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ABSTRACT
We consider a local regularization method for the solu-
tion of first-kind Volterra integral equations with con-
volution kernel. The local regularization is based on a
splitting of the original Volterra operator into “local”
and “global” parts, and a use of Tikhonov regulariza-
tion to stabilize the inversion of the local operator only.
The regularization parameters for the local procedure
include the standard Tikhonov parameter, as well as a
parameter that represents the length of the local reg-
ularization interval. We present a convergence theory
for the infinite-dimensional regularization problem and
show that the regularized solutions converge to the true
solution as the regularization parameters go to zero (in
a prescribed way). In addition, we show how numeri-
cal implementation of the ideas of local regularization
can lead to the notion of “sequential Tikhonov regular-
ization” for Volterra problems; this approach has been
shown in (Lamm and Eldén, 1995) to be just as effec-
tive as Tikhonov regularization, but to be much more
efficient computationally.

INTRODUCTION
We consider a local regularization method for the

problem of finding u solving

Au = f (1)

where Au(t) =
∫ t

0
k(t − τ)u(τ) dτ, 0 ≤ t ≤ 1, is a

first-kind Volterra integral operator with convolution
kernel k satisfying k(t) > 0 on (0, 1], k uniformly Lip-
schitz continuous on [0, 1] with Lipschitz constant Lk.
We assume throughout that the “ideal” data f is also
uniformly Lipschitz continuous on [0, 1] (with Lipschitz
constant Lf ), and assume f is sufficiently smooth to
guarantee a unique solution u ∈ L2(0, 1) of (1) (see,
e.g., (Gripenberg, 1990)).

Of particular interest is the typical case which oc-
curs in applications, namely, the situation where we
only have available perturbed data fδ ∈ L2(0, 1); here
fδ(t) = f(t) + d(t) where ‖d‖ < δ for some δ > 0
and ‖ · ‖ is the L2 norm. Because solutions of (1) are
unstable with respect to error in the data, a regular-
izing method is needed to solve the perturbed problem.

LOCAL REGULARIZATION
We present here a local regularization method that

is ideally suited for Volterra problems of convolution
type, but also has extensions (to be discussed else-
where) to non-Volterra, non-convolution problems.

In order to simplify our presentation in what follows
we assume that equation (1) holds on an extended time
interval [0, 1 + ∆R], where ∆R > 0 is fixed and small,
and that the perturbed data fδ is available on this ex-
tended interval as well; a straightforward modification
made be made in the theory to handle the case where
this assumption is not made (e.g., see (Lamm, 1995)).

The idea of local regularization we consider is based



on a splitting of the operatorA into “local” and “global”
parts, while performing standard Tikhonov regulariza-
tion directly on the local part only. To consider this
approach in the context of the Volterra problem, we
first note that for fixed ∆r ∈ [0,∆R] and a.a. t ∈ [0, 1],
ρ ∈ [0,∆r],

f(t+ ρ) = Au(t+ ρ)

=
∫ ρ

0

k(ρ−s)u(t+s) ds+
∫ t

0

k(t+ρ−s)u(s) ds

= A∆r
u∆r

(t)(ρ) + B∆r
u (t)(ρ),

where
u∆r (t)(ρ) = u(t+ ρ) (2)

for a.a t ∈ [0, 1], ρ ∈ [0,∆r], and where A∆r
and B∆r

will be defined more precisely below. In general, for a
given value of t, the quantity A∆r

u∆r
(t) represents the

action of the original operator A on the solution u in
the local interval [t, t + ∆r], while B∆r

u(t) represents
the action of A on u over the more global (and “past”)
interval [0, t]. (We note that the “local interval” associ-
ated with the value t used here is [t, t+∆r], rather than
[t−∆r, t+∆r], because we are considering a Volterra,
i.e., causal, problem.)

Next we define ∆r-dependent spaces and give precise
definitions of the ∆r-dependent operators used above.
For ∆r∈(0,∆R], we denote byX∆r =L2((0,∆r); 1/∆r)
the usual L2(0,∆r) space with weighted inner product,

(ψ, χ)∆r
=

1
∆r

∫ ∆r

0

ψ(s)χ(s) ds, and define the follow-

ing ∆r-dependent spaces,

Z∆r = L2((0, 1), X∆r )

H∆r = L2(0, 1)× Z∆r ,

where L2((0, 1), X∆r
) denotes the square-integrable

X∆r
-valued ”functions” on [0, 1]. We also define fixed

spaces X, Z, and H by considering the above defini-
tions in the case of ∆r = 1 and using the notation
X ≡ X1, Z ≡ Z1, and H ≡ H1.

The operators A∆r and B∆r are given as follows:

A∆r
∈ L(Z∆r

, Z∆r
),

A∆r
ϕ (t)(ρ) =

∫ ρ

0

k(ρ− s)ϕ(t)(s) ds,

B∆r
∈ L(L2(0, 1), Z∆r

),

B∆rη (t)(ρ) =
∫ t

0

k(t+ ρ− s)η(s) ds,

for η ∈ L2(0, 1), ϕ ∈ Z∆r , and where L(X,Y ) denotes
the space of bounded linear operators fromX to Y . We

note that A∆r and B∆r have operator norms ‖A∆r‖ =
O(∆r) and ‖B∆r‖ = O(1), respectively, as ∆r → 0. In
addition, for each ∆r ∈ (0,∆R], we define the operator
C∆r

by

C∆r
∈ L(H∆r

, Z∆r
),

C∆r
(η, ϕ) = B∆r

η +A∆r
ϕ, (η, ϕ) ∈ H∆r

,

and define F∆r
∈ Z∆r

by

F∆r (t)(ρ) = f(t+ ρ), 0 ≤ t ≤ 1, 0 ≤ ρ ≤ ∆r,

making a similar definition for F δ
∆r

∈ Z∆r using the
perturbed data fδ.

The “local” Tikhonov regularization problem that
we consider is given as follows:

Problem P∆r
:

min
{
‖C∆r

(η, ϕ)− F δ
∆r
‖2

∆r
+ α‖L∆r

ϕ‖2
∆r

:

(η, ϕ) ∈ D∆r
, ϕ ∈ dom(L∆r

) } (3)

where ‖·‖∆r
denotes the (weighted) norm on Z∆r

. Here
L∆r

: dom(L∆r
) ⊂ Z∆r

7→ Z∆r
denotes a suitable closed

operator, and D∆r
⊂ H∆r

is a constraint set which links
η(t) to ϕ(t)(·) in an essential way. The “localized reg-
ularization” comes about in the direct regularization
of ϕ via L∆r

; the variable η is regularized indirectly
via the constraint (η, ϕ) ∈ D∆r

(and in fact η is the
regularized approximation to u that we seek).

In particular, let L∆r
: dom(L∆r

) ⊂ X∆r
→ X∆r

be a
closed operator, and define L∆r

as follows:

L∆rϕ(t)(ρ) = L∆r (ϕ(t))(ρ),

where ϕ ∈ dom(L∆r ), 0 ≤ t ≤ 1, 0 ≤ ρ ≤ ∆r, and
where

dom(L∆r ) = {ϕ ∈ Z∆r :

ϕ(t) ∈ dom(L∆r
) for a.a. t ∈ [0, 1],∫ 1

0

‖L∆r (ϕ(t))‖2
X∆r

dt <∞}.

As for the definition of D∆r
, ideally (η, ϕ) ∈ D∆r

should imply that η(t) = ϕ(t)(0) for a.a. t ∈ [0, 1] (i.e.,
the condition satisfied by (u, u∆r

)). But point evalua-
tions require ϕ(t) ∈ C[0, 1], regularity which does not
occur in general for ϕ ∈ dom(L∆r

). In order to handle
the general case, we take an alternate approach here in
the formulation of D∆r .

To this end we let ` denote a bounded linear func-
tional on X which satisfies the condition that `(χ) = 1



when χ ∈ X implies χ(x) ≡ 1, x ∈ [0, 1]. Let γ ∈ X

be uniquely given by `(ψ) = (ψ, γ) for all ψ ∈ X,
where (·, ·) denotes the X = L2(0, 1) inner product; we
will assume throughout that γ ∈ L∞(0, 1) (a condition
which can be dropped if the true solution u of (1) is in
L∞(0, 1) ). We then define the bounded linear operator
T : Z → L2(0, 1) by

Tϕ(t) = `(ϕ(t)), t ∈ [0, 1]

for ϕ ∈ Z. In addition, ∆r-dependent versions of ` and
T are defined for each ∆r ∈ (0,∆R] by

∆̀r
∈ L(X∆r

, IR),

∆̀r (ψ) = `(ψ̃), ψ ∈ X∆r

where ψ̃ ∈ X is defined from ψ ∈ X∆r
via ψ̃(ρ) =

ψ(ρ∆r), 0 ≤ ρ ≤ 1; in addition, we define

T∆r
∈ L(Z∆r

, L2(0, 1)),

T∆rϕ(t) = ∆̀r (ϕ(t)), ϕ ∈ Z∆r .

We note that the operators defined above satisfy, in
their respective operator topologies, ‖T∆r

‖ = ‖ ∆̀r
‖ =

‖`‖ = ‖γ‖
X

.
One example motivating our definition of ` is

`ψ =
1
c

∫ c

0

ψ(ρ) dρ, ψ ∈ X, (4)

where c ∈ (0, 1]. In this case we note that T∆r
is given

in particular on u∆r
for each t ∈ [0, 1] by

T∆r
u∆r

(t) =
1
c∆r

∫ t+c∆r

t

u(s) ds,

i.e., the average value of u over the (small) interval
[t, t+ c∆r]. (We also note that in the definitions given
above, both ` and T could have been ∆r-dependent, a
consideration which is not taken here.)

Using ∆̀r
and T∆r

, we define

D∆r = {(η, ϕ) ∈ H∆r : η = T∆rϕ},

a closed subspace of H∆r
. Then standard assumptions

on the operators in problem P∆r
(see Theorem 1 below)

guarantee that there is a unique solution (ηδ
α,∆r

, ϕδ
α,∆r

)
of problem P∆r

for each α > 0, δ > 0 and ∆r ∈ (0,∆R].
Our goal is to obtain conditions on the pair {α,∆r}
such that ηδ

α,∆r
→ u in L2(0, 1) as each of ∆r, α, δ con-

verges to zero in a prescribed way.

As an initial study into the problem of local regu-
larization, in this paper we restrict our consideration
in this paper to the case of L∆r

= I∆r
, the iden-

tity operator on X∆r
; i.e., L∆r

ϕ(t)(ρ) = ϕ(t)(ρ) for
ϕ ∈ dom(L∆r

) ≡ Z∆r
. We first describe the numeri-

cal algorithm that arises in this case, indicating how
a rapid “sequential Tikhonov regularization” method
naturally occurs as a result.

NUMERICAL IMPLEMENTATION
We discuss here the implementation of the above reg-

ularization procedure for Volterra problems and indi-
cate the way in which the “local” nature of the pro-
cedure is exhibited. The numerical discretization will
be described here in terms of a collocation scheme for
the integral equation (with solutions approximated by
piecewise constants), but it is expected that similar
comments also hold for methods based on numerical
quadrature of the integrals involved (as is true, for ex-
ample, in (Lamm and Eldén, 1995)).

Let integers M ≥ 0 and R ≥ 1 be fixed, and de-
fine ∆t = 1/(M + 1), ∆r = R∆t, and ti = i∆t,
i = 0, 1, . . . ,M+R+1. In order to discretize the min-
imization problem P∆r , we search for (η, ϕ) ∈ H∆r of
the special form

ϕ(t)(ρ) =
M∑
i=0

R∑
j=0

c
ij
χ

i
(t)χ

j
(ρ), (5)

t ∈ [0, 1], ρ ∈ [0,∆r],

η(t) = c
i0χi

(t), t ∈ [ti, ti+1), (6)

where c
ij

, i = 0, . . . ,M , j = 0, . . . , R, are unknown
constants to be determined, and where

χi(t) =
{

1, t ∈ [ti, ti+1),
0, otherwise.

We note that η(t) = ∆̀r (ϕ(t)) where ∆̀r is defined as
usual from `, and where ` in this case is given by (4)
using c = 1/R < 1.

In this finite-dimensional setting, we seek the matrix
c of unknowns (c = (cij )i=0,...M, j=0,...R) which mini-
mizes the functional JM,R(c),

JM,R(c) =
M∑

m=0

R∑
r=0

∣∣∣∣∣∣
∫ ρr+1

0

k(ρr+1−s)
M∑
i=0

R∑
j=0

c
ij
χ

i
(tm)χ

j
(s) ds

+
∫ tm

0

k(tm+ρr+1−s)
M∑
i=0

ci0χi(s) ds−f(tm+ρr+1)

∣∣∣∣∣
2



+α
M∑
i=0

R∑
j=0

∣∣c
ij

∣∣2 ,
which corresponds to a collocation-based discretiza-
tion (collocating to points (tm, ρr+1), m = 0, 1, . . . ,M,

ρr+1 ≡ tr+1, r = 0, 1, . . . , R) of the objective func-
tional appearing in problem P∆r . Due to the Volterra
(convolution) form of the problem, JM,R simplifies con-
siderably, i.e.,

JM,R(c) =
M∑

m=0

R∑
r=0

∣∣∣∣∣∣
r∑

j=0

c
mj

∆r+1−j

+
m−1∑
i=0

ci0∆m+r+1−i − f(tm+r+1)

∣∣∣∣∣
2

+α
M∑
i=0

R∑
j=0

∣∣cij

∣∣2 ,
where ∆i ≡

∫ ∆t

0
k(ti − s) ds. If we make the following

definitions for m = 0, 1, . . . ,M ,

cm ≡ (c
m0 , cm1 , . . . , cmR

)> ∈ IRR+1,

fm ≡ (f(tm+1), . . . , f(tm+R+1)) ∈ IRR+1,

as well as the definition of the (R + 1)-square matrix
KR,

KR =


∆1 0 . . . 0
∆2 ∆1 . . . 0
...

...
. . .

...
∆R+1 ∆R . . . ∆1

 ,

the finite-dimensional optimization problem becomes

min
c0,...,cM

M∑
m=0

Jm,R(c0, . . . , cm)

where

Jm,R(c0, . . . , cm) =

‖KRcm +
m−1∑
i=0

c
i0∆̂m−i+1 − fm‖2R+1

+ α‖cm‖2R+1
,

where here ‖ · ‖
R+1 denotes the usual IRR+1 norm and

∆̂i ≡ (∆i, . . . ,∆i+R)> for given i.
Using the theory of (Auslender, 1971), a decompo-

sition of this minimization problem is possible, setting
up an iterative relaxation-type minimization. The fol-
lowing algorithm finds cI for I = 0, 1, . . . ,M , using at
each step β ∈ IRR+1 to store the unknown cI . The

vectors d0, d1, . . ., dM in IRR+1 used below may be
initialized to zero and correspond to initial guesses for
c0, c1, . . . , cM .

Local Tikhonov Regularization Algorithm #1

1. Initialize vectors d0, d1, . . ., dM .

2. Let I = 0.

3. Holding the previously determined values of c0,
c1, . . ., cI−1 fixed, find β solving

min
β

{
I−1∑
m=0

Jm,R(c0, . . . , cm) (7)

+JI,R(c0, . . . , cI−1, β)

+
M∑

m=I+1

Jm,R(c0, . . . , cI−1, β,dI+1, . . .dm)

}
(i.e., cI+1 = dI+1, . . ., cm = dm temporarily).

4. Set cI = β.

5. If I = M , let di = ci for i = 0, . . . ,M , and return
to step 3. Otherwise, leave the di unchanged,
increment I by 1 and return to step 3.

Convergence is guaranteed (Auslender, 1971), and
the converged values c00 , c10 , . . . , cM0 are approxima-
tions for u(t0), u(t1), . . ., u(tM ).

Remark: For R = R(δ) appropriately chosen (given
the level δ of noise in the problem), it has been observed
in practice that very accurate results are obtained if,
instead of solving (7) for β in step 3 above, one instead
finds β solving

min
β

JI,R(c0, . . . , cI−1, β).

Since JI,R is independent of dI+1, . . . ,dM , the entire
iteration for I = 0, . . . ,M, is performed once only,
without any initializing or updating of the values of
di. The resulting algorithm is given below:

Local Tikhonov Regularization Algorithm #2

1. Let I = 0.

2. Holding the previously determined values of c00 ,
c10 , . . ., cI−1,0 fixed, solve for β:

min
β

‖KRβ +
I−1∑
i=0

ci0∆̂I−i+1 − fI‖2R+1
+ α‖β‖2

R+1



3. Set c
I0 = β0, the first component of β.

4. If I = M , stop. Otherwise, increment I by 1 and
return to step 2.

In (Lamm and Eldén, 1995), this second algorithm
is considered in detail, and convergence proofs for the
numerical implementation are given in the case of the
kernel satisfying k(0) = 0. The more general case will
be considered elsewhere. One can view this algorithm
as a sequential Tikhonov regularization algorithm as
follows: For R ≤ M (and, in general, we take R much
smaller than M), the matrix KR is a principal subma-
trix of the matrix K

K =


∆1 0 . . . 0
∆2 ∆1 . . . 0
...

...
. . .

...
∆M+1 ∆M . . . ∆1

 ,

where K is the governing matrix in a standard collo-
cation approximation, here collocating to t1, . . . , tM+1

of the integral equation (1); that is, the collocation
method applied to (1) leads to an equation of the form

Kq = f

where f ≡ (f(t1), . . . , f(tM+1))> and where q is the
(M+1)-dimensional vector of coefficients in the finite
dimensional approximation uM of u, given by

uM (t) =
M∑
i=0

qiχi(t), t ∈ [0, 1].

Standard (0th order) Tikhonov regularization for such
a discretization consists of the minimization of
‖Kq − f‖2

M+1
+ α‖q‖2

M+1
. With local (sequential)

Tikhonov regularization, as given in the second algo-
rithm above or in (Lamm and Eldén, 1995), one ini-
tially minimizes only the first R + 1 components this
problem, i.e., one solves for β

min
β

‖KRβ − f0‖2R+1
+ α‖β‖2

R+1
,

and then sets q0 = β0, discarding the remaining com-
ponents of β. At the second step, the next R+ 1 com-
ponents of the original problem are considered, and the
following problem is solved for β:

min
β

‖q0∆̂2 +KRβ − f1‖2R+1
+ α‖β‖2

R+1
,

with then q1 set equal to β0, and the rest of β discarded.
And so on.

Because R is typically much smaller than M , and
because the governing matrix KR is the same at ev-
ery step, the computational cost is quite low, with the
effectiveness about the same as full Tikhonov regular-
ization. The reader is referred to (Lamm and Eldén,
1995) for numerical examples and for comparisons in
terms of operation counts for standard Tikhonov regu-
larization contrasted with an efficient implementation
of the second algorithm above. The results in (Lamm
and Eldén, 1995) are valid for collocation-type approx-
imations as well as several standard methods based on
the numerical quadrature of (1).

CONVERGENCE ANALYSIS FOR PROBLEM P∆r

We present here the convergence theory for the so-
lution (ηδ

α,∆r
, ϕδ

α,∆r
) of P∆r

as δ, α,∆r go to zero in a
prescribed way. First we will need the definition

ω(∆r) =
∫ ∆r

0

∫ ρ

0

|k(ρ− s)|2 ds dρ, (8)

where we note that ω(∆r) = O(∆r2) as ∆r → 0, given
our assumptions on k. For many ill-posed Volterra
problems, k is quite small near 0, leading to the re-
sult that ω(∆r) converges to zero much more rapidly
than O(∆r2) in these cases.

Theorem 1 For each fixed ∆r ∈ (0,∆R] and fixed
α > 0, there exists a unique solution (ηδ

α,∆r
, ϕδ

α,∆r
)

of problem P∆r , where F δ
∆r

∈ Z∆r in problem P∆r is
defined by F δ

∆r
(t)(ρ) = f(t+r) + d(t+ρ), 0 ≤ t ≤ 1,

0 ≤ ρ ≤ ∆r, with
∫ 1+∆r

0
|d(t)|2 dt ≤ δ2. Furthermore

a selection of α = α(∆r) > 0 may be made so that

(i) α(∆r) → 0, and

(ii)
ω(∆r)
α(∆r)

→ 0

as ∆r → 0, and a selection of ∆r = ∆r(δ) > 0 may be
made such that

(iii) ∆r(δ) → 0, and

(iv)
δ2

α(∆r(δ))
→ 0,

as δ → 0. For any sequence δn → 0, and for ∆rn ≡
∆rn(δn) and αn ≡ α(∆r(δn)) such that (i)–(iv) hold,
the corresponding solution (ηδn

αn,∆rn
, ϕδn

αn,∆rn
) of P∆rn

(defined using F δn
∆rn

) satisfies

ηδn

αn,∆rn
→ u as n→∞.



Proof: Define L̃∆r
(η, ϕ) = L∆r

ϕ for all (η, ϕ) ∈ H∆r

such that ϕ ∈ dom(L∆r
). Restricting C∆r

and L̃∆r
to

the Hilbert space D∆r
, we have the assumptions of

(Locker and Prenter, 1980) holding for the problem
P∆r

with L∆r
ϕ replaced by L̃∆r

(η, ϕ) (this problem is
equivalent to P∆r

); in particular, one has in this case
that the nullspace of L̃∆r

is the trivial subspace and
that the range of L̃∆r

is closed in Z∆r
. Thus, for each

∆r ∈ (0,∆R], α > 0, and F δ
∆r

∈ Z∆r
, there exists a

unique solution (ηδ
α,∆r

, ϕδ
α,∆r

) of problem P∆r
given by

the solution of the normal equations associated with
problem P∆r

.
We shall first show that, in the case of ideal data

in problem P∆r
(i.e., F∆r

appearing in place of F δ
∆r

),
the corresponding solutions (η

α,∆r
, ϕ

α,∆r
) of problem

P∆r
are bounded as ∆r → 0, provided α is chosen

appropriately. From the definition of (η
α,∆r

, ϕ
α,∆r

),
one obtains η

α,∆r
= T∆r

ϕ
α,∆r

, where

α‖ϕ
α,∆r

‖2
∆r

≤ ‖C∆r(ηα,∆r , ϕα,∆r )−F∆r‖2∆r
+α ‖L∆rϕα,∆r‖2∆r

≤ ‖C∆r (u, û∆r )−F∆r‖2∆r
+ α ‖L∆r û∆r‖2∆r

. (9)

Here û∆r ∈ Z∆r is defined by û∆r (t)(ρ) = u(t), 0 ≤
t ≤ 1, 0 ≤ ρ ≤ ∆r, and thus (u, û∆r ) ∈ D∆r (i.e.,
`(û∆r (t)) = u(t) ). But

‖C∆r (u, û∆r )− F∆r‖2∆r

=
1

∆r

∫ 1

0

∫ ∆r

0

[
u(t)

∫ ρ

0

k(ρ− s) ds

+
∫ t

0

k(t+ ρ−s)u(s) ds− f(t+ ρ)
]2

dρ dt

=
1

∆r

∫ 1

0

∫ ∆r

0

[∫ ρ

0

k(ρ−s) (u(t)−u(t+ s)) ds
]2

dρ dt

≤ 4ω(∆r) ‖u‖2
L2(0,1+∆R)

where ω(∆r) is defined in (8). Thus

α‖ϕ
α,∆r

‖2
∆r
≤ 4ω(∆r) ‖u‖2

L2(0,1+∆R)
+ α‖u‖2

where we have used the fact that ‖L∆r û∆r‖2∆r
= ‖u‖2

(‖ · ‖ denotes the L2(0, 1) norm). In addition, defining
ϕ̃α,∆r ∈ (Z, ‖ · ‖

Z
) via

ϕ̃α,∆r (t)(ρ) = ϕα,∆r (t)(ρ∆r), 0 ≤ t, ρ ≤ 1,

we have ‖ϕ̃α,∆r‖2Z = ‖ϕα,∆r‖2∆r
for all ∆r ∈ (0,∆R],

and, provided we select α = α(∆r) such that
ω(∆r)
α(∆r)

is bounded as ∆r → 0, we have that
{
ϕ̃

α,∆r

}
⊂ Z

is bounded for all ∆r ∈ (0,∆R], and therefore has a
weakly converging subsequence.

Let {∆rn} denote a sequence which converges to zero
as n → ∞, and (relabeling the subsequence) let ϕ̃n ≡
ϕ̃

α(∆rn),∆rn
, where ϕ̃n ⇀ ϕ̃0 ∈ Z as n → ∞. (In what

follows we will simplify notation wherever possible, and
write An ≡ A∆rn

, Bn ≡ B∆rn
, Zn ≡ Z∆rn

, ‖ · ‖n ≡
‖·‖∆rn

, ϕn ≡ ϕ
α(∆rn),∆rn

, αn ≡ α(∆rn), etc.) Defining
η0 ∈ L2(0, 1) via η0 = T ϕ̃0, we note that ηn ≡ Tnϕn =
T ϕ̃n satisfies ηn ⇀ η0 as n→ 0.

First we show that ϕ̃0 is a least squares solution of
a related problem,

Ãϕ̃ = f

where Ã ∈ L (Z,L2(0, 1)) is given by

Ãϕ̃(t) =
∫ t

0

k(t− s)(T ϕ̃)(s) ds, t ∈ [0, 1]

for ϕ̃ ∈ Z. To this end we note that

‖Ãϕ̃0 − f‖2

=
∫ 1

0

∣∣∣∣∫ t

0

k(t−s)η0(s) ds−f(t)
∣∣∣∣2 dt

=
1

∆rn

∫ 1

0

∫ ∆rn

0

|Aη0(t)−f(t)|2 dρ dt

= ‖Ânη0 − F̂n‖2n

where Ân : L2(0, 1) → Zn is given for η ∈ L2(0, 1)
by Ânη(t)(ρ) = Aη(t), t ∈ [0, 1], ρ ∈ [0,∆rn], and
F̂n ∈ Zn is given by F̂n(t)(ρ) = f(t). We thus have,
for some C > 0 independent of n and ∆rn,

‖Ãϕ̃0 − f‖2

≤ C
{
‖Anϕn + Bnηn − Fn‖2n + ‖Anϕn‖2n

+‖Bnηn − Ânη0‖2n + ‖Fn − F̂n‖2n
+αn‖ϕn‖2n

}
. (10)

But (ηn, ϕn) a solution of P∆rn
implies that

‖Anϕn + Bnηn − Fn‖2n + αn‖ϕn‖2n
≤ ‖Anûn + Bnu− Fn‖2n + αn‖ûn‖2n
≤ 4ω(∆rn) ‖u‖2L2(0,1+∆R) + αn‖u‖2

using earlier arguments and ûn ≡ û∆rn
, where û was

defined after equation (9). In addition,

‖Bnηn − Ânη0‖2n
≤ 2‖(Bn − Ân)ηn‖2n + 2‖Ân(ηn − η0)‖2n

≤ 2
∆rn

‖ηn‖2
∫ 1

0

∫ ∆rn

0

∫ t

0

|k(t+ρ−s)−k(t−s)|2 ds dρ dt



+
2

∆rn

∫ 1

0

∫ ∆rn

0

|A(ηn − η0)(t)|2 dρ dt

≤ 2
3
L2

k ‖T‖2 ‖ϕ̃n‖2Z ∆r2n

+2‖A(ηn − η0)‖2

so that, using the compactness of the operator A in
the second term, ‖Bnηn − Ânη0‖2n → 0 as n→∞ . In
addition,

‖Fn − F̂n‖2n

=
1

∆rn

∫ 1

0

∫ ∆rn

0

|f(t+ ρ)− f(t)|2 dρ dt

≤ 1
3
L2

f ∆r2n

while boundedness of ‖ϕn‖2n as n → ∞ gives
‖Anϕn‖2n = O(∆r2n). Thus, letting n → 0 in (10) and
assuming α = α(∆r) satisfies (i) and (ii) in the state-
ment of the theorem (this is always possible), we find
that

‖Ãϕ̃0 − f‖2 = 0,

so that ϕ̃0 ∈ Z is a least squares solution of Aϕ = f .
Now let ũ ∈ Z be given by

ũ ≡ u(t)
`(γ)

γ, t ∈ [0, 1], (11)

where γ was defined earlier. Then

Ãũ(t) =
∫ t

0

k(t− s) `
(
u(s)
`(γ)

γ

)
ds

= f(t), a.a. t ∈ [0, 1],

and one can show that ũ is in N (Ã)⊥ (where N (Ã)
denotes the nullspace of Ã). Such conditions give that
ũ is the (unique) minimum-norm least squares solution
of Ãϕ̃ = f , (see, e.g., (Groetsch, 1984)). Our claim
here is that the weak-limit ϕ̃0 of ϕ̃n is actually equal to
ũ; to show this we need only argue that ‖ϕ̃0‖Z

= ‖ũ‖
Z
.

We have

αn‖ϕ̃n‖2Z = αn‖ϕn‖2n
≤ ‖Anϕn + Bnηn − Fn‖2n + αn‖ϕn‖2n
≤ ‖Anũn + Bnu− Fn‖2n + αn‖ũn‖2n

where (u, ũn) ∈ Dn, and where ũn ∈ Zn is defined
from ũ in (11) via ũn(t)(ρ) = ũ(t)(ρ/∆rn), 0 ≤ t ≤ 1,
0 ≤ ρ ≤ ∆rn. But

‖Anũn + Bnu− Fn‖2n = ‖An(ũn − un)‖2n
≤ 2C ω(∆rn)‖u‖2

L2(0,1+∆R)

where we have used un = u∆rn
(u∆r defined in (2)) and

where C = C(‖γ‖∞). In addition, ‖ũn‖2n = ‖ũ‖2
Z

=
‖u‖2/‖γ‖2, and thus

‖ϕ̃n‖2Z ≤ 2C
ω(∆rn)
α(∆rn)

‖u‖2
L2(0,1+∆R)

+ ‖u‖2/‖γ‖2.

Selecting α(∆r) such that ω(∆r)/α(∆r) → 0 as ∆r →
0, and letting n→∞ in the above estimate, we have

‖ϕ̃0‖Z
≤ lim inf ‖ϕ̃n‖Z

(12)

≤ lim sup ‖ϕ̃n‖Z

≤ ‖u‖/‖γ‖
= ‖ũ‖

Z
.

By uniqueness of the minimum norm least squares
solution, it must be that ϕ̃0 = ũ and, from (12), that
‖ϕ̃n‖Z

→ ‖ũ‖
Z

as n → ∞. Thus we have strong con-
vergence of ϕ̃n to ũ as n → ∞, in fact, uniqueness of
the limit ũ gives full sequential convergence for arbi-
trary {∆rn} such that ∆rn → 0 as n→∞.

Finally, T ϕ̃n → T ũ in L2(0, 1) as n→∞, or, equiv-
alently, ηn → η0 = T ũ = u.

Now let (ηδ
α,∆r

, ϕδ
α,∆r

) and (η
α,∆r

, ϕ
α,∆r

), denote the
solutions of P∆r

associated with data F δ
∆r

and F∆r
, re-

spectively, for given ∆r ∈ (0,∆R]. Completely stan-
dard arguments (see, for example, Section 1.4 of (Mo-
rozov, 1984)) may be used to show that

1
2
‖C∆r (η

δ
α,∆r

−ηα,∆r , ϕ
δ
α,∆r

−ϕα,∆r )‖2∆r

+α‖ϕδ
α,∆r

− ϕ
α,∆r

‖2
∆r
≤ 1

2
‖d∆r‖2∆r

where d∆r (t)(ρ) = d(t + ρ) for t ∈ [0, 1], ρ ∈ [0,∆r],
that is,

‖ϕδ
α,∆r

− ϕ
α,∆r

‖2
∆r
≤ δ2

2α
.

The remainder of the theorem then follows from an
application of the triangle inequality and from the def-
inition of ηδ

α,∆r
= T∆rϕ

δ
α,∆r

.

4
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