From Wade

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>392</td>
<td>4, 5</td>
</tr>
<tr>
<td>11.2</td>
<td>401-403</td>
<td>3, 4, 5, 6, 7</td>
</tr>
</tbody>
</table>

Non-book Exercises

1) For which $\alpha > 0$ is the function

$$f(x, y) = \begin{cases} \frac{x^2|y|^\alpha}{x^2 + |y|^2} & (x, y) \neq 0 \\ 0 & (x, y) = 0 \end{cases}$$

differentiable at zero?

Honor’s Problems

2) Define the space $C^1[a,b] = \{ f : [a, b] \mapsto \mathbb{R} \mid f \text{ and } f' \in C[a,b] \}$, and the norm

$$\|f\|_{1,1} = \int_a^b (|f(x)| + |f'(x)|) \, dx.$$

(a) Show there exists $M > 0$ such that for all $f \in C^1[a,b]$, $\|f\|_\infty \leq M\|f\|_{1,1}$.

Hint: Use the Fundamental Theorem of Calculus.

(b) Show that if $\{f_n\}_{n=1}^\infty$ is a sequence from C^1 and $f_n \rightarrow g$ in $\|\cdot\|_{1,1}$ then $f_n \rightarrow g$ point wise.

(c) Define $W^{1,1}$ to be the set of all sequences from C^1 which are Cauchy in the norm $\|\cdot\|_{1,1}$. Show that for any sequence $\{f_n\}$ from C^1 which is Cauchy in $\|\cdot\|_{1,1}$ there is a $g \in C[a,b]$ such that

$$\|f_n - g\|_1 \rightarrow 0.$$

For this reason we say that

$$W^{1,1} \subset C[a,b].$$
3) (a) Let \(f \in L^1[a, b] \) and \(g \in W^{1,1}[a, b] \). Show that the product \(fg \in L^1[a, b] \). That is, if \(f \) is represented by the \(\| \circ \|_1 \) Cauchy sequence \(\{f_n\} \subset C[a, b] \) and \(g \) by the \(\| \circ \|_{1,1} \) Cauchy sequence \(\{g_n\} \subset C^1[a, b] \), then the sequence \(\{h_n\} \) where \(h_n = f_n g_n \) is contained in \(C[a, b] \) and is Cauchy in \(\| \circ \|_1 \).

(b) In part (a), show that if \(g \) is merely in \(L^1[a, b] \), then the product \(fg \) may not be in \(L^1[a, b] \). That is find two sequences \(\{f_n\} \) and \(\{g_n\} \), both from \(C[a, b] \) and both Cauchy in \(\| \circ \|_1 \) such that the “product” \(\{f_n g_n\} \) is not Cauchy in \(\| \circ \|_1 \).