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Abstract. This paper is a brief overview of recent results by the authors relating colored
Jones polynomials to geometric topology. The proofs of these results appear in the papers
[20, 14], while this survey focuses on the main ideas and examples.

Introduction

To every knot in S3 there corresponds a 3–manifold, namely the knot complement. This
3–manifold decomposes along tori into geometric pieces, where the most typical scenario is
that all of S3rK supports a complete hyperbolic metric [43]. Incompressible surfaces em-
bedded in S3rK play a crucial role in understanding its classical geometric and topological
invariants.

The quantum knot invariants, including the Jones polynomial and its relatives, the
colored Jones polynomials, have their roots in representation theory and physics [28, 46],
and are well connected to topological quantum field theory [48]. While the constructions of
these invariants seem to be unrelated to the geometries of 3–manifolds, in fact topological
quantum field theory predicts that the Jones polynomial knot invariants are closely related
to the hyperbolic geometry of knot complements [47]. In particular, the volume conjecture
of R. Kashaev, H. Murakami, and J. Murakami [29, 37, 36, 12] asserts that the volume
of a hyperbolic knot is determined by certain asymptotics of colored Jones polynomials.
There is also growing evidence indicating direct relations between the coefficients of the
Jones and colored Jones polynomials and the volume of hyperbolic links. For example,
numerical computations show such relations [6], as do theorems proved for several classes
of links, including alternating links [10], closed 3–braids [18], highly twisted links [16], and
certain sums of alternating tangles [17].

In a recent monograph [14], the authors have initiated a new approach to studying these
relations, focusing on the topology of incompressible surfaces in knot complements. The
motivation behind studying surfaces is as follows. On the one hand, certain spanning
surfaces of knots have been shown to carry information on colored Jones polynomials [8].
On the other hand, incompressible surfaces also shed light on volumes of manifolds [2] and
additional geometry and topology (e.g. [1, 34, 35]). With these ideas in mind, we developed
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a machine that allows us to establish relationships between colored Jones polynomials and
topological/geometric invariants.

The purpose of this paper is to give an overview of recent results, especially those of
[14], and some of their applications. The content is an expanded version of talks given
by the authors at the conferences Topology and geometry in dimension three, in honor of
William Jaco, at Oklahoma State University in June 2010; Knots in Poland III at the
Banach Center in Warsaw, Poland, in July 2010; as well as in seminars and department
colloquia. This paper includes background and motivation, along with several examples
that did not appear in the original lectures. Many figures in this survey are drawn from
slides for those lectures, as well as from the papers [14, 16, 20].

This paper is organized as follows. In sections 1, 2, and 3, we develop several connec-
tions between (colored) Jones polynomials and topological objects of the corresponding
dimension. That is, Section 1 describes the connection between these polynomial invari-
ants and certain state graphs associated to a link diagram. Section 2 describes the state
surfaces associated to these state graphs, and explains the connection of these surfaces
to the sequence of degrees of the colored Jones polynomial. Section 3 dives into the 3–
dimensional topology of the complement of each state surface, and contains most of our
main theorems. In Section 4, we illustrate the main theorems with a detailed example.
Finally, in Section 5, we describe the polyhedral decomposition that plays a key role in
our proofs.

1. State graphs and the Jones polynomial

The first objects we consider are 1–dimensional: graphs built from the diagram of a knot
or link. We will see that these graphs have relationships to the coefficients of the colored
Jones polynomials, and that a ribbon version of one of these graphs encodes the entire
Jones polynomial. In later sections, we will also see relationships between the graphs and
quantities in geometric topology.

1.1. Graphs and state graphs. Associated to a diagram D and a crossing x of D are
two link diagrams, each with one fewer crossing than D. These are obtained by removing
the crossing x, and reconnecting the diagram in one of two ways, called the A–resolution
and B–resolution of the crossing, shown in Figure 1.

B− resolutionA− resolution

Figure 1. A– and B–resolutions of a crossing.

For each crossing of D, we may make a choice of A–resolution or B–resolution, and
end up with a crossing–free diagram. Such a choice of A– or B–resolutions is called a
Kauffman state, denoted σ. The resulting crossing–free diagram is denoted by sσ.

The first graph associated with our diagram will be trivalent. We start with the crossing–
free diagram given by a state. The components of this diagram are called state circles. For
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Figure 2. Left to right: A diagram, the graphs HA, GA, and G′

A.

each crossing x of D, attach an edge from the state circle on one side of the crossing to the
other, as in the dashed lines of Figure 1. Denote the resulting graph by Hσ. Edges of Hσ

come from state circles and crossings; there are two trivalent vertices for each crossing.
To obtain the second graph, collapse each state circle of Hσ to a vertex. Denote the

result by Gσ. The vertices of Gσ corespond to state circles, and the edges correspond to
crossings of D. The graph Gσ is called the state graph associated to σ.

In the special case where each state circle of σ traces a region of the diagram D(K), the
state graph Gσ is called a checkerboard graph or Tait graph. These checkerboard graphs
record the adjacency pattern of regions of the diagram, and have been studied since the
work of Tait and Listing in the 19th century. See e.g. [39, Page 264].

Our primary focus from here on will be on the all–A state, which consists of choosing
the A–resolution at each crossing, and similarly the all–B state. Their corresponding state
graphs are denoted GA and GB. An example of a diagram, as well as the graphs HA and
GA that result from the all–A state, is shown in Figure 2.

For the all–A and all–B states, we define graphs G′

A and G′

B by removing all duplicate
edges between pairs of vertices of GA and GB, respectively. Again see Figure 2.

The following definition, formulated by Lickorish and Thistlethwaite [32, 42], captures
the class of link diagrams whose Jones polynomial invariants are especially well–behaved.

Definition 1.1. A link diagram D(K) is called A–adequate (resp. B–adequate) if GA

(resp. GB) has no 1–edge loops. If D(K) is both A and B–adequate, then D(K) and K
are called adequate.

We will devote most of our attention to A–adequate knots and links. Because the
mirror image of a B–adequate knot is A–adequate, this includes the B–adequate knots up
to reflection. We remark that the class of A– or B–adequate links is large. It includes all
prime knots with up to 10 crossings, alternating links, positive and negative closed braids,
closed 3–braids, Montesinos links, and planar cables of all the above [32, 41, 42]. In fact,
Stoimenow has computed that there are only two knots of 11 crossings and a handful of
12 crossing knots that are not A– or B–adequate. Furthermore, among the 253,293 prime
knots with 15 crossings tabulated in Knotscape [25], at least 249,649 are either A–adequate
or B–adequate [41].
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Recall that a link diagram D is called prime if any simple closed curve that meets the
diagram transversely in two points bounds a region of the projection plane without any
crossings. A prime knot or link admits a prime diagram.

1.2. The Jones polynomial from the state graph viewpoint. Here, we recall a
topological construction that allows us to recover the Jones polynomial of any knot or link
from a certain 2–dimensional embedding of GA.

A connected link diagram D leads to the construction of a Turaev surface [45], as
follows. Let Γ ⊂ S2 be the planar, 4–valent graph of the link diagram. Thicken the
(compactified) projection plane to a slab S2× [−1, 1], so that Γ lies in S2×{0}. Outside a
neighborhood of the vertices (crossings), our surface will intersect this slab in Γ × [−1, 1].
In the neighborhood of each vertex, we insert a saddle, positioned so that the boundary
circles on S2×{1} are the components of the A–resolution sA(D), and the boundary circles
on S2 × {−1} are the components of sB(D). (See Figure 3.) Then, we cap off each circle
with a disk, obtaining an unknotted closed surface F (D).

sAsA

sB

sB

Γ

Figure 3. Near each crossing of the diagram, a saddle surface interpolates
between circles of sA(D) and circles of sB(D). The edges of GA and GB

can be seen as gradient lines at the saddle.

In the special case when D is an alternating diagram, each circle of sA(D) or sB(D)
follows the boundary of a region in the projection plane. Thus, for alternating diagrams,
the surface F (D) is exactly the projection sphere S2. For general diagrams, it is still the
case that the knot or link has an alternating projection to F (D) [8, Lemma 4.4].

The construction of the Turaev surface F (D) endows it with a natural cellulation, whose
1–skeleton is the graph Γ and whose 2–cells correspond to circles of sA(D) or sB(D), hence
to vertices of GA or GB. These 2–cells admit a natural checkerboard coloring, in which
the regions corresponding to the vertices of GA are white and the regions corresponding
to GB are shaded. The graph GA (resp. GB) can be embedded in F (D) as the adjacency
graph of white (resp. shaded) regions. Note that the faces of GA (that is, regions in the
complement of GA) correspond to vertices of GB , and vice versa. In other words, the
graphs are dual to one another on F (D).

A graph, together with an embedding into an orientable surface, is often called a ribbon
graph. Ribbon graphs and their polynomial invariants have been studied by many authors,
including Bollobas and Riordan [4, 5]. Building on this point of view, Dasbach, Futer,
Kalfagianni, Lin and Stoltzfus [8] showed that the ribbon graph embedding of GA into the
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Turaev surface F (D) carries at least as much information as the Jones polynomial JK(t).
To state the relevant result from [8], we need the following definition.

Definition 1.2. A spanning subgraph of GA is a subgraph that contains all the vertices
of GA. Given a spanning subgraph G of GA we will use v(G), e(G) and f(G) to denote
the number of vertices, edges and faces of G respectively.

Theorem 1.3 ([8]). Let D be a connected link diagram. Then the Kauffman bracket
〈D〉 ∈ Z[A,A−1] can be expressed as

〈D〉 =
∑

G⊂GA

Ae(GA)−2e(G)(−A2 − A−2)f(G)−1,

where G ranges over all the spanning subgraphs of GA.

Recall that given a diagram D, the Jones polynomial JK(t) is obtained from the Kauff-

man bracket as follows. Multiply 〈D〉 by with (−A)−3w(D), where w(D) is the writhe of

D, and then substitute A = t−1/4.

Remark 1.4. Theorem 1.3 leads to formulae for the coefficients of the Jones polynomial
of a link in terms of topological quantities of the graph GA corresponding to any diagram
of the link [8, 9]. These formulae become particularly effective if GA corresponds to an A–
adequate diagram; in particular, Theorem 1.5 below can be recovered from these formulae.

The polynomial JK(t) fits within a family of knot polynomials known as the colored
Jones polynomials. A convenient way to express this family is in terms of Chebyshev
polynomials. For n ≥ 0, the polynomial Sn(x) is defined recursively as follows:

(1) Sn+1 = xSn − Sn−1, S1(x) = x, S0(x) = 1.

Let D be a diagram of a link K. For an integer m > 0, let Dm denote the diagram
obtained from D by taking m parallel copies of K. This is the m–cable of D using the
blackboard framing; if m = 1 then D1 = D. Let 〈Dm〉 denote the Kauffman bracket of
Dm and let w = w(D) denote the writhe of D. Then we may define the function

G(n + 1, A) :=
(
(−1)nAn2+2n

)
−w

(−1)n−1

(
A4 − A−4

A2n − A−2n

)
〈Sn(D)〉,

where Sn(D) is a linear combination of blackboard cablings of D, obtained via equation
(1), and the notation 〈Sn(D)〉 means extend the Kaufmann bracket linearly. That is, for
diagrams D1 and D2 and scalars a1 and b1, 〈a1D1 + a2D2〉 = a1〈D1〉 + a2〈D2〉. Finally,
the reduced n-th colored Jones polynomial of K, denoted

Jn
K(t) = αntj(n) + βntj(n)−1 + . . . + β′

ntj
′(n)+1 + α′

ntj
′(n),

is obtained from G(n,A) by substituting t := A−4.
For a given a diagram D of K, there is a lower bound for j′(n) in terms of data about

the state graph GA, and this bound is sharp when D is A–adequate. Similarly, there is
an upper bound on j(n) in terms of GB that is realized when D is B–adequate [31]. See
Theorem 2.5 for a related statement. In addition, Dasbach and Lin showed that for A–
and B–adequate diagrams, the extreme coefficients of Jn

K(t) have a particularly nice form.
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Figure 4. Left to right: A diagram. The graphs HA and GA. The state
surface SA.

Theorem 1.5 ([10]). If D is an A–adequate diagram, then α′

n and β′

n are independent of
n > 1. In particular, |α′

n| = 1 and |β′

n| = 1 − χ(G′

A), where G′

A is the reduced graph.
Similarly, if D is B–adequate, then |αn| = 1 and |βn| = 1 − χ(G′

B).

Now the following definition makes sense in the light of Theorem 1.5.

Definition 1.6. For an A–adequate link K, we define the stable penultimate coefficient
of Jn

K(t) to be β′

K := |β′

n|, for n > 1.
Similarly, for a B–adequate link K, we define the stable second coefficient of Jn

K(t) to
be βK := |βn|, for n > 1.

For example, in Figure 2, G′

A is a tree. Thus, for the link in the figure, β′

K = 0.

Remark 1.7. It is known that in general, the colored Jones polynomials Jn
K(t) satisfy

linear recursive relations in n [22]. In this setting, the properties stated in Theorem 1.5
can be thought of as strong manifestations of the general recursive phenomena, under the
hypothesis of adequacy. For arbitrary knots the coefficients |βn|, |β

′

n| do not, in general,
stabilize. For example, for q > p > 2, the coefficients |βn|, |β

′

n| of the (p, q) torus link are
periodic with period 2 (see [3]):

|βn| = |βn+2k| and
∣∣β′

n

∣∣ =
∣∣β′

n+2k

∣∣, for n ≥ 2, k ∈ N.

See of [14, Chapter 10] for more discussion and questions on these periodicity phenomena.

2. State surfaces

In this section, we consider 2–dimensional objects: namely, certain surfaces associated
to Kauffman states. This surface is constructed as follows. Recall that a Kauffman state
σ gives rise to a collection of circles embedded in the projection plane S2. Each of these
circles bounds a disk in the ball below the projection plane, where the collection of disks
is unique up to isotopy in the ball. Now, at each crossing of D, we connect the pair
of neighboring disks by a half-twisted band to construct a state surface Sσ ⊂ S3 whose
boundary is K. See Figure 4 for an example where σ is the all–A state.
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Well–known examples of state surfaces include Seifert surfaces (where the correspond-
ing state σ is defined by following an orientation on K) and checkerboard surfaces for
alternating links (where the corresponding state σ is either the all–A or all–B state). In
this paper, we focus on the all–A and all–B states of a diagram, but we do not require our
diagrams to be alternating.

Our surfaces also generalize checkerboard surfaces in the following sense. For an al-
ternating diagram D, the white and shaded checkerboard surfaces are SA and SB of the
all–A and all–B states. These surfaces can be simultaneously embedded in S3 so that
their intersection consists of disjoint segments, one at each crossing. Collapsing each of
these segments to a point will map SA ∪ SB to the projection sphere, which is the Turaev
surface F (D) associated to an alternating diagram.

In our more general setting, suppose that we modify the surfaces SA and SB so that SA

is constructed out of disks in the 3–ball above the projection plane, while SB is constructed
out of disks in the 3–ball below the projection plane. (See Figure 3 for the boundaries of
these disks.) Then, once again, SA ∩ SB will consist of disjoint segments at the crossings,
and collapsing each segment to a point will map SA ∪ SB to the Turaev surface F (D).
Informally, each of SA and SB forms “half” of the Turaev surface, just as each checkerboard
surface of an alternating diagram forms “half” of the projection plane.

In general, the graph Gσ has the following relationship to the state surface Sσ.

Lemma 2.1. The graph Gσ is a spine for the surface Sσ.

Proof. By construction, Gσ has one vertex for every circe of sσ (hence every disk in Sσ),
and one edge for every half–twisted band in Sσ. This gives a natural embedding of Gσ

into the surface, where every vertex is embedded into the corresponding disk, and every
edge runs through the corresponding half-twisted band. This gives a spine for Sσ. �

The surfaces Sσ are, in general, non-orientable (checkerboard surfaces already exhibit
this phenomenon). The state graph Gσ encodes orientability via the following criterion,
whose proof we leave as a pleasant exercise.

Lemma 2.2. The surface Sσ is orientable if and only if Gσ is bipartite.

We need the following definition.

Definition 2.3. Let M be an orientable 3–manifold and S ⊂ M a properly embedded
surface. We say that S is essential in M if the boundary of a regular neighborhood of

S, denoted S̃, is incompressible and boundary–incompressible. If S is orientable, then

S̃ consists of two copies of S, and the definition is equivalent to the standard notion of
“incompressible and boundary–incompressible.” If S is non-orientable, this is equivalent
to π1–injectivity of S, the stronger of two possible senses of incompressibility.

The state surfaces surface Sσ are often non-orientable. In this case, S3\\S̃σ is the
disjoint union of MA = S3\\Sσ and a twisted I–bundle over Sσ.

Again, we are especially interested in the state surfaces of the all–A and all–B states.
For these states, there is a particularly nice relationship between the state surface Sσ and
the state graph Gσ.
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Theorem 2.4 (Ozawa [38]). Let D(K) be a diagram of a link K, and let σ be the all–A
or all–B state. Then the state surface Sσ is essential in S3rK if and only if Gσ contains
no 1–edge loops.

In fact, Ozawa’s theorem also applies to a number of other states, which he calls σ–
homogeneous [38].

Ozawa proves Theorem 2.4 by decomposing the diagram into tangles so that Sσ is a
Murasugi sum. We have an alternate proof of this result in [14] that uses a decomposition
of the complement of Sσ into topological balls. We will discuss this more in Section 5.

2.1. Colored Jones polynomials and slopes of state surfaces. Garoufalidis has con-
jectured that for a knot K, the growth of the degree of the colored Jones polynomial is
related to essential surfaces in the manifold S3rK [21]. In [20], we show that this holds
for A–adequate diagrams of a knot K and the essential surface SA. In this subsection, we
review these results.

Given K ⊂ S3, let M = MK denote the compact 3–manifold created when a tubular
neighborhood of K is removed from S3. There is a canonical meridian–longitude basis of
H1(∂M), which we denote by 〈µ, λ〉. Any properly embedded surface (S, ∂S) ⊂ (M,∂M)
has S ∩ ∂M a simple closed curve on ∂M . The homology class of ∂S in H1(∂M) is
determined by an element p/q ∈ Q ∪ {1/0}: the slope of S. An element p/q ∈ Q ∪ {1/0}
is called a boundary slope of K if there is a properly embedded essential surface (S, ∂S) ⊂
(M,∂M), such that ∂S is homologous to pµ + qλ ∈ H1(∂M). Hatcher has shown that
every knot K ⊂ S3 has finitely many boundary slopes [24].

Let j(n) denote the highest degree of JK(n, t) in t, and let j′(n) denote the lowest
degree. Consider the sequences

jsK :=

{
4j(n)

n2
: n > 0

}
and js′K :=

{
4j′(n)

n2
: n > 0

}
.

Garoufalidis has conjectured [21] that for each knot K, every cluster point (i.e., every
limit of a subsequence) of jsK or js∗K is a boundary slope of K. In [20], the authors proved
this is true for A–adequate knots, and the boundary slope comes from the incompressible
surface SA. This is the content of the following theorem.

Figure 5. Left: a positive crossing, and a piece of SB near the crossing.
Locally, this crossing contributes +2 to the slope of SB, and makes no
contribution to the slope of SA. Right: a negative crossing contributes −2
to the slope of SA, and makes no contribution to the slope of SB .



JONES POLYNOMIALS, VOLUME, AND ESSENTIAL KNOT SURFACES: A SURVEY 9

Theorem 2.5 ([20]). Let D be an A–adequate diagram of a knot K and let b(SA) ∈ Z

denote the boundary slope of the essential surface SA. Then

lim
n→∞

4j′(n)

n2
= b(SA) = −2c−,

where c− is the number of negative crossings in D. (See Figure 5, right.)
Similarly, if D is a B–adequate diagram of a knot K, let b(SB) ∈ Z denote the boundary

slope of the essential surface SB. Then

lim
n→∞

4j(n)

n2
= b(SB) = −2c+,

where c+ is the number of positive crossings in D. (See Figure 5, left.)

Additional families of knots for which the conjecture is true are given by Garoufalidis
[21] and more recently by Dunfeld and Garoufalidis [13].

3. Cutting along the state surface

In this section, we focus on the 3–manifold formed by cutting along the state surface
SA. Using its 3–dimensional structure, we will relate the hyperbolic geometry of S3rK
to the Jones and colored Jones polynomials of K.

3.1. Geometry and topology of the state surface complement.

Definition 3.1. Let K ⊂ S3 be a link, and SA the all–A state surface. We let M denote
the link complement, M = S3rK, and we let MA := M\\SA denote the path–metric
closure of MrSA. Note that MA = (S3rK)\\SA is homeomorphic to S3\\SA, obtained
by removing a regular neighborhood of SA from S3.

We will refer to P = ∂MA ∩ ∂M as the parabolic locus of MA; it consists of annuli. The
remaining, non-parabolic boundary ∂MAr∂M is the unit normal bundle of SA.

Our goal is to use the state graph GA to understand the topological structure of MA.
One result along these lines is a straightforward characterization of when SA is a fiber
surface for S3rK, or equivalently when MA is an I–bundle over SA.

Theorem 3.2. Let D(K) be any link diagram, and let SA be the spanning surface deter-
mined by the all–A state of this diagram. Then the following are equivalent:

(1) The reduced graph G′

A is a tree.
(2) S3rK fibers over S1, with fiber SA.
(3) MA = S3\\SA is an I–bundle over SA.

For example, in the link diagram depicted in Figure 4, the graph G′

A is a tree with two
edges. Thus the state surface SA shown in Figure 4 is a fiber in S3rK. The geometric
types of state surfaces are further studied in [15].

In general, one may apply the annulus version of the JSJ decomposition theory [26, 27]
to cut MA into three types of pieces: I–bundles over sub-surfaces of SA, Seifert fibered
spaces that are solid tori, and guts, i.e. the portion that admits a hyperbolic metric.
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The pieces of the JSJ decomposition give significant information about the manifold
MA. For example, if guts(MA) = ∅, then MA is a union of I–bundles and solid tori. Such
an MA is called a book of I–bundles, and the surface SA is called a fibroid [7].

The guts of MA are a good measurement of topological complexity. To express this
more precisely, we need the following definition.

Definition 3.3. Let Y be a compact cell complex with connected components Y1, . . . , Yn.
Let χ(·) denote the Euler characteristic. This can be split into positive and negative parts,
with notation borrowed from the Thurston norm [44]:

χ+(Y ) =
n∑

i=1

max{χ(Yi), 0}, χ−(Y ) =
n∑

i=1

max{−χ(Yi), 0}.

Note that χ(Y ) = χ+(Y ) − χ−(Y ). In the case that Y = ∅, we have χ+(∅) = χ−(∅) = 0.

The negative Euler characteristic χ−(guts(MA)) serves as a useful measurement of how
far SA is from being a fiber or a fibroid in S3rK. In addition, it relates to the volume of
MA. The following theorem was proved by Agol, Storm, and Thurston.

Theorem 3.4 (Theorem 9.1 of [2]). Let M be finite–volume hyperbolic 3–manifold, and
let S ⊂ M be a properly embedded essential surface. Then

vol(M) ≥ v8 χ−(guts(M\\S)),

where v8 = 3.6638... is the volume of a regular ideal octahedron.

We apply Theorem 3.4 to the essential surface SA for a prime, A–adequate diagram
of a hyperbolic link. In order to do so, we develop techniques for determining the Euler
characteristic of the guts of SA. We find that it can be read off of a diagram of the link.

Theorem 3.5. Let D(K) be an A–adequate diagram, and let SA be the essential spanning
surface determined by this diagram. Then

χ−(guts(S3\\SA)) = χ−(G′

A) − ||Ec||,

where ||Ec|| ≥ 0 is a diagrammatic quantity.

The quantity ||Ec|| is the number of complex essential product disks (EPDs). We will
give its definition and examples in the next subsection. For now, we point out that in
many cases, the quantity ||Ec|| vanishes. For example, this happens for alternating links
[30], as well as for most Montesinos links [14, Corollary 9.21].

When we combine Theorems 3.4 and 3.5, and recall that S3\\SA is homeomorphic to
(S3rK)\\SA, we obtain

vol(S3rK) ≥ v8 χ−(guts(S3\\SA)) = χ−(G′

A) − ||Ec||,

where the equality comes from Theorem 3.5. This leads to the following.

Theorem 3.6. Let D = D(K) be a prime A–adequate diagram of a hyperbolic link K.
Then

vol(S3rK) ≥ v8 (χ−(G′

A) − ||Ec||),

where ||Ec|| is the same diagrammatic quantity as in the statement of Theorem 3.5, and
v8 = 3.6638... is the volume of a regular ideal octahedron.
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SA

SA

Figure 6. An EPD in MA containing a single 2-edge loop in GA, with
edges in different twist regions in the link diagram.

There is a symmetric result for B–adequate diagrams.

3.2. Essential product disks. We now describe the quantity ||Ec|| more carefully, and
discuss how it relates to the graph GA. To begin, we review some terminology.

Definition 3.7. Let M be a 3–manifold with boundary, and with prescribed parabolic
locus consisting of annuli. An essential product disk in M , or EPD for short, is a properly
embedded disk whose boundary has geometric intersection number 2 with the parabolic
locus. Note that an EPD is an I–bundle over an interval. See Figure 6 for an example of
such a disk in MA = S3\\SA.

If B is an I–bundle in M , we say that a collection {D1, . . . ,Dn} of disjoint EPDs spans
B if their complement in B is a disjoin union of solid tori and 3–balls.

Essential product disks are integral to understanding the size of guts(MA). In particular,
the proof of Theorem 3.5 requires calculating the Euler characteristic of all the I–bundle
components in the JSJ decomposition of MA = S3\\SA. To do this, we show that each
component of the I–bundle is spanned by EPDs, and find a particular spanning set. (See
Theorem 5.6 in Section 5.)

Definition 3.8. Two crossings in D are defined to be twist equivalent if there is a simple
closed curve in the projection plane that meets D at exactly those two crossings. The
diagram is called twist reduced if every equivalence class of crossings is a twist region (a
chain of crossings between two strands of K). The number of equivalence classes is denoted
t(D), the twist number of D.

Every twist region in D(K) with at least two crossings gives rise to EPDs. For instance,
in Figure 7, there are three crossings in the twist region. The boundary of each EPD
shown lies on the state surface SA, and crosses the knot diagram exactly twice. Note there
are two EPDs that encircle one bigon each, and one EPD that encircles two bigons. Any
two of these will suffice in a spanning set.

The essential product disk in Figure 6 does not lie in a single twist region. For another
example that does not lie in a single twist region, see Figure 8. Note that in each of Figures
6, 7, and 8, the EPD can be naturally associated to one or more 2–edge loops in the state
graph GA.

In Figure 8, the EPD exhibits more complicated behavior than in the other examples,
in that it bounds nontrivial portions of the graph HA. We call an EPD that bounds
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A

SA

S

A

A

S

S

Figure 7. Shown are three EPDs in a twist region.

Figure 8. An EPD in MA containing two 2-edge loops of GA.

nontrivial portions of HA on both sides a complex EPD. The minimal number of complex
EPDs in the spanning set of the maximal I–bundle of MA is denoted ||Ec||, and is exactly
the correction term in Theorem 3.5. By analyzing EPDs, we show the following.

Proposition 3.9. If D is prime and A–adequate, such that every 2–edge loop in GA has
edges belonging to the same twist region, then ||Ec|| = 0. Hence

vol(S3rK) ≥ v8 (χ−(G′

A)).

3.3. Volume estimates. One family of knots and links that satisfies Proposition 3.9 is
that of alternating links [30]. If D = D(K) is a prime, twist–reduced alternating link
diagram, then it is both A– and B–adequate, and for each 2–edge loop in GA or GB ,
both edges belong to the same twist region. Theorem 3.6 gives lower bounds on volume in
terms of both χ−(G′

A) and χ−(G′

B). By averaging these two lower bounds, one recovers
Lackenby’s lower bound on the volume of hyperbolic alternating links, in terms of the twist
number t(D).

Theorem 3.10 (Theorem 2.2 of [2]). Let D be a reduced alternating diagram of a hyper-
bolic link K. Then

v8

2
(t(D) − 2) ≤ vol(S3rK) < 10v3 (t(D) − 1),
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where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron.

Theorem 3.6 greatly expands the list of manifolds for which we can compute explicitly
the Euler characteristic of the guts, and can be used to derive results analogous to Theorem
3.10. As a sample, we state the following.

Theorem 3.11. Let D(K) be a diagram of a hyperbolic link K, obtained as the closure
of a positive braid with at least three crossings in each twist region. Then

2v8

3
t(D) ≤ vol(S3rK) < 10v3(t(D) − 1),

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron.

Observe that the multiplicative constants in the upper and lower bounds differ by a
rather small factor of about 4.155.

We obtain similarly tight two–sided volume bounds for Montesinos links, using these
guts techniques [14].

Theorem 3.12. Let K ⊂ S3 be a Montesinos link with a reduced Montesinos diagram
D(K). Suppose that D(K) contains at least three positive tangles and at least three negative
tangles. Then K is a hyperbolic link, satisfying

v8

4
(t(D) − #K) ≤ vol(S3rK) < 2v8 t(D),

where v8 = 3.6638... is the volume of a regular ideal octahedron and #K is the number of
link components of K. The upper bound on volume is sharp.

Similar results using different techniques have been obtained by the authors in [16, 17,
18], and by Purcell in [40].

3.4. Relations with the colored Jones polynomial. The main results of [14] explore
the idea that the stable coefficient β′

K does an excellent job of measuring the geometric
and topological complexity of the manifold MA = S3\\SA. (Similarly, βK measures the
complexity of MB = S3\\MB .)

For instance, note that we have |β′

K | = 1 − χ(G′

A) = 0 exactly when χ(G′

A) = 1,
or equivalently G′

A is a tree. Thus it follows from Theorem 3.2 that β′

K is exactly the
obstruction to SA being a fiber.

Corollary 3.13. For an A–adequate link K, the following are equivalent:

(1) β′

K = 0.
(2) For every A–adequate diagram of D(K), S3rK fibers over S1 with fiber the cor-

responding state surface SA = SA(D).
(3) For some A–adequate diagram D(K), MA = S3\\SA is an I–bundle over SA(D).

Similarly, |β′

K | = 1 precisely when SA is a fibroid of a particular type [14, Theorem 9.18].
In general, the JSJ decomposition of MA contains guts: the non-trivial hyperbolic pieces.
In this case, |β′

K | measures the complexity of the guts together with certain complicated
parts of the maximal I–bundle of MA.
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Theorem 3.14. Suppose K is an A–adequate link whose stable colored Jones coefficient
is β′

K 6= 0. Then, for every A–adequate diagram D(K),

χ−(guts(MA)) + ||Ec|| =
∣∣β′

K

∣∣ − 1.

Furthermore, if D is prime and every 2–edge loop in GA has edges belonging to the same
twist region, then ||Ec|| = 0 and

χ−(guts(MA)) =
∣∣β′

K

∣∣ − 1.

The volume conjecture of Kashaev and Murakami–Murakami [29, 37] states that all
hyperbolic knots satisfy

2π lim
n→∞

log
∣∣Jn

K(e2πi/n)
∣∣

n
= vol(S3rK).

If the volume conjecture is true, then for large n, there would be a relation between the
coefficients of Jn

K(t) and the volume of the knot complement. In recent years, articles by
Dasbach and Lin and the authors have established relations for several classes of knots
[11, 16, 17, 18]. However, in all these results, the lower bound involved first showing that
the Jones coefficients give a lower bound on twist number, then showing twist number gives
a lower bound on volume. Each of these steps is known to fail outside special families of
knots [18, 19]. Moreover, the two-step argument is indirect, and the constants produced
are not sharp. By contrast, in [14], we bound volume below in terms of χ−(guts), which is
directly related to colored Jones coefficients. This yields sharper lower bounds on volumes,
along with a more intrinsic explanation for why these lower bounds exist. For instance,
Theorems 3.11 and 3.12 have the following corollaries.

Corollary 3.15. Suppose that a hyperbolic link K is the closure of a positive braid with
at least three crossings in each twist region. Then

v8 (
∣∣β′

K

∣∣ − 1) ≤ vol(S3rK) < 15v3 (
∣∣β′

K

∣∣ − 1) − 10v3,

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron.

Corollary 3.16. Let K ⊂ S3 be a Montesinos link with a reduced Montesinos diagram
D(K). Suppose that D(K) contains at least three positive tangles and at least three negative
tangles. Then K is a hyperbolic link, satisfying

v8

(
max{|βK |,

∣∣β′

K

∣∣} − 1
)
≤ vol(S3rK) < 4v8

(
|βK | +

∣∣β′

K

∣∣ − 2
)

+ 2v8 (#K),

where #K is the number of link components of K.

4. A worked example

In this section, we illustrate several of the above theorems on the two-component link
of Figure 9. The figure also shows the graphs HA, GA, and G′

A for this link diagram.
In this example, it turns out that the manifold MA = S3rSA contains a single essential

product disk. This disk D is shown in Figure 10. Observe that this lone EPD corresponds
to the single 2–edge loop in GA. Note as well that collapsing two edges of GA to a single
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Figure 9. Diagram D(K) of a two-component link, and graphs HA, GA,
and G′

A. All of the discussion in Section 4 pertains to this link.

Figure 10. Left: the state surface SA of the link of Figure 9. Right: the
single EPD in MA lies below the surface SA, and its boundary intersects
K at two points in the center of the figure.

edge of G′

A changes the Euler characteristic by 1, while cutting MA along disk D also
changes the Euler characteristic by 1. Thus

χ−(GA) = −χ(GA) = 3, χ−(G′

A) = −χ(G′

A) = 2.

On the 3–manifold side, recall that GA is a spine of SA. Thus Alexander duality gives

χ−(MA) = χ−(S3\\SA) = χ−(SA) = χ−(GA) = 3.

Because the maximal I–bundle of MA is spanned by the single disk D, we have

χ−(guts(MA)) = χ−(MA) − 1 = 2 = χ−(G′

A),

exactly as predicted by Theorem 3.5 with ||Ec|| = 0.
By Theorem 3.4, χ−(guts(MA)) also gives a lower bound on the hyperbolic volume of

S3rK. In this example,

χ−(guts(MA)) = χ−(G′

A) =
∣∣β′

K

∣∣ − 1 = 2,

so the lower bound is 2v8 ≈ 7.3276. Meanwhile, the actual hyperbolic volume of the link
in Figure 9 is vol(S3rK) ≈ 11.3407.

Turning to the all–B resolution, Figure 11 shows the graphs HB, GB, and G′

B, as well
as the state surface SB . This time, G′

B is a tree, thus Theorem 3.2 (applied to a reflected
diagram) implies SB is a fiber.

One important point to note is that even though S3rK is fibered, it does contain
surfaces (such as SA) with quite a lot of guts. Conversely, having |β′

K | > 0, as we do here,



16 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

Figure 11. The graphs HB, GB, and G′

B for the link of Figure 9, and the
corresponding surface SB.

only means that the surface SA is not a fiber – it does not rule out S3rK being fibered
in another way, as indeed it is.

5. A closer look at the polyhedral decomposition

To prove all the results that were surveyed in Section 3, we cut MA along a collection of
disks, to obtain a decomposition of MA into ideal polyhedra. Here, a (combinatorial) ideal
polyhedron is a 3–ball with a graph on its boundary, such that complementary regions of
the graph are simply connected, and the vertices have been removed (i.e. lie at infinity).

Our decomposition is a generalization of Menasco’s well–known polyhedral decompo-
sition [33]. Menasco’s work uses a link diagram to decompose any link complement into
ideal polyhedra. When the diagram is alternating, the resulting polyhedra have several nice
properties: they are checkerboard colored, with 4–valent vertices, and a well–understood
gluing. For alternating diagrams, our polyhedra will be exactly the same as Menasco’s.
More generally, we will see that our polyhedral decomposition of MA also has a checker-
board coloring and 4–valent vertices.

5.1. Cutting along disks. To begin, we need to visualize the state surface SA more care-
fully. We constructed SA by first, taking a collection of disks bounded by state circles, and
then attaching bands at crossings. Recall we ensured the disks were below the projection
plane. We visualize the disks as soup cans. That is, for each, a long cylinder runs deep
under the projection plane with a disk at the bottom. Soup cans will be nested, with outer
state circles bounding deeper, wider soup cans. Isotope the diagram so that it lies on the
projection plane, except at crossings which run through a crossing ball. When we are
finished, the surface SA lies below the projection plane, except for bands that run through
a small crossing ball.

In Figure 12, the state surface for this example is shown lying below the projection
plane (although soup cans have been smoothed off at their sharp edges in this figure).

We cut MA = S3\\SA along disks. These disks come from complementary regions
of the graph of the link diagram on the projection plane. Notice that each such region
corresponds to a complementary region of the graph HA, the graph of the A–resolution.
To form the disk that we cut along, we isotope the disk by pushing it under the projection
plane slightly, keeping its boundary on the state surface SA, so that it meets the link a
minimal number of times. Indeed, because SA itself lies on or below the projection plane
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Figure 12. The surface SA is hanging below the projection plane.

Figure 13. A region of HA together with the corresponding white disk
lying just below the projection plane, with boundary (dashed line) on un-
derside of shaded surface.

except in the crossing balls, we can push the disk below the projection plane everywhere
except possibly along half–twisted rectangles at the crossings. By further isotopy we can
arrange each disk so that its boundary runs meets the link only inside the crossing ball.
These isotoped disks are called white disks.

For each region of the complement of HA, we have a white disk that meets the link
only in crossing balls, and then only at under–crossings. The disk lies slightly below the
projection plane everywhere. Figure 13 gives an example.

Some of the white disks will not meet the link at all. These disks are isotopic to soup
cans on SA; that is, they are innermost disks. We will remove all such white disks from
consideration. When we do so, the collection of all remaining white disks, denoted W,
consists of those with boundary on the state surface SA and on the link K.

It is actually straightforward to see that the components of MA\\W are 3–balls, as
follows. There will be a single component above the projection plane. Since we cut along
each region of the projection graph, either along a disk of W or an innermost soup can, this
component above the projection plane must be homeomorphic to a ball. As for components
which lie below the projection plane, these lie between soup can disks. Since any such disk
cuts the 3–ball below the projection plane into 3–balls, these components must also each
be homeomorphic to 3–balls. In fact, we know more:

Theorem 5.1 (Theorem 3.12 of [14]). Each component of MA\\W is an ideal polyhedron
with 4–valent ideal vertices and faces colored in a checkerboard fashion: the white faces
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are the disks of W, and the shaded faces contain, but are not restricted to, the innermost
disks.

The edges of the ideal polyhedron are given by the intersection of white disks in W with
(the boundary of a regular neighborhood of) SA. Each edge runs between strands of the
link. The ideal vertices lie on the torus boundary of the tubular neighborhood of a link
component. The regions (faces) come from white disks (white faces) and portions of the
surface SA, which we shade.

Note that each edge bounds a white disk in W on one side, and a portion of the shaded
surface SA on the other side. Thus, by construction, we have a checkerboard coloring of
the 2–dimensional regions of our decomposition. Since the white regions are known to be
disks, showing that our 3–balls are actually polyhedra amounts to showing that the shaded
regions are also simply connected. Showing this requires some work, and the hypothesis
of A–adequacy is heavily used. The interested reader is referred to [14, Chapter 3] for the
details.

5.2. Combinatorial descriptions of the polyhedra. We need a simpler description
of our polyhedra than that afforded by the 3–dimensional pictures of the last subsection.
We obtain 2–dimensional descriptions in terms of how the white and shaded faces are
super-imposed on the projection plane, and how these faces interact with the planar graph
HA. These descriptions are the starting point for our proofs in [14]. In this subsection we
briefly highlight the main characteristics of these descriptions.

Note that in the figures, we often use different colors to indicate different shaded faces.
All these colored regions come from the surface SA.

5.2.1. Lower polyhedra. The lower polyhedra come from regions bounded between soup
cans. Recall that sA denotes the union of state circles of the all–A resolution (i.e. without
the added edges of HA corresponding to crossings). As a result, the regions bounded
by soup cans will be in one–to–one correspondence with non-trivial components of the
complement of sA.

Given a lower polyhedron, let R denote the corresponding non-trivial component of the
complement of sA. The white faces of the polyhedron will correspond to the non-trivial
regions of HA in R. Since these white faces lie below the projection plane, except in
crossing balls, the only portion of the knot that is visible from inside a lower polyhedron is
a small segment of a crossing ball. This results in the following combinatorial description.

• Ideal edges of the lower polyhedra run from crossing to crossing.
• Ideal vertices correspond to crossings. At each crossing, two ideal edges bounding

a disk from one non-trivial region of HA meet two ideal edges bounding a disk from
another non-trivial region (on the opposite side of the crossing). Thus the vertices
are 4–valent.

• Shaded faces correspond exactly to soup cans.

As a result, each lower polyhedron is combinatorially identical to the checkerboard
polyhedron of an alternating sub-diagram of D(K), where the sub-diagram corresponds
to region R. This is illustrated in Figure 14, for the knot diagram of Figure 4.

Schematically, to sketch a lower polyhedron, start by drawing a portion of HA which
lies inside a nontrivial region of the complement of sA. Mark an ideal vertex at the center
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Figure 14. Top row: The two non-trivial regions of the graph HA of
Figure 4. Second row: The corresponding lower polyhedra.

Figure 15. Left to right: An example graph HA. A subgraph correspond-
ing to a region of the complement of sA. White and shaded faces of the
corresponding lower polyhedron.

of each segment of HA. Connect these dots by edges bounding white disks, as in Figure
15.

5.2.2. The upper polyhedron. On the upper polyhedron, ideal vertices correspond to strands
of the link visible from inside the upper 3–ball. Since we cut along white faces and the
surface SA, both of which lie below the projection plane except at crossings, the upper
polyhedron can “see” the entire link diagram except for small portions cut off at each
undercrossing.

Thus, ideal vertices of the upper polyhedron correspond to strands of the link between
undercrossings. In Figure 16, the surface SA is shown in green and gold. There are four
ideal edges meeting a crossing, labeled e1 through e4 in this figure. There are actually
three ideal vertices in the figure: one is unlabeled, corresponding to the strand running
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e2

v2

v1

e1 e3

e4

Figure 16. Shown are portions of four ideal edges, terminating at under-
crossings on a single crossing. Ideal edges e1 and e2 bound the same white
disk and terminate at the ideal vertex v1. Ideal edges e3 and e4 bound the
same white disk and terminate at the ideal vertex v2. Figure first appeared
in [14].

Figure 17. Left: A tentacle continues a shaded face in the upper 3–ball.
Right: visualization of the tentacle on the graph HA.

over the crossing, and two are labeled v1 and v2, corresponding to the strands running into
the undercrossing.

The surface SA runs through the crossing in a twisted rectangle. Looking again at
Figure 16, note that the gold portion of SA at the top of that figure is not cut off at the
crossing by an ideal edge terminating at v2. Instead, it follows e4 through the crossing and
along the underside of the figure, between e4 and the link. Similarly for the green portion
of SA: it follows the edge e1 through the crossing and continues between the edge and the
link.

We visualize these thin portions of shaded face between an edge and the link as tentacles,
and sketch them onto HA running from the top–right of a segment to the base of the
segment, and then along an edge of HA (Figure 17). Similarly for the bottom–left.

In Figure 17, we have drawn the tentacle by removing a bit of edge of HA. When we do
this for each segment, top–right and bottom–left, the remaining connected components of
HA correspond exactly to ideal vertices.

Each ideal vertex of the upper polyhedron begins at the top–right (bottom–left) of a
segment, and continues along a state circle of sA until it meets another segment. In the
diagram, this will correspond to an undercrossing. As we observed above, edges terminate
at undercrossings. Figure 18 shows the portions of ideal edges sketched schematically onto
HA.

As for the shaded faces, we have seen that they extend in tentacles through segments.
Where do they begin? In fact, each shaded face originates from an innermost disk.

To complete our combinatorial description of the upper polyhedron, we color each in-
nermost disk a unique color. Starting with the segments leading out of innermost disks,
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e3

v1

e1 e3

e4
e2

e2 e4

e1v2

Figure 18. The ideal edges and shaded faces around the crossing of Figure 16

e0

e1 e2
e3

e1 e2 e3

e0

Figure 19. Left: part of a shaded face in an upper 3–ball. Right: the
corresponding picture, superimposed on HA. The tentacle next to the ideal
edge e0 terminates at a segment on the same side of the state circle on HA.
It runs past segments on the opposite side of the state circle, spawning new
tentacles associated to ideal edges e1, e2, e3.

Figure 20. An example of the combinatorics of the upper polyhedron.
In this example, the polyhedron is combinatorially a prism over an ideal
heptagon. This prism is an I–bundle over a subsurface of SA.

we sketch in tentacles, removing portions of HA. Note that a tentacle will continue past
segments of HA on the opposite side of the state circle without terminating, spawning new
tentacles, but will terminate at a segment on the same side of the state surface. This is
shown in Figure 19. Since HA is a finite graph, the process terminates.

An example is shown in Figure 20. For this example, there are two innermost disks,
which we color green and gold. Corresponding tentacles are shown.

5.3. Prime polyhedra detect fibers. In the last subsection, we saw that the lower
polyhedra correspond to alternating link diagrams. It may happen that one of these
alternating diagrams is not prime. In other words, the alternating link diagram contains



22 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

a pair of regions that meet along more than one edge. The polyhedral analogue of this
notion is the following.

Definition 5.2. A combinatorial polyhedron P is called prime if every pair of faces of P
meet along at most one edge.

Primeness is an extremely desirable property in a polyhedral decomposition, for the
following reason. The theory of normal surfaces, developed by Haken [23], states that
given a polyhedral decomposition of a manifold M , every essential surface S ⊂ M can be
moved into a form where it intersects each polyhedron in standard disks, called normal
disks. If this essential surface is (say) a compression disk D ⊂ MA, then we may intersect
D with the union of white faces W to form a collection of arcs in D. An outermost arc
must cut off a bigon. But, by Definition 5.2, a prime polyhedron cannot contain a bigon.
Thus, once we obtain a decomposition of MA into prime polyhedra, Theorem 2.4 will
immediately follow.

In practice, the polyhedra described in the last subsection may sometimes fail to be
prime. Whenever this occurs, we need to cut them into smaller, prime pieces. Before
we describe this cutting process, we record another powerful feature of the polyhedral
decomposition.

Notice that the polyhedron in Figure 20 is combinatorially a prism over an ideal hep-
tagon: here, the two shaded faces are the horizontal faces of the prism, while the seven
white faces are lateral, vertical essential product disks. In other words, the entire poly-
hedron is an I–bundle over an ideal polygon. It turns out that under the hypothesis of
primeness, when the upper polyhedron has this product structure, then so do all of the
lower polyhedra, and so does the manifold MA = S3\\SA.

Proposition 5.3 (Lemma 5.8 of [14]). Suppose that in the polyhedral decomposition of
MA corresponding to an A–adequate diagram, every ideal polyhedron is prime. Then, the
following are equivalent:

(1) Every white face is an ideal bigon, i.e. an essential product disk.
(2) The upper polyhedron is a prism over an ideal polygon.
(3) Every polyhedron is a prism over an ideal polygon.
(4) Every region in R that corresponds to a lower polyhedron is bounded by two state

circles, connected by edges of GA that are identified to a single edge of G′

A.
(5) Every edge of G′

A is separating, i.e. G′

A is a tree.

Remark 5.4. In the decomposition process of MA that we have described so far, the
polyhedra may not be prime. However, we will see in the next subsection that primeness
can always be achieved after additional cutting.

The proof of equivalence of the conditions in Proposition 5.3 is not hard. For example,
if every white face is a bigon, then in every polyhedron, those bigons must be strung end
to end, forming a cycle of lateral faces in a prism. Note as well that if every polyhedron is
a prism, i.e. a product, then this product structure extends over the bigon faces to imply
that MA

∼= SA × I. This immediately gives one implication in Theorem 3.2: if G′

A is a
tree, then SA is a fiber.
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Figure 21. Split lower polyhedron along a non-prime arc.

The converse implication (if SA is a fiber, then G′

A is a tree) requires knowing that our
polyhedra detect the JSJ decomposition of MA. In other words: if part (or all) of MA

is an I–bundle, then this I–bundle structure must be visible in the individual polyhedra.
This property also follows from primeness.

5.4. Ensuring Primeness. We have seen that primeness is a desirable property of the
polyhedral decomposition. Here, we describe a way to detect when a lower polyhedron is
not prime, and a way to fix this situation.

Definition 5.5. The graph HA is non-prime if there exists a state circle C of sA and an
arc α with both endpoints on C, such that the interior of α is disjoint from HA, and α is
not isotopic into C in the complement of HA. The arc α is called a non-prime arc.

Each non-prime arc is lies in a single white face of W, while its shadow on the soup
can below lies in a single shaded face. Thus every non-prime arc indicates that a lower
polyhedron violates Definition 5.2. See Figure 21.

Whenever we find a non-prime arc, we modify the polyhedral decomposition as follows:
push the arc α down against the soup can of the state circle C. This divides the corre-
sponding lower polyhedron into two. Figure 21 shows a 3–dimensional view of this cutting
process.

Combinatorially, we cut a lower polyhedron along the non-prime arc, as in Figure 22.
The lower polyhedra now correspond to alternating links whose state circles contain α.
On the boundary of the upper polyhedron, α meets two tentacles. These will be joined
into the same shaded face, by attaching both tentacles to a regular neighborhood of α.
See Figure 23.

Repeat this process of splitting along non-prime arcs until there are no more non-prime
arcs. This ensures that all the lower polyhedra are prime. Then, one can show that the
upper polyhedron is prime as well.

A decomposition along a maximal collection of non-prime arcs A is called a prime
decomposition. Its main features are summarized as follows:

• It decomposes MA into one upper and at least one lower polyhedron.
• Every polyhedron is prime.
• Every polyhedron is checkerboard colored, with 4–valent vertices.
• White faces of the polyhedra correspond to regions of the complement of HA ∪ A.
• Lower polyhedra are in one-to-one correspondence with nontrivial complementary

regions of sA ∪ A.
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Figure 22. Splitting a lower polyhedron into two along a non-prime arc.

Figure 23. Splitting the upper polyhedron along a non-prime arc.

• Each lower polyhedron is identical to the checkerboard polyhedron of an alternating
link, where the alternating link is obtained by taking the restriction of HA ∪ A to
the corresponding region of sA ∪ A, and replacing segments of HA with crossings
(using the A–resolution).

Another important feature is that Proposition 5.3 holds for the prime polyhedral de-
composition that we have just described. It is worth noting that since the lower polyhedra
are are in one-to-one correspondence with nontrivial complementary regions of sA ∪ A,
part (4) of the proposition will refer to these regions of the diagram.

Having obtained a prime polyhedral decomposition, we may apply normal surface theory
to study various pieces in the JSJ decomposition of MA. Recall that the JSJ decomposition
yields three kinds of pieces: I–bundles, solid tori, and the guts. To compute χ−(guts(MA)),
we need to understand the I–bundle components that have nonzero Euler characteristic.
We prove the following.

Theorem 5.6 (Theorem 4.4 of [14]). Let B be an I–bundle component of the JSJ decom-
position of MA, such that χ(B) < 0. Then B is spanned by a collection of essential product



JONES POLYNOMIALS, VOLUME, AND ESSENTIAL KNOT SURFACES: A SURVEY 25

disks {D1, . . . ,Dn}, with the property that each Di is embedded in a single polyhedron in
the polyhedral decomposition of MA.

The EPDs in the spanning set that lie in the lower polyhedra of the decompositions
are well understood; they are in one-to-one correspondence with 2–edge loops in the state
graph GA. The EPDs in the spanning set that lie in the upper polyhedron are complex ;
they are not obtainable in terms in the lower polyhedra. These are exactly the EPDs
counted by the quantity ||Ec|| of Theorems 3.5, 3.6 and 3.14. The EPDs in the upper
polyhedron also correspond to 2-edge loops in GA, but the correspondence is not one-to-
one. In special cases of link diagrams, we can understand the combinatorial structure of
the polyhedral decomposition well enough to show that ||Ec|| = 0. This gives, for instance,
Corollaries 3.15 and 3.16.

Our results about normal surfaces in the polyhedral decomposition of MA can likely be
used to attack other topological problems about A–adequate links. We refer the reader to
[14, Chapter 10] for a detailed discussion of some of these open questions.
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