, we first consider a standard discretization of the original
problem (1.1). A simple collocation of (1.1) involves finding q ∈ SN , i.e., q of the
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Fig. 1.1. Tikhonov regularization

form

q(t) =
N∑

j=1

cjχj(t), t ∈ [0, 1],(2.1)

where the constants cj ∈ R, j = 1, . . . , N , are determined by requiring that q solve
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the collocation equations

Aq(ti) = f(ti), i = 1, 2, . . . , N.(2.2)

(See [3], for example.) Because A is Volterra this collocation process leads to a lower-
triangular Toeplitz matrix equation

Ac = f ,(2.3)

where A ∈ RN×N and f ∈ RN are given by

A =


∆1 0 · · · 0
∆2 ∆1 · · · 0
...

...
. . .

...
∆N ∆N−1 · · · ∆1

 , f =


f1
f2
...
fN

 ,(2.4)

and where, for i = 1, . . . , N ,

∆i =
∫ t1

0

k(ti − s) ds,(2.5)

fi = f(ti).(2.6)

In the above we have used the fact that, for 1 ≤ j ≤ i ≤ N ,

Aχj(ti) =
∫ tj

tj−1

k(ti − s) ds

=
∫ t1

t0

k(ti−j+1 − s) ds

= ∆i−j+1.(2.7)

Under the stated conditions on k, it is clear that ∆1 6= 0 for all h sufficiently small,
and thus that there is a unique solution (c1, . . . , cN )T ∈ RN of (2.3).

In order to motivate what is to follow, we note that the algorithm described by
(2.2) (equivalently (2.3)) may alternatively be formulated in a sequential least-squares
setting as follows.

Sequential Collocation Algorithm:
Assuming c1, . . . , ci−1 have already been determined, find ci ∈ R so
that

ci = arg min
c∈R

Ji(c),(2.8)

where

Ji(c) =

A
i−1∑

j=1

cjχj + cχi

(ti)− f(ti)

2

.(2.9)

Although the finite-dimensional procedure (2.8)–(2.9) is now a well-posed problem,
it tends to be poorly-conditioned as can be seen clearly if ∆1 is small relative to the
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off-diagonal entries in the leading matrix in the equivalent matrix equation (2.3); this
ill-conditioning leads to poor approximations unless N is small.

In the 1960’s, J. V. Beck (see, for example, the survey in [2]) proposed a regular-
izing variation of this procedure for the solution of the IHCP. The idea behind this
method (generalized here to include all Volterra problems of the form (1.1)) is based
on the selection of a regularization parameter r, where (r − 1)h is the length of a
future regularization interval. This algorithm is given as follows:

Sequential “Future Constant Regularization” Algorithm:
Let r ≥ 1 be a fixed integer. Assuming c1, . . . , ci−1 have already been
determined, find ci ∈ R such that

ci = arg min
c∈R

Ji,r(c),(2.10)

where

Ji,r(c) =
r−1∑
l=0

A
i−1∑

j=1

cjχj +c
l∑

m=0

χi+m

(ti+l)− f(ti+l)

2

.(2.11)

For r = 1, this algorithm reduces to the sequential collocation algorithm (2.8)–(2.9),
where one finds ci to be the constant-valued solution on the interval [ti−1, ti] which
best matches model to data at the single point ti. For r > 1, the procedure in (2.10)–
(2.11) adds regularization to the ith step by defining ci to be the best constant-valued
solution on the (present, plus future) interval [ti−1, ti−1+r], where now “best” is in
the sense of a least-squares fit of model to data at r discrete points in that extended
interval. However, ci is only retained as the value of the solution on the interval
[ti−1, ti], as the remainder of the rigid solution on [ti, ti−1+r] is dropped as soon as
one starts the least-squares fitting procedure all over again with the (i+ 1)st step.

Although the future constant algorithm (2.10)–(2.11) is easily implemented and
has been found to be an effective sequential regularization method for the approximate
solution of (1.1) (see [2] and the theoretical studies in [12, 13, 14]), the method tends
to oversmooth regularized solutions. (Numerical examples illustrating this behavior
may be found in §6.) Indeed this is not surprising since the constant ci at the ith step
is determined by temporarily forcing the discretized solution to remain constant on an
extended future interval. We present here a method which is a direct generalization
of (2.10)–(2.11) but which does not seem to suffer from the same drawback. This
generalization uses a second regularization parameter d ≥ 0 where d is an integer (in
addition to the regularization parameter r). We will use the notation Pd to denote
the space of real-valued polynomials of degree d or less.

Sequential “Future Polynomial Regularization” Algorithm:
Let d ≥ 0 and r ≥ 1 be integers. Assuming c1, . . . , ci−1 have already
been determined, find ci ∈ R such that

ci = pi,r,d(ti)(2.12)

where the polynomial pi,r,d ∈ Pd is determined by

pi,r,d = arg min
p∈Pd

Ji,r,d(p),(2.13)
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where, for any p ∈ Pd,

Ji,r,d(p)(2.14)

=
r−1∑
l=0

A
i−1∑

j=1

cjχj +
l∑

m=0

p(ti+m)χi+m

(ti+l)−f(ti+l)

2

.

Thus while the future constant algorithm determines ci at the ith step by temporarily
forcing a constant-valued solution on an interval of length rh, the future polynomial
method enforces less rigidity by seeking a dth-degree polynomial solution on the same
interval. In both cases, the rigid solution is only used temporarily (as the value on the
future interval is dropped as soon as one goes to the (i+1)st step); nevertheless one can
see how oversmoothing might be prevented by taking d > 0. We note that for d = 0
the future polynomial method reduces to the future constant method. We should
also remark that, for the special case of d = 1, a variation of the above algorithm
was proposed in [2], where there the solution q was sought in the space of continuous
linear spline functions. As noted in [19], however, imposing continuity on q may not
be an advantage in the solution of first-kind Volterra problems because the resulting
approximating equations tend to be less stable.

For the future polynomial method, both r and d function as regularization param-
eters. In general we will take r ≥ d+2 since forcing fewer than d+2 points to lie on a
dth degree polynomial is no restriction at all and thus provides no regularization. In
fact, when r ≤ d+ 1 the future polynomial method reduces to the simple collocation
algorithm (2.8)–(2.9). Thus we will generally restrict consideration to r ≥ d + 2 un-
less we wish to make a comparison with standard collocation (which we will represent
using r = d + 1). We also note that increasing r provides more regularization, while
increasing d provides less regularization. In addition, since the case of r = d + 2 is
the first case where regularization occurs, we will focus at times in what follows on
this case, viewing it as a one-parameter family (in the parameter r) of regularization
techniques.

Because the future polynomial regularization method is based on holding the
solution temporarily rigid on a small future interval, it is clear that we either need to
extend the original problem (1.1) a little past [0, 1], or else settle for approximating u
on [0, 1− ε], where ε > 0 is small. We will take the former approach here and assume
that there is T > 1 such that equation (1.1) holds on the interval [0, T ], where k and
f are both defined on this extended interval.

3. Future polynomial regularization. As seen in §2, equation (2.3) is the
matrix equation in the unknown vector c = (c1, . . . , cN )T associated with the se-
quential collocation algorithm (2.8)–(2.9). In what follows we derive an analogous
equation in c which is equivalent to the algorithm (2.12)–(2.14) of future polynomial
regularization. Throughout this section we will assume that r ≥ d+1, with r ≥ d+2
corresponding to the regularized cases. We will also assume that N is sufficiently
large so that r ≤ N .

To make precise the selection of the ith polynomial pi,r,d ∈ Pd defined in (2.13),
we let bi,0, bi,1, . . . , bi,d be real scalars and make the definition

pi,r,d(t) =
d∑

j=0

1
hj
bi,j(t− ti−1)j .(3.1)
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Then pi,r,d(ti+m) =
∑d

j=0 bi,j(m+ 1)j , and Ji,r,d defined in (2.14) may be expressed
as a function of bi,j , j = 0, 1, . . . , d. To this end, we use (2.6) and (2.7) to write Ji,r,d

as

Ji,r,d(bi,0, . . . , bi,d)

=
r−1∑
l=0

i−1∑
j=1

cj∆i+l−j+1

+
l∑

m=0

 d∑
j=0

bi,j(m+ 1)j

∆l−m+1 − fi+l

2

=
r−1∑
l=0

i−1∑
j=1

cj∆i+l−j+1

+
d∑

j=0

bi,j

(
l∑

m=0

(m+ 1)j∆l−m+1

)
− fi+l

2

=
r−1∑
l=0

i−1∑
j=1

cj∆i+l−j+1

+
d∑

j=0

bi,jKl,j − fi+l

2

,

where

Kl,j =
l∑

m=0

(m+ 1)j∆l−m+1, l = 0, 1, . . . , r − 1, j = 0, 1, . . . , d.(3.2)

Necessary conditions for the minimization of Ji,r,d with respect to bi,k, for k = 0, . . . , d,
are then

d∑
j=0

bi,j

(
r−1∑
l=0

Kl,jKl,k

)
=

r−1∑
l=0

fi+l −
i−1∑
j=1

cj∆i+l−j+1

Kl,k(3.3)

for k = 0, 1, . . . , d, a system in the d+ 1 unknowns, bi,0, bi,1, . . . , bi,d.
Let bi ∈ Rd+1 and vl,r, f l,r ∈ Rr, l = 1, . . . , N be defined by

bi = (bi,0, bi,1, . . . , bi,d)T(3.4)
vl,r = (∆l,∆l+1, . . . ,∆l+r−1)T(3.5)
f l,r = (fl, fl+1, . . . , fl+r−1)T ,(3.6)

and define the r×(d+1) matrix K by (K)i,j = Ki,j , for i = 0, . . . , r−1, j = 0, . . . d.
That is,

K =


∆1 ∆1 · · · ∆1

∆1 + ∆2 2∆1 + ∆2 · · · 2d∆1 + ∆2

∆1 + ∆2 + ∆3 3∆1 + 2∆2 + ∆3 · · · 3d∆1 + 2d∆2 + ∆3

...
...

...
∆1 + · · ·+ ∆r r∆1 + · · ·+ ∆r · · · rd∆1 + · · ·+ ∆r

 .

It is easy to see that K = LV , where L ∈ Rr×r is the leading r × r block of A in
(2.3), namely,

L =


∆1 0 · · · 0

∆2 ∆1
. . .

...
...

...
. . . 0

∆r ∆r−1 · · · ∆1

 ,(3.7)
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and V ∈ Rr×(d+1) is defined by

V =


1 1 1 · · · 1
1 2 4 · · · 2d

...
...

...
...

1 r r2 · · · rd

 .(3.8)

Note that V is a Vandermonde matrix and so is of full rank (d + 1) and that L is
invertible (since ∆1 6= 0 from the assumptions on the kernel k). Thus K is of full
rank (d+ 1).

Using these definitions we may write system (3.3) as a matrix equation in the
unknown vector bi,

KT Kbi = KT (f i,r −
i−1∑
j=1

cjvi+1−j,r),(3.9)

or, since KT K is invertible, we may use K+ = (KT K)−1KT to denote the (Moore-
Penrose) pseudoinverse of K (see, for example, [5]) and write

bi = K+

f i,r −
i−1∑
j=1

cjvi+1−j,r

 .(3.10)

From the above arguments we see that pi,r,d defined in (3.1) (using the components
of bi in (3.10) as coefficients) is the unique minimizer in Pd of Ji,r,d in (2.14). Now
the remaining work in the ith step of the future polynomial algorithm (2.12)–(2.14)
is to set ci = pi,r,d(ti). That is,

ci =
d∑

j=0

1
hj
bi,j(ti − ti−1)j

= bT
i (1, . . . , 1)T

=

f i,r −
i−1∑
j=1

cjvi+1−j,r

T(
KT

)+

(1, . . . , 1)T(3.11)

where we have used the fact that (K+)T = (KT )+ [5] and where (1, . . . , 1)T is a
vector in Rd+1.

Using the above construction we may write a precise expression which allows
for the determination of the ci’s via a single matrix equation. To this end, we note
from (3.11) that ci satisfies, for i = 1, . . . , N ,

i−1∑
j=1

cj

(
vT

i+1−j,r(K
T )+(1, . . . , 1)T

)
+ ci = fT

i,r(K
T )+(1, . . . , 1)T .

That is,

(Ã + α̃I)c = f̃ ,(3.12)
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where I denotes the N ×N identity matrix, c = (c1, . . . , cN )T ,

Ã =


∆̃1 0 · · · 0

∆̃2 ∆̃1
. . .

...
...

...
. . . 0

∆̃N ∆̃N−1 · · · ∆̃1

 , f̃ =


f̃1
f̃2,
...
f̃N

 ,(3.13)

and

α̃ = 1− ∆̃1,(3.14)

with ∆̃i = vT
i,r(K

T )+(1, . . . , 1)T , f̃i = fT
i,r(K

T )+(1, . . . , 1)T , for i = 1, . . . , N . That
is,

∆̃i =
r∑

l=1

τl∆i+l−1,(3.15)

f̃i =
r∑

l=1

τlfi+l−1,(3.16)

for i = 1, . . . , N , where τ = (τ1, . . . , τr)T ∈ Rr is given by

τ =
(
KT

)+

(1, . . . , 1)T ,(3.17)

for (1, . . . , 1)T ∈ Rd+1. We note that the dependence of many of the above quantities
on r, d, and N has been suppressed.

So it is clear that the constants ci determined by the future polynomial algorithm
(2.12)–(2.14) are equivalently found as the solution of (3.12), a matrix equation which
is always consistent and which retains the lower triangular (causal), Toeplitz structure
associated with approximations of the original unregularized problem (1.1).

An interesting result is that equation (3.12) also arises in another setting, namely,
that of a collocation-based discretization of a second-kind Volterra equation, one
that is a variation of the original Volterra problem (1.1). This is the content of the
theorem which follows, a result which places the future polynomial regularization
method in (a generalization of) the class of regularization methods developed in [13],
a class which has already been shown to include the future constant method that
Beck applied to the IHCP. In addition, because we know that second-kind Volterra
equations are well-posed, this result gives us hope that this particular method offers
improved regularization over simple collocation alone.

Theorem 3.1. Let d ≥ 0 and r ≥ d + 1 be given integers, and let h = 1/N for
fixed N = 1, 2, . . .. Define ∆r = (r− 1)h. Then the solution q(·) ∈ SN given by (2.1)
of the future polynomial regularization algorithm (2.12)–(2.14) satisfies the following
Volterra equation∫ t

0

k̃(t− s;∆r)u(s) ds+ α(∆r)u(t) = f̃(t;∆r), t ∈ [0, 1],(3.18)

exactly at collocation points ti = ih, i = 1, . . . , N , where

k̃(t;∆r) =
∫ ∆r

0

k(t+ ρ) dη∆r(ρ),(3.19)
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f̃(t;∆r) =
∫ ∆r

0

f(t+ ρ) dη∆r(ρ),(3.20)

α(∆r) =
∫ ∆r

0

∫ ρ

0

k(ρ− s) ds dη∆r(ρ),(3.21)

and where η∆r is a discrete signed measure defined for bounded g on [0,∆r] by∫ ∆r

0

g(ρ) dη∆r(ρ) =
r∑

l=1

τlg(tl−1),(3.22)

with τ = (τ1, . . . , τr)T defined in (3.17). If α(∆r) 6= 0, then (3.18) is a Volterra
integral equation of second kind, with solutions depending continuously on data.

Proof. We show that the collocation-based discretization of (3.18) leads precisely
to equation (3.12). Defining the ∆r-dependent operator Ã by

Ãu(t) =
∫ t

0

k̃(t− s;∆r)u(s) ds, t ∈ [0, 1],

for u ∈ L2(0, 1), we note that for 1 ≤ j ≤ i ≤ N ,

Ãχj(ti) =
∫ tj

tj−1

∫ ∆r

0

k(ti + ρ− s) dη∆r(ρ) ds

=
r∑

l=1

τl

∫ tj

tj−1

k(ti + tl−1 − s) ds

=
r∑

l=1

τl

∫ t1

0

k(ti+l−j − s) ds

=
r∑

l=1

τl∆i+l−j

= ∆̃i−j+1,

where ∆̃i is defined in (3.15). Thus Ãq(ti) =
∑i

j=1 cj∆̃i−j+1, for i = 1, . . . , N . In
addition, f̃(ti;∆r) =

∑r
l=1 τlf(ti + tl−1) = f̃i, for i = 1, . . . , N . It remains to show

that α(∆r) = α̃ = 1− ∆̃1. From (3.21) and (3.22),

α(∆r) =
r∑

l=1

τl

∫ tl−1

0

k(tl−1 − s) ds,(3.23)

where a change of integration variable gives

α(∆r) =
r∑

l=1

τl

[∫ tl

0

k(tl − s) ds−
∫ t1

0

k(tl − s) ds
]

=
r∑

l=1

τl [(∆1 + · · ·+ ∆l)−∆l](3.24)

= (Ke1)T τ − ∆̃1,
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where ∆̃1 is defined in (3.15). Thus, using the definitions of τ in (3.17),

α(∆r) =
(
K+Ke1

)T
(1, . . . , 1)T − ∆̃1

= 1− ∆̃1(3.25)

where we have additionally used the fact that K has full column rank and thus
K+Ke1 = e1.

Finally, we close the section by summarizing the three equivalent characterizations
of the future polynomial regularization method that we have found. The method may
be viewed as

• A sequential algorithm (2.12)–(2.14), in which the solution is found by solving
a sequence of regularized least-squares problems over small future intervals;

• A second-kind matrix equation (3.12), a perturbation of the original first-kind
matrix equation (2.3); and,

• A collocation-based discretization of a second-kind Volterra equation (3.18)
related to the original Volterra problem (1.1). In this case, the solution is
given by

∑N
j=1 cjχj(·), where (c1, . . . , cN )T satisfies, for i = 1, . . . , N ,

ciα(∆r) +
∫ ti

0

k̃(ti − s;∆r)
i∑

j=1

cjχj(s) ds = f̃(ti;∆r),(3.26)

with ∆r = (1 − r)h; here k̃, f̃ , and α(∆r) are defined in (3.19)–(3.21),
respectively.

The third approach gives a useful characterization when it comes to proving conver-
gence in the next section.

4. Convergence of the Future Polynomial Regularization Method. In
this section we prove convergence of the solution provided by the future polynomial
method to the true solution ū of (1.1) in the case of r = d+ 2, for d = 0, 1, . . . fixed.
Throughout the section, all function norms will be the L∞-norm and all vector and
matrix norms will be the 2-norm unless otherwise noted.

We will also make the following standing hypotheses throughout this section.
Assume that ū, k ∈ C1[0, T ] with k(0) 6= 0. Without loss of generality we will let
k(0) = 1, so that ∆1 > 0 for all h sufficiently small. In addition we consider a
perturbation fδ of the data function f , where fδ(t) = f(t) + e(t), t ∈ [0, T ], with
e piecewise continuous on [0, T ] and such that ‖e‖ ≤ δ for some fixed δ > 0. As
is typical of classical theory for discrete regularization methods, convergence occurs
provided the stepsize h is selected in accordance with the amount δ of error in the
data.

Theorem 4.1. Let r = d + 2 for fixed d = 0, 1, . . . and let h = 1/N . Let
uh(·; r, fδ) =

∑N
j=1 cjχj denote the solution given by the sequential future polynomial

algorithm (2.12)–(2.14) for given h, r, and where fδ replaces f in (2.14). Then, if
h ∼ c

√
δ for any constant c > 0, convergence of uh(t; r, fδ) to ū(t) occurs at the

collocation points as δ → 0, at the best possible rate with respect to the level of error
in the data. That is,

|uh(tj ; r, fδ)− ū(tj)| ≤ δ1/2C(r) +O(δ), j = 1, . . . , N(δ),(4.1)

as δ → 0 where C(r) is a positive constant and N(δ) = 1/h(δ).
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As in [12], the theory is developed by viewing the regularization method as a
discretization of a second-kind Volterra equation of the form (3.18) with a specified
measure η∆r. We depart from [12], however, in that our measure η∆r need not be
positive and the quantity α(∆r) in (3.21) may actually be zero.

Before turning to the proof we will need a few preliminary technical results re-
garding the size as h → 0 of α(∆r) and τ (given in (3.21) and (3.17), respectively,
with ∆r = (r − 1)h).

Lemma 4.2. Let r = d + 2 for fixed d = 0, 1, . . .. Let h > 0 be small and
∆r = (r − 1)h. If the matrix L defined by (3.7) is such that

[
(LT )−1n1

]
1
> 1/∆1,

for n1 ∈ Rd+2 given by

n1 =
((

d+ 1
0

)
,−
(
d+ 1

1

)
, . . . , (−1)d+1

(
d+ 1
d+ 1

))T

,(4.2)

then 0 ≤ α(∆r) < 1.

Proof. Recall that τ as defined by (3.17) is the minimum norm solution of

KT x = (1, . . . , 1)T ,

where (1, . . . , 1)T ∈ Rd+1. But (1/∆1)KT e1 = (1, . . . , 1)T , so it follows that

τ =
1

∆1
e1 + z(4.3)

for some z ∈ N (KT ), the nullspace of KT . Now for r = d + 2, the nullspace of
V T is 1-dimensional, and using a combinatorial result (see, for example, [6]) one can
show that N (V T ) = span{n1}. So, since z ∈ N (KT ) = N (V T LT ), it follows that z
satisfies LT z = an1 for an appropriate scalar a. That is,

τ =
1

∆1
e1 + a(LT )−1n1

where a is chosen minimizing ‖τ‖2,

‖τ‖2 =
1

∆1
‖e1‖2 +

2a
∆1

〈
e1, (LT )−1n1

〉
+ a2‖(LT )−1n1‖2,

where 〈·, ·〉 denotes the usual Euclidean inner product on Rr. Thus a satisfies

2
∆1

〈
e1, (LT )−1n1

〉
+ 2a‖(LT )−1n1‖2 = 0,

or

|a| = |〈e1, (LT )−1n1〉|
∆1‖(LT )−1n1‖2

≤ 1
∆1‖(LT )−1n1‖

.

Since 1/∆1 <
[
(LT )−1n1

]
1
≤ ‖(LT )−1n1‖, we have that |a| < 1.
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In addition, it follows from (4.3) and the definition of τ that ‖τ‖ ≤ 1/∆1, and
thus |τ1| ≤ 1/∆1. But τ1 = 1/∆1 + a

[
(LT )−1n1

]
1

where
[
(LT )−1n1

]
1
> 0, so it

must be that −1 < a ≤ 0.
Finally, we show that α(∆r) = −a. From (3.24),

α(∆r) =
r∑

l=2

τl(∆1 + . . .+ ∆l−1)

=
〈
τ ,L(0, 1, . . . , 1)T

〉
(4.4)

=
〈

1
∆1

e1 + a(LT )−1n1,L(0, 1, . . . , 1)T

〉
=
〈
e1 + an1, (0, 1, . . . , 1)T

〉
= a

〈
n1, (0, 1, . . . , 1)T

〉
.

A simple combinatorial result gives 〈n1, (1, . . . , 1)T 〉 = 0, from which it follows that

α(∆r) = −a
(
d+ 1

0

)
= −a,

and the proof is complete.

Lemma 4.3. Let r = d + 2 for fixed d = 0, 1, . . .. Then there are constants
0 ≤ w(r) < 1 and M(r) > 0 independent of h such that

(i) 0 ≤ α(∆r) ≤ w(r) < 1, and
(ii) ‖hτ‖1 ≤M(r),

for all h > 0 sufficiently small. Here ‖ · ‖1 denotes the usual vector 1-norm on Rr.

Proof. We recall from (4.4) and (3.17) that

α(∆r) = (0, 1, . . . , 1)LT τ

= (0, 1, . . . , 1)(K+L)T (1, . . . , 1)T(4.5)

where (0, 1, . . . , 1)T ∈ Rr, (1, . . . , 1)T ∈ Rd+1, and where

K+L = (KT K)−1KT L

= (V T LT LV )−1V T LT L.(4.6)

The proof of the theorem will involve viewing the problem for k satisfying the
assumptions of this section as a perturbation of the problem associated with k(t) ≡ 1.
We first consider (i) and (ii) in the statement of the lemma for the special case of
k(t) ≡ 1. We will denote the usual r×(d+1) K-matrix associated with this particular
kernel by K1. Similarly, we will use α1(∆r), τ 1, L1, and V 1 to designate α(∆r), τ ,
L, and V for this kernel (where all of these quantities depend on h). In particular,
we have for L1 ∈ Rr×r,

L1 = h

 1 0
...

. . .
1 · · · 1

 , L−1
1 =

1
h


1 0
−1 1

. . . . . .
0 −1 1

 .(4.7)
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Let L̂1 = 1
hL1. Then from (4.6), we know that

K+
1 L1 = (V T

1 L̂
T

1 L̂1V 1)−1V T
1 L̂

T

1 L̂1(4.8)

where L̂1 and V 1 are independent of h. It then follows from (4.5) that α1(∆r) = C1(r)
for some constant C1(r) independent of h > 0. In addition, for the kernel k(t) ≡ 1
and any fixed h > 0, we have for n1 defined in (4.2),[

(LT
1 )−1n1

]
1

= (1/h)
((

d+ 1
0

)
+
(
d+ 1

1

))
≥ 2/h(4.9)
> 1/h

so that the conditions of Lemma 4.2 hold. From this it follows that 0 ≤ C1(r) < 1.
To bound hτ 1, we note that

hτ 1 = h(K+
1 )T (1, . . . , 1)T

= L̂1V 1(V T
1 L̂

T

1 L̂1V 1)−1(1, . . . , 1)T

= w1(r)(4.10)

where w1(r) ∈ Rr is independent of h > 0.
Now we return to the case of a general k satisfying the hypotheses of this section.

A Taylor expansion gives k(ti − s) = k(0) + gi(s, h) where |gi(s, h)| = O(h) for
i = 1, . . . , r and a.e. s ∈ [0, h]. Now for each i = 1, . . . , r, we have from (2.5) that

∆i =
∫ t1

0

[1 + gi(s, h)] ds

= h(1 + θi(h)),(4.11)

where θi is an appropriately chosen O(h) function for i = 1, . . . , r. For all h sufficiently
small, ∆i > 0 for i = 1, . . . , r. The r× r L-matrix for this kernel may thus be written
L = L1 + hH, where L1 is defined in (4.7) and H ∈ Rr×r is given by

H =

 θ1(h) 0
...

. . .
θr(h) · · · θ1(h)

 .(4.12)

Clearly ‖H‖ is O(h) as h→ 0 for fixed r.

Let L̂ = (1/h)L. Then L̂
T

= L̂
T

1 + HT , where L̂1 = (1/h)L1 is independent of
h. We may thus write

L̂
T

= L̂
T

1 (I + F )

where F = (L̂
T

1 )−1HT is such that ‖F ‖ = O(h) as h → 0. For all h > 0 sufficiently
small we have ‖F ‖ < 1, so, using [25, page 188],

‖(L̂
T
)−1n1 − (L̂

T

1 )−1n1‖ ≤
‖F ‖

1− ‖F ‖
‖(L̂

T

1 )−1n1‖,
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where the right-hand side of this inequality goes to zero with h. In particular,

[(L̂
T
)−1n1]1

h→0−→ [(L̂
T

1 )−1n1]1

where from (4.9), [(L̂
T

1 )−1n1]1 ≥ 2. Since h/∆1 = h/[h(1 + θ1(h))] = 1/(1 + θ1(h)),

then for all h > 0 sufficiently small we have [(L̂
T
)−1n1]1 > h/∆1 or [(LT )−1n1]1 >

1/∆1. Thus for all h sufficiently small we have 0 ≤ α(∆r) < 1 by Lemma 4.2.
To obtain the bound in (i) in the statement of the lemma, we use (4.5) to write

|α(∆r)− α1(∆r)| = |(0, 1, . . . , 1)(K+L−K+
1 L1)T (1, . . . , 1)T |

≤ C‖K+L−K+
1 L1‖

for some C > 0 independent of h. But

‖K+L−K+
1 L1‖ ≤ ‖K+L−K+L1‖+ ‖K+L1 −K+

1 L1‖
≤ ‖K+‖ ‖L−L1‖+ ‖K+ −K+

1 ‖ ‖L1‖
≤ ‖K+ −K+

1 ‖ (‖L−L1‖+ ‖L1‖) + ‖K+
1 ‖ ‖L−L1‖.

Let E = K − K1 = (L − L1)V = hHV , where here we have used the fact that
V = V 1. Then ‖E‖ is O(h2) and we see from (4.8) that ‖K+

1 ‖ is O(1/h). So, for
h sufficiently small, we have ‖E‖ ‖K+

1 ‖ < 1. With this information, we may use a
perturbation bound on the pseudoinverse [18, page 46] to get

‖K+ −K+
1 ‖ ≤

√
2‖E‖ ‖K+

1 ‖2

1− ‖E‖ ‖K+
1 ‖

so that ‖K+ −K+
1 ‖ ≤M1 for all h sufficiently small. Thus for h small,

‖K+L−K+
1 L1‖ ≤M1(h‖H‖+ ‖L1‖) + h‖K+

1 ‖ ‖H‖

where ‖L1‖ = O(h). It follows that ‖K+L − K+
1 L1‖ → 0 as h → 0, and that

α(∆r) → α1(∆r) = C1(r) ∈ [0, 1) as h→ 0. If we define

w(r) =
1
2
(1 + C1(r)),

it follows that 0 < w(r) < 1 and 0 ≤ α(∆r) ≤ w(r) for all h > 0 sufficiently small.
Thus the estimate in part (i) of the lemma is valid.

Turning to (ii) we observe that

‖τ − τ 1‖ = ‖((K+)T − (K+
1 )T )(1 · · · 1)T ‖

≤ C2‖K+ −K+
1 ‖

for some constant C2 > 0 independent of h > 0. Since ‖K+ − K+
1 ‖ ≤ M1 for all

h > 0 sufficiently small, we have

‖τ‖1 ≤ C3M1 + ‖τ 1‖1(4.13)

for some C3 > 0 independent of h > 0 and so from (4.10),

h‖τ‖1 ≤ hC3M1 + ‖w1(r)‖1

≤M(r),
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where M(r) ≡ 1 + ‖w1(r)‖1 is a constant independent of h for all h > 0 sufficiently
small. It follows that the bound in (ii) holds and the proof of the lemma is complete.

Finally we return to the proof of the main theorem of this section which concerns
the convergence of the future polynomial regularization method.

Proof of Theorem 4.1. Let ∆r = (r − 1)h and consider the future polynomial
equation (3.26) in ci (which is equivalent to (2.12)–(2.14)), now using noisy data fδ

in place of f ,

ciα(∆r) +
∫ ti

0

k̃(ti − s;∆r)
i∑

j=1

cjχj(s) ds = f̃δ(ti;∆r),(4.14)

for i = 1, . . . , N . Subtracting (4.14) from a similar equation evaluated at ti+1 yields

ci+1α(∆r) +
∫ ti+1

ti

k̃(ti+1 − s;∆r)ci+1χi+1(s) ds

=
∫ ∆r

0

[fδ(ti+1 + ρ)− fδ(ti + ρ)] dη∆r(ρ)

−
i∑

µ=1

∫ tµ

tµ−1

[
k̃(ti+1 − s;∆r)− k̃(ti − s;∆r)

]
cµχµ(s) ds

+ ciα(∆r),(4.15)

for i = 1, . . . , N − 1.
We perform a similar differencing on an equation satisfied by the true solution ū.

Since ū satisfies (1.1) on [0, T ], we have that∫ t+ρ

0

k(t+ ρ− s)ū(s) ds = f(t+ ρ), t ∈ (0, 1], ρ ∈ [0,∆r],(4.16)

so ū also satisfies∫ ∆r

0

∫ t+ρ

0

k(t+ ρ− s)ū(s) ds dη∆r(ρ) =
∫ ∆r

0

f(t+ ρ) dη∆r(ρ),

or, after splitting a term and changing the order of integration,∫ t

0

k̃(t− s;∆r)ū(s) ds+
∫ ∆r

0

∫ ρ

0

k(ρ− s)ū(t+ s) ds dη∆r(ρ)

=
∫ ∆r

0

f(t+ ρ) dη∆r(ρ), t ∈ (0, 1].(4.17)

Evaluating (4.17) at t = ti and t = ti+1 and subtracting the first from the second
yields

α(∆r)ū(ti+1) +
∫ ti+1

ti

k̃(ti+1 − s;∆r)ū(s) ds

=
∫ ∆r

0

[f(ti+1 + ρ)− f(ti + ρ)] dη∆r(ρ)
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−
i∑

µ=1

∫ tµ

tµ−1

[
k̃(ti+1 − s;∆r)− k̃(ti − s;∆r)

]
ū(s) ds+ α(∆r)ū(ti)

−

{∫ ∆r

0

∫ ρ

0

k(ρ− s) [ū(ti+1 + s)− ū(ti+1)] ds dη∆r(ρ)

−
∫ ∆r

0

∫ ρ

0

k(ρ− s) [ū(ti + s)− ū(ti)] ds dη∆r(ρ)

}
,(4.18)

for i = 1, . . . , N − 1.
Finally, subtracting (4.15) from (4.18),

α(∆r)[ū(ti+1)− ci+1] +
∫ ti+1

ti

k̃(ti+1 − s;∆r)[ū(s)− ci+1χi+1(s)] ds

= −
∫ ∆r

0

[e(ti+1 + ρ)− e(ti + ρ)] dη∆r(ρ)

−
i∑

µ=1

∫ tµ

tµ−1

[
k̃(ti+1 − s;∆r)− k̃(ti − s;∆r)

]
[ū(s)− cµχµ(s)] ds

+ α(∆r)[ū(ti)− ci]

−

{∫ ∆r

0

∫ ρ

0

k(ρ− s) [ū(ti+1 + s)− ū(ti+1)] ds dη∆r(ρ)

−
∫ ∆r

0

∫ ρ

0

k(ρ− s) [ū(ti + s)− ū(ti)] ds dη∆r(ρ)

}
,(4.19)

for i = 1, . . . , N − 1.
A Taylor expansion of ū(t) at ti+1 yields

ū(t)− ci+1χi+1(t) = h

[
ū(ti+1)− ci+1

h
+
t− ti+1

h
ū′(ζi+1(t))

]
,(4.20)

for t ∈ (ti, ti+1], i = 0, . . . , N − 1, and ζi+1(t) ∈ (t, ti+1), i = 0, . . . , N − 1. We thus
define

βi+1 =
ū(ti+1)− ci+1

h
,(4.21)

for i = 0, . . . , N − 1, and using (4.20) and (4.21) in (4.19) we find (using arguments
similar to those in [12]) that

βi+1 = W (r, h)βi − h
i∑

µ=1

Yi+1,µ(r, h)βµ −
1
h2
Ei+1(δ, r, h)− Zi+1(r, h),(4.22)

for i = 1, . . . , N − 1, where, for appropriate ψ-variables,

W (r, h) =

∫ ∆r

0

∫ ρ/h

0

k(ρ− sh) ds dη∆r(ρ)

d(r, h)
,
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and for µ = 1, . . . , i, i = 1, . . . , N − 1,

Yi+1,µ(r, h) =

∫ 1

0

∫ ∆r

0

k′(ψi+1,µ,h(s, ρ)) dη∆r(ρ) ds

d(r, h)
,

Ei+1(δ, r, h) =

∫ ∆r

0

[e(ti+1 + ρ)− e(ti + ρ)] dη∆r(ρ)

d(r, h)
,

Zi+1(r, h) =
zi+1(r, h)
d(r, h)

.

Here

d(r, h) =
∫ ∆r

0

∫ ρ/h

0

k(ρ− sh) ds dη∆r(ρ) +
∫ 1

0

∫ ∆r

0

k((1− s)h+ ρ) dη∆r(ρ) ds,

and, for i = 1, . . . , N − 1,

zi+1(r, h) =
∫ ∆r

0

∫ ρ/h

0

k(ρ− sh)ū′(ψi+1,h(s)) ds dη∆r(ρ)

−
∫ ∆r

0

∫ ρ/h

0

k(ρ− sh)ū′(ψi+1,h) ds dη∆r(ρ)

+ h
i∑

µ=1

∫ 1

0

∫ ∆r

0

k′(ψi+1,µ,h(s, ρ)) dη∆r(ρ)(s− 1)ū′(ζµ((s+ µ− 1)h)) ds

+
∫ 1

0

∫ ∆r

0

k((1− s)h+ ρ) dη∆r(ρ)(s− 1)ū′(ζi+1((s+ i)h)) ds.

Equation (4.22) gives an expression for β2, . . . , βN in terms of β1, . . . , βN−1. To
determine β1, we repeat a process similar to the above, evaluating equation (4.14) at
i = 1 and equation (4.17) at t = t1 and subtracting, to obtain

β1 = − 1
h2
E1(δ, r, h)− Z1(r, h),(4.23)

where

E1(δ, r, h) =

∫ ∆r

0

e(t1 + ρ) dη∆r(ρ)

d(r, h)
,(4.24)

Z1(r, h) =
z1(r, h)
d(r, h)

,(4.25)

z1(r, h) =
∫ 1

0

∫ ∆r

0

k((1− s)h+ ρ)(s− 1)ū′(ζ1(sh)) dη∆r(ρ) ds

+
∫ ∆r

0

∫ ρ/h

0

k(ρ− sh)sū′(ζ1(h+ sh)) ds dη∆r(ρ).(4.26)

If the following bounds can be obtained for h sufficiently small,

|W (r, h)| ≤ w(r),(4.27)
|Yi,µ(r, h)| ≤ y(r), µ = 1, . . . , i; i = 2, . . . , N,(4.28)
|Ei(δ, r, h)| ≤ ε(r)δ, i = 1, . . . , N,(4.29)
|Zi(r, h)| ≤ z(r), i = 1, . . . , N,(4.30)
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where y(r), z(r), ε(r) ≥ 0 and 0 ≤ w(r) < 1, then the theorem is proved using an
induction argument and difference equation techniques (as in [12]).

To this end we first simplify d(r, h). We note that a change of integration variable
in (3.21) gives

α(∆r) = h

∫ ∆r

0

∫ ρ/h

0

k(ρ− sh) ds dη∆r(ρ),(4.31)

so that, using the definitions of η∆r, ∆i, and ∆̃1 in (3.22), (2.5), and (3.15), respec-
tively,

d(r, h) = (1/h)

(
α(∆r) +

∫ ∆r

0

∫ t1

0

k(t1 − s+ ρ) ds dη∆r(ρ)

)

= (1/h)

(
α(∆r) +

r∑
i=1

τi

∫ t1

0

k(t1 − s+ ti−1) ds

)

= (1/h)

(
α(∆r) +

r∑
i=1

τi∆i

)
= (1/h)

(
α(∆r) + ∆̃1

)
.

Thus we have from (3.25) that

d(r, h) = 1/h.(4.32)

Similar steps give

W (r, h) = α(∆r),

so that using Lemma 4.3 we have the existence of w(r) with 0 ≤ w(r) < 1 and
|W (r, h)| ≤ w(r) for h sufficiently small. Thus we obtain the required bound in
(4.27).

To establish the bounds (4.28)–(4.30), we will make use of the constant M(r)
defined in Lemma 4.3. We have for µ = 1, . . . , i, i = 2, . . . , N ,

Yi+1,µ(r, h) = h

∫ 1

0

∫ ∆r

0

k′(ψi+1,µ,h(s, ρ)) dη∆r(ρ) ds

= h
r∑

j=1

τj

∫ 1

0

k′(ψi+1,µ,h(s, tj−1)) ds,

so that |Yi+1,µ(r, h)| ≤ h‖τ‖1‖k′‖∞ ≤ ‖k′‖∞M(r) for µ = 1, . . . , i, i = 2, . . . , N . We
thus have the uniform bound in (4.28).

We obtain the bound in (4.29) in a similar manner, using the fact that

Ei+1(δ, r, h) = h

∫ ∆r

0

[e(ti+1 + ρ)− e(ti + ρ)] dη∆r(ρ)

= h
r∑

j=1

τj [e(ti+1 + tj−1)− e(ti + tj−1)]
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for i = 1, . . . , N − 1, so that |Ei+1(δ, r, h)| ≤ h‖τ‖12δ ≤ ε(r)δ for ε(r) ≡ 2M(r). A
similar bound is obtained for |E1(δ, r, h)|.

Finally, for i = 1, . . . , N − 1,

Zi+1(r, h) = h

 r∑
j=1

τj

∫ j−1

0

k(tj−1 − sh)ū′(ψi+1,h(s)) ds

−
r∑

j=1

τj

∫ j−1

0

k(tj−1 − sh)ū′(ψi+1,h) ds

+ h
i∑

µ=1

∫ 1

0

r∑
j=1

τjk
′(ψi+1,µ,h(s, tj−1))(s− 1)ū′(ζµ((s+ µ− 1)h)) ds

+
∫ 1

0

r∑
j=1

τjk(tj−1 + (1− s)h)(s− 1)ū′(ζi+1((s+ i)h)) ds

 ,
so that

|Zi+1(r, h)| ≤ 2α(∆r)‖ū′‖+ ih‖k′‖ ‖ū′‖ ‖τ‖1h+ ‖k‖ ‖ū′‖ ‖τ‖1h.

Here we have used (4.31) to write α(∆r) = h
∑r

j=1 τj

∫ j−1

0

k(tj−1 − sh) ds. Thus

|Zi+1(r, h)| ≤ z(r) for i = 1, . . . , N −1, where z(r) = (2w(r)+(‖k‖+‖k′‖)M(r))‖ū′‖.
A similar calculation shows that |Z1(r, h)| ≤ z(r).

We thus have the required bounds in (4.27)–(4.30), from which the desired con-
vergence follows. Using the results in [20, 21], the convergence rate (O(δ1/2)) is seen
to be best possible with respect to the level δ of error in the data.

5. Degenerate Cases. Recall from Theorem 3.1 that if the kernel k and param-
eters r and d are such that α(∆r) 6= 0, we may view the future polynomial method as
a discretization of a particular second-kind Volterra equation. Because such equations
are stable with respect to perturbations in data, it is reasonable to expect the future
polynomial method to do a better job of regularizing the original first-kind Volterra
problem than would simple collocation alone. Indeed the numerical findings in the
next section support this expectation. Though of importance, a complete analysis of
the stability of the future polynomial method in the case of α(∆r) 6= 0 is beyond the
scope of this paper and will be presented elsewhere.

For the present we will not focus further on the α(∆r) 6= 0 case, but rather will
narrow our consideration to those degenerate cases in which the matrix equation (one
of the equivalent formulations of the future polynomial method, as seen in §3),

(Ã + α̃I)c = f̃ ,(5.1)

reduces precisely to the (unregularized) discretized equation formulated in §2 for the
original problem, i.e., to

Ac = f .(5.2)

The matrix A ∈ RN×N and vector f ∈ RN are defined in (2.4), while Ã ∈ RN×N ,
α̃ ∈ R, and f̃ ∈ RN are defined for (5.1) via (3.13)–(3.17).
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Our first result is that the future polynomial approximation equation (5.1) always
reduces precisely to the original discretization equation (5.2) when r = d + 1, for
d = 0, 1, . . .. This is expected because the future polynomial method regularizes by
requiring (at least temporarily at each step) that d+1 future solution values lie along
a polynomial of degree d. Because this process may be performed exactly for the case
of r = d+ 1 without imposing any additional constraints on solution values, there is
no resulting regularizing effect.

Theorem 5.1. Let r = d + 1 for fixed d = 0, 1, . . . and assume A in (5.2) is
nonsingular. Then the future polynomial equation (5.1) and the original discretization
equation (5.2) are identical for all possible f ∈ RN .

Proof. When r = d + 1, the matrix V ∈ Rr×r is invertible, and thus so is KT .
Since KT e1 = ∆1(1, · · · , 1)T , it follows that τ = (KT )+(1, · · · , 1)T = (1/∆1)e1.
Using (3.14)–(3.16) we thus have that Ã + α̃I = (1/∆1)A and f̃ = (1/∆1)f .

Therefore, the more interesting degenerate cases are those that arise when r ≥
d+2. In understanding these cases, it is helpful to observe that equation (5.2) need not
only be associated with the collocation-based discretization of an ill-posed Volterra
problem such as that considered in this paper, but can also arise as a discretization
of a much more general problem. Indeed, all that is required in a generalized setting
is that the discretized equation (5.2) be such that A is an arbitrary lower-triangular,
Toeplitz matrix in RN×N , and that f be an arbitrary vector in RN . Working from
a given equation (5.2), the future polynomial method then constructs a well-defined
perturbation (5.1) of this equation, where the quantities Ã, α̃, and f̃ , are defined
using only r, d, and the entries in A and f (see, e.g., (3.13)–(3.17)).

Although this more general setting enlarges the number of problems to which we
may want to apply the future polynomial regularization method, it also introduces
situations in which regularization is simply not necessary. For example, the RN×N

matrix

Â =
1
h


1 0
−1 1

. . . . . .
0 −1 1

 ,(5.3)

associated with a discretization of a differential operator, is a lower-triangular matrix
in Toeplitz form which makes it a suitable choice of A in the approximating equation
(5.2). We note that Â = (A0)−1, where A0 is the usual A-matrix associated with the
collocation-based discretization of the Volterra operatorA0u(t) =

∫ t

0
u(s) ds, t ∈ [0, 1].

Because A0 is a smoothing operator, discretizations of the Volterra equation A0u = f
require regularization in order to obtain a stable solutions as N gets large; however the
same cannot be said of reasonable discretizations of the differential equation A−1

0 u =
f . Correspondingly, there is no reason to believe that use of the future polynomial
method as given by equation (5.1) will offer an improvement over equation (5.2) when
A = Â appears in the latter. In fact, this is exactly the case, as Theorem 5.2 below
shows: the two equations are identical for this particular choice of matrix, regardless
of the choice of f in (5.2) and for all d = 0, 1, . . ., and r ≥ d+2. So there are examples
of degenerate cases where (5.1) reduces exactly to (5.2) when r ≥ d+ 2, but perhaps
these degenerate cases are the ones where regularization is simply not needed.

The following theorem shows that the above example is actually representative
of the general degenerate case for r ≥ d + 2. That is, the perturbed equation (5.1)
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associated with the future polynomial method is identical to equation (5.2) when A is
a generalization of the matrix Â above, namely, when A is the inverse of a linear com-
bination of discretizations Aj of well-understood Volterra operators, for j = 0, . . . , d.
Here the matrix Aj ∈ RN×N denotes the usual collocation-based discretization (de-
fined in §2) of the operator Aj , where Aj is a canonical (j + 1)-smoothing Volterra
operator,

Aju(t) =
∫ t

0

(t− s)ju(s) ds, t ∈ [0, 1],(5.4)

for j = 0, . . . , d, and u ∈ L2(0, 1). Since we are only interested in applying the
future polynomial method to discretizations of Volterra operators like those in (1.1)–
(1.2) (i.e., to smoothing operators), it is thus unlikely that a discretization of such an
operator will act like the inverse of other smoothing operators.

The exact statement of this result (providing necessary and sufficient conditions
for degeneracies to occur) follows. After the theorem we state a corollary in which
we show that, when applying the future polynomial method to problems of the type
considered in Theorem 4.1 (the main convergence theorem), one will never encounter
the situation of equation (5.1) reducing exactly to (5.2).

Theorem 5.2. Let r ≥ d + 2, for fixed d = 0, 1, . . ., and assume that N is
sufficiently large so that N ≥ r. Let A ∈ RN×N in (5.2) be nonsingular. Then the
future polynomial equation (5.1) reduces exactly to equation (5.2) (for all possible f
in (5.2)) if and only if there exist scalars γ0, . . . , γd such that

L−1 =
d∑

j=0

γjLr,j ,(5.5)

where L ∈ Rr×r denotes the leading r×r submatrix of A, and Lr,j is the leading r×r
submatrix of Aj ∈ RN×N , for j = 0, . . . , d. (Here Aj is the usual collocation-based
discretization of the (j + 1)-smoothing Volterra operator Aj defined in (5.4).)

Corollary 5.3. Let r ≥ d+ 2 for d = 0, 1, . . .. Assume A is a Volterra integral
operator with kernel k ∈ C1[0, 1], k(0) 6= 0. Then for all h > 0 sufficiently small, the
sequential future polynomial algorithm (2.12)–(2.14) cannot be equivalent to a simple
collocation-based discretization (2.8)–(2.9) of equation (1.1).

5.1. Proofs of main results in §5. The proofs of Theorem 5.2 and Corol-
lary 5.3 will follow after we establish some preliminary technical results. We assume
throughout that N is sufficiently large to ensure that N ≥ r.

Lemma 5.4. Let r ≥ d+2 for fixed d = 0, 1, . . ., and in equation (5.2), assume that
A ∈ RN×N is nonsingular and that f ∈ RN is arbitrary. Then the future polynomial
method equation (5.1) is identical to the original discretization equation (5.2) if and
only if τ (defined in (3.17)) satisfies τ = c e1, c 6= 0, for e1 = (1, 0, . . . , 0)T ∈ Rr.

Proof. We will first show that τ ∈ span{e1} if and only if e1 ∈ R(K). To this
end, first suppose that τ ∈ span{e1}. We know that τ is the minimum norm solution
of

KT x = (1, . . . , 1)T .(5.6)
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So τ ∈ N (KT )⊥ = R(K) and it follows that e1 ∈ R(K).
Now suppose that e1 ∈ R(K), with φ ∈ Rd+1 satisfying Kφ = e1. Since

K = LV and τ is the minimum norm solution of (5.6), we have

τ = min{x ∈ Rr|x = (LT )−1y, V T y = (1, . . . , 1)T }.

Further, since V T e1 = (1, . . . , 1)T , the solution to the equation V T y = (1, . . . , 1)T

must lie in {e1+N (V T )}, where N (V T ) = span{n1, . . . ,nr−(d+1)} for some ni ∈ Rr,
i = 1, . . . , r − (d+ 1). Thus there is a unique choice of constants a1, . . . , ar−(d+1) for
which

τ = (LT )−1

e1 +
r−(d+1)∑

i=1

aini


=

1
∆1

e1 +
r−(d+1)∑

i=1

ai(LT )−1ni.

It follows that

KT τ =
1

∆1
KT e1 +

r−(d+1)∑
i=1

aiV
T LT (LT )−1ni(5.7)

=
1

∆1
KT Kφ +

r−(d+1)∑
i=1

aiV
T ni(5.8)

=
1

∆1
KT Kφ.(5.9)

Thus KK+τ = K(KT K)−1KT τ = (1/∆1)Kφ = (1/∆1)e1. But KK+ is the
orthogonal projector onto R(K) and τ ∈ R(K). It follows that τ = KK+τ ∈
span{e1}, so we have proven the claim that τ ∈ span{e1} if and only if e1 ∈ R(K).

Now we turn to the proof of the theorem. Clearly if τ = c e1, c 6= 0, we have from
(3.13)–(3.16) that equations (5.1) and (5.2) are identical for all possible f ∈ RN . Now
suppose that the two methods give the same results. From the above arguments, it is
sufficient to show that the equivalence of the two methods implies that e1 ∈ R(K).

Let c1 be the solution constant found after the first step of the sequential future
polynomial algorithm (2.12)–(2.14), and s1 be the solution constant found after one
step of the simple collocation algorithm (2.8)–(2.9). We know from (3.11) that c1 =
(1, . . . , 1)b1 = eT

1 V b1 since the first row of V is (1, . . . , 1). From (3.10), b1 = K+f1,r

and since K is of full rank, we have that b1 is the unique vector for which

‖Kb1 − f1,r‖2 = min
b∈Rd+1

‖Kb− f1,r‖2.

Thus Kb1 = LV b1 = PKf1,r where PK denotes the orthogonal projection onto
R(K). That is, V b1 = L−1PKf1,r, and

c1 = eT
1 L−1PKf1,r.

Now consider s1. We know that s1 = f1/∆1, but, because L is lower triangular,
we have that s1 is also the first component of L−1f1,r, where L and f1,r are as given
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above for the future polynomial algorithm. That is, s1 = eT
1 L−1f1,r. Thus, if the

future polynomial method is equivalent to simple collocation, we must have s1 = c1
for all possible f (and so all possible f1,r); that is,

eT
1 L−1(I − PK)f1,r = 0

for all f1,r ∈ Rr. Equivalently, we must have eT
1 L−1g = 0 for all g ∈ R(K)⊥.

But eT
1 L−1g = (1/∆1)g1 = eT

1 (1/∆1)g, equivalently we must have eT
1 g = 0 for all

g ∈ R(K)⊥, or e1 ∈ R(K).
Therefore, the equivalence of the two methods implies that e1 ∈ R(K) and the

proof of the lemma is complete.

Lemma 5.5. Let d = 0, 1, . . . and r ≥ d+ 2, and let Lr,d be the r × r matrix

Lr,d =

 ∆̄1,d 0
...

. . .
∆̄r,d · · · ∆̄1,d

(5.10)

where, for i = 1, . . . , r,

∆̄i,d = id+1 − (i− 1)d+1.(5.11)

Then Lr,de1 ∈ R(V r,d), where e1 ∈ Rr and V r,d is the usual r × (d + 1) V -matrix
defined by

V r,d =


1 1 · · · 1d

1 2 · · · 2d

...
...

...
1 r · · · rd

 .(5.12)

Proof. For i = 2, 3, . . . , r,

[Lr,de1]i = id+1 − (i− 1)d+1

= (i− (i− 1))
d∑

j=0

id−j(i− 1)j

where the last equality is obtained by canceling like terms in
∑d

j=0 i
d−j+1(i − 1)j −∑d

j=0 i
d−j(i− 1)j+1. Thus,

[Lr,de1]i =
d∑

j=0

id−j(i− 1)j

=
d∑

j=0

id−j

j∑
k=0

(
j
k

)
ik(−1)j−k

=
d∑

j=0

j∑
k=0

(
j
k

)
id+k−j(−1)j−k
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=
d∑

l=0

id−l(−1)l
d−l∑
m=0

(
l +m
m

)

=
d∑

l=0

id−l(−1)l

(
d+ 1
d− l

)
where we have used a combinatorial identity from [8, page 7, (1.49)].

Thus, for i = 2, . . . , r,

[Lr,de1]i =
d∑

l=0

(
d+ 1
l

)
(−1)d−l il

=
[
V r,dc

(d)
]

i

where c(d) ∈ Rd+1 is defined by

c(d) =
(

(−1)d

(
d+ 1

0

)
, (−1)d−1

(
d+ 1

1

)
, . . . , (−1)0

(
d+ 1
d

))T

.

We know by (5.11) that [Lr,de1]1 = 1 and by inspection we see that
[
V c(d)

]
1

= 1,
so the proof of the lemma is complete.

Lemma 5.6. Let d = 0, 1, . . ., and r ≥ d + 2 be fixed. Then the set of vectors
{Lr,0e1, . . . ,Lr,de1} is a basis for R(V ) = R(V r,d).

Proof. From Lemma 5.5 we know that there is a c(d) ∈ Rd+1 such that Lr,de1 =
V r,dc

(d). Similarly, for k = 0, 1, . . . , d, there is a c(k) ∈ Rk+1 such that Lr,ke1 =
V r,kc(k). That is,

Lr,ke1 =


1 1 · · · 1k

1 2 · · · 2k

...
...

...
1 r · · · rk

 c(k)

=


1 1 · · · 1k 1k+1 · · · 1d

1 2 · · · 2k 2k+1 · · · 2d

...
...

...
...

...
1 r · · · rk rk+1 · · · rd




c(k)

0
...
0


= V r,dc̃

(k)

for k = 0, 1, . . . , d, where c̃(k) = (c(k) | 0, . . . , 0)T ∈ Rd+1. Thus, Lr,ke1 ∈ R(V r,d) for
k = 0, 1, . . . , d. Further,

(Lr,0e1 |Lr,1e1 | · · · |Lr,de1)

=


11 − 01 12 − 02 · · · 1d+1 − 0d+1

21 − 11 22 − 12 · · · 2d+1 − 1d+1

...
...

...
r1 − (r − 1)1 r2 − (r − 1)2 · · · rd+1 − (r − 1)d+1

 ,
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and we see by elementary row operations that this matrix has the same rank as a
Vandermonde matrix. Since V r,d has rank d+ 1, the proof of the lemma is complete.

We now return to the proofs of Theorem 5.2 and Corollary 5.3.

Proof of Theorem 5.2. It follows from Lemmas 5.4 and 5.6 that equations (5.1)
and (5.2) are identical for all f ∈ RN if and only if e1 ∈ R(K), where R(K) =
R(LV r,d) = span{LLr,0e1, . . . ,LLr,de1}, i.e., if and only if there exist real scalars
γ0, . . . , γd such that

e1 =
d∑

j=0

γjLLr,je1(5.13)

=

 d∑
j=0

γjLr,j

Le1(5.14)

where we have used the fact that lower-triangular Toeplitz matrices commute. Be-
cause

(∑d
j=0 γjLr,j

)
is a lower triangular Toeplitz matrix with diagonal entries

given by
∑d

j=0 γj , it follows from the definition (3.7) of L that the first entry of(∑d
j=0 γjLr,j

)
Le1 is ∆1

∑d
j=0 γj . So if there are scalars γ0, . . . , γd such that e1 =(∑d

j=0 γjLr,j

)
Le1, it must be true that

∑d
j=0 γj = 1/∆1 6= 0 and the lower-

triangular Toeplitz matrix
∑d

j=0 γjLr,j is nonsingular.
Thus equation (5.1) reduces exactly to (5.2) if and only if there exist γ0, . . . , γd

with
∑d

j=0 γj = 1/∆1 and
(∑d

j=0 γjLr,j

)−1

e1 = Le1. Since both
(∑d

j=0 γjLr,j

)−1

and L are lower triangular Toeplitz matrices, knowing the first column is the same
as knowing the whole matrix. So the two methods are equivalent if and only if

L =
(∑d

j=0 γjLr,j

)−1

for some γ0, . . . , γd with
∑d

j=0 γj = 1/∆1.

Proof of Corollary 5.3. Without loss of generality we let k(0) = 1 and use (4.11)
to write ∆i = h(1 + θi(h)), where θi = O(h) for i = 1, . . . , r. From this we get
that the usual L-matrix associated with the future polynomial method is given by
L = L1 + hH, where H = H(h) is defined in (4.12), with ‖H‖ = O(h), and where
L1 is defined by (4.7).

It follows from Theorem 5.2 that if the future polynomial method reduces to
simple collocation, then there is a choice of γ0, . . . , γd for which L

(∑d
j=0 γjLr,j

)
e1 =

e1 (where Lr,j is defined in (5.10) ). This yields a system of r equations in d + 1
unknowns,

eT
1 L

 d∑
j=0

γjLr,j

e1 = 1(5.15)

eT
k L

 d∑
j=0

γjLr,j

e1 = 0, k = 2, . . . , r.(5.16)
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We note that eT
i (
∑d

j=0 γjLr,j)e1 =
∑d

j=0 γj∆̄i,j so that

eT
k L

 d∑
j=0

γjLr,j

e1 =
k∑

i=1

∆k−i+1

 d∑
j=0

γj∆̄i,j


= h

k∑
i=1

(1 + θk−i+1(h))

 d∑
j=0

γj

(
ij+1 − (i− 1)j+1

)
= h

d∑
j=0

γj

k∑
i=1

(ij+1 − (i− 1)j+1)

+ h
d∑

j=0

γj

k∑
i=1

θk−i+1(h)
(
ij+1 − (i− 1)j+1

)
= h

d∑
j=0

kj+1γj + h
d∑

j=0

Ĥk,jγj ,

where Ĥk,j =
∑k

i=1 θk−i+1(h)(ij+1 − (i− 1)j+1), for k = 1, . . . , r, j = 0, . . . , d.
Taking together only the k = 2 through k = d+ 2 equations in (5.16), we have a

system of d+ 1 equations in the vector γ = (γ0, . . . , γd)T ∈ Rd+1,

(V̂ + Ĥ)γ = 0(5.17)

where V̂ , Ĥ ∈ R(d+1)×(d+1) with Ĥ = (Ĥk,j) and

V̂ =


2 22 · · · 2d+1

3 32 · · · 3d+1

...
...

...
d+ 2 (d+ 2)2 · · · (d+ 2)d+1

 .

Defining the nonsingular diagonal matrix D = diag(2, 3, . . . , (d + 2)), we have that
V̂ = DṼ , where Ṽ is a (d+1) × (d+1) Vandermonde matrix of full rank. Thus V̂

is nonsingular. Further, since r and d are fixed, ‖Ĥ‖ = O(h) as h → 0, so for all h
sufficiently small, (V̂ + Ĥ) is nonsingular and γ = 0 in (5.17).

But if we now consider (5.15), it follows that

d∑
j=0

γj = 1/(1 + θ1(h)) = 1/∆1,(5.18)

a contradiction with the fact that γ = 0. Thus the future polynomial method cannot
be equivalent to simple collocation for the operator A given in the statement of the
corollary.

6. Numerical Results. We give below some numerical examples illustrating
the performance of the future polynomial regularization method with regard to the
capture of sharp or discontinuous features in the true solution. In each of the examples,
the kernel k and the true solution ū were selected a priori. The data function f
was then generated by integration, f(t) =

∫ t

0
k(t − s)ū(s) ds. Uniformly distributed
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random noise in the interval [−z‖f‖∞, z‖f‖∞], for some z > 0, was then added to
the function f to produce fδ. Noise levels with a relative error of 1% are common
in applications; the noise levels in the examples range up to 2%. In each example
the kernel is k(t) = 1 + t2, the true solution ū is graphed as a dashed line, and the
regularized solution is graphed as a solid line determined by connecting the midpoints
of the piecewise constant functions ciχi determined by each method.

We note that, in order to implement the future polynomial regularization method,
it is necessary to compute (KT )

+
(1, . . . , 1)T . If r or d is large, then the (d + 1) × r

matrix KT may be quite ill-conditioned, requiring additional regularization methods
(e.g., truncation of singular values, etc.) in the computation of this quantity. However,
one of the advantages of a “local regularization” approach such as we take here is
that one is typically able to keep both r and d small, thus avoiding excessive ill-
conditioning. In the examples that follow, no additional regularization was used in
the numerical process.

Example 1. The true solution in this example is ū = 0.6 + 0.5 cos(4πt). There
are N = 20 collocation points. The noise added to f is at the level of 1% relative
error. The results are shown in Figure 6.1. The true solution ū is smooth in this
case to demonstrate that the future polynomial method stabilizes comparably to the
future constant method (labeled as “Beck” in the figures) when there are no sharp
features or discontinuities, but resists oversmoothing the true solution.

Example 2. Here we compare simple collocation, the future constant method
(“Beck”), and the future polynomial method on a non-smooth function,

ū(t) =


.2, 0 ≤ t < .2
8t− 1.4, .2 ≤ t < .3
−8t+ 3.4, .3 ≤ t < .4
.2, .4 ≤ t ≤ 1

.(6.1)

We increase the number of collocation points to N = 40 and increase the relative
error to approximately 2%. The output is shown in Figure 6.2. The lack of stability
is evident in the highly oscillatory behavior of the solution provided by simple collo-
cation. For each d = 0, 1, 2 we select the r that minimizes

∑N
i=1 |ū(ti)−uh(ti)|2 where

uh is the solution provided by each regularization method. While the future constant
method stabilizes the solution, it also oversmooths the sharp spike. The future poly-
nomial method stabilizes the solution while still preserving the sharp features in the
true solution.

Example 3. Finally, we consider a discontinuous true solution ū. Again, let
N = 40 and the relative error added to the true data be approximately 2%. Let

ū(t) =
{
.2, 0 ≤ t < .2, .3 ≤ t < .6, .7 ≤ t ≤ 1
1, .2 ≤ t < .3, .6 ≤ t < .7 .(6.2)

We again compare collocation with the future constant method (“Beck”) and the
future polynomial method selecting r as in Example 2. In this case as well, the
future polynomial method stabilizes the problem while capturing the peaks in the
true solution.
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Fig. 6.1. Example 1

7. Conclusions. In this paper, we have described a new discrete regularization
method for ill-posed first-kind Volterra problems. The future polynomial regulariza-
tion method is easily implemented and preserves the causal, Volterra nature of the
problem, allowing sequential solution in near real time. Because this method is based
on a local regularization strategy (in contrast to classical methods such as Tikhonov
regularization), it also has the potential for better resolving sharp features in solutions
than is typically the case for classical methods. We have shown that the future poly-
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Fig. 6.2. Example 2

nomial method generalizes a class of regularization methods studied in [12, 13, 14].
We note that other recent generalizations may be found in [15] (a sequential Tikhonov
regularization method for Volterra problems) and [16, 17] (a future constant method
with variable r = r(t) regularization parameter and penalty parameter µ = µ(t), with
an adaptive procedure for the sequential selection of µ).

We have presented a convergence theory for an important class of these methods
and have shown convergence proceeds at the best possible rate with respect to the error
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Fig. 6.3. Example 3

in the data when applied to C1 kernels k with k(0) 6= 0. We have also characterized
the degenerate cases in which the method cannot be expected to regularize better
than simple collocation alone, but have seen that the conditions for degeneracy are
unlikely to occur when the method is applied to problems of the type considered in
this paper. In particular, if k is a C1 kernel with k(0) 6= 0, then we have proven that
the future polynomial method cannot degenerate to simple collocation. Finally, we
have presented numerical results which provide evidence that the method works well
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to recover sharp or discontinuous features in the true solution.
Current and future investigations include a stability analysis of the discrete equa-

tions obtained using the future polynomial method; in this case a condition number
analysis (along the lines of [14]) could give much insight. In addition, we are currently
investigating an extension of the main convergence theorem, Theorem 4.1, to general
ν-smoothing kernels, as well as a convergence theory for the fully-continuous version
(3.18) of this regularization method. The proof of Theorem 4.1 does not readily ex-
tend to the theoretical case of ū /∈ C1 (although numerical results seem to indicate
good results with non-smooth ū), but we are currently looking at this issue. Finally,
the selection of the appropriate regularization parameters is an important problem.
It is hoped that we may eventually use local discrepancy principles to develop an
adaptive regularization method, one in which the regularization parameters r and d
are adaptively determined throughout the domain of the solution.
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