1. (24 pts) Given \(A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix} \), verify that \(A \) is nonsingular, and then compute \(A^{-1} \) by two distinct methods.

2. (16 pts) The matrix \(A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & -1 & 0 \\ -1 & 1 & -2 & -1 \\ 1 & 2 & -1 & 1 \end{bmatrix} \) is row equivalent to \(R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \).

Use this information to solve the equation \(Ax = 0 \).

3. (16 pts) If \(\begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} \), find \(A^{-1} \).

4. (20 pts) True or false. If your answer is false, please explain. All matrices are \((n \times n)\).

 (a) If the row echelon form of \(A \) involves free variables, then the system \(Ax = b \) will have infinitely many solutions.

 (b) If \(\exists \, x \in \mathbb{R}^n, \, x \neq \theta \) such that \(Ax = 0 \), then \(\det(A) = 0 \).

 (c) \((A - B)^2 = A^2 - 2AB + B^2 \)

 (d) If \(A \) and \(B \) are both nonsingular, then \(A \sim B \).

 (e) \(\det(AB) = \det(BA) \).

5. (12 pts) Given \(A = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix} \).

 (a) Reduce \(A \) to upper triangular form using only type III row operations.

 (b) Is \(A \) nonsingular? Why?

6. (12 pts) (a) Let \(A, B \in \mathbb{R}^{m \times n} \). What does it mean to say \(A \sim B \) ?

 (b) Prove that if \(A \sim B \) and \(B \sim C \), then \(A \sim C \).