Exercise 2.2.1

Consider the initial value problem:

\[\frac{dy}{dx} + y = 0, \quad y(0) = 1, \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.

Exercise 2.2.2

Consider the initial value problem:

\[\frac{dy}{dx} - 2y = 0, \quad y(0) = 2. \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.

Exercise 2.2.3

Consider the initial value problem:

\[\frac{dy}{dx} + 3y = 0, \quad y(0) = 4. \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.

Exercise 2.2.4

Consider the initial value problem:

\[\frac{dy}{dx} - y = 0, \quad y(0) = 5. \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.

Exercise 2.2.5

Consider the initial value problem:

\[\frac{dy}{dx} + 4y = 0, \quad y(0) = 3. \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.

Exercise 2.2.6

Consider the initial value problem:

\[\frac{dy}{dx} - 3y = 0, \quad y(0) = 2. \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.

Exercise 2.2.7

Consider the initial value problem:

\[\frac{dy}{dx} + 2y = 0, \quad y(0) = 1. \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.

Exercise 2.2.8

Consider the initial value problem:

\[\frac{dy}{dx} - y = 0, \quad y(0) = 0. \]

1. Find the general solution of the differential equation.
2. Sketch the graphs of the solutions on the same axes.
3. Describe the behavior of the solutions as \(x \) approaches infinity.
Exercise 2.3.4 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

and for certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} - \frac{\text{flow rate}}{N^2} \]

Exercise 2.3.3 (The Flow of Organisms)}

The flow of organisms (N) is given by:

\[\text{flow of organisms} = \frac{\text{flow rate}}{N} \]

Exercise 2.3.2 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.3.1 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.3.0 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.9 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.8 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.7 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.6 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.5 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.4 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.3 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.2 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.1 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]

Exercise 2.2.0 (The Algebra of Flow Rates)}

For certain species of organisms, the effective flow rate of an organism of flow rate (N) is given by:

\[\text{effective flow rate} = \text{flow rate} - \frac{\text{flow rate}}{N} \]
2.6 Implications of Ocellations

unique in both directions: there is no solution if \(a = 0 \) (or \(b = 0 \)) and the solution is \(x = y \) if \(b = 0 \) and \(a \neq 0 \).

2.6.2 Converse of Ocellations

\(a \neq 0 \) (or \(b \neq 0 \)) and the solution is \(x = y \) if \(b = 0 \) and \(a \neq 0 \).

2.6.3 Converse of Ocellations

\(a \neq 0 \) (or \(b \neq 0 \)) and the solution is \(x = y \) if \(b = 0 \) and \(a \neq 0 \).

2.6.4 Converse of Ocellations

\(a \neq 0 \) (or \(b \neq 0 \)) and the solution is \(x = y \) if \(b = 0 \) and \(a \neq 0 \).

2.6.5 Converse of Ocellations

\(a \neq 0 \) (or \(b \neq 0 \)) and the solution is \(x = y \) if \(b = 0 \) and \(a \neq 0 \).

2.6.6 Converse of Ocellations

\(a \neq 0 \) (or \(b \neq 0 \)) and the solution is \(x = y \) if \(b = 0 \) and \(a \neq 0 \).
2.8.18 Solve Equations on the Computer

2.8.22 The slope is constant along horizontal lines in Figure 2.8.5.