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1. Overview

State surfaces are spanning surfaces of links that are obtained from link diagrams. Their construction
is guided by the combinatorics underlying Kauffman’s construction of the Jones link polynomial via state
models. Geometric properties of state surfaces are often dictated by simple link diagrammatic criteria,
and the surfaces themselves carry important information about geometric structures of link complements.
On the other hand, certain state surfaces carry spines (state graphs) that can be used to compute the
Jones polynomial of links. From this point of view, state surfaces provide a tool for establishing relations
between Jones polynomials and topological link invariants, such as the crosscap number or invariants
coming from geometric structures on link complements (e.g. hyperbolic volume). In this article we survey
the construction of state surfaces of links and some of their recent applications.

2. Definitions and examples

For a link K in S3, D = D(K) will denote a link diagram, in the equatorial 2–sphere of S3. We will
often abuse by referring to the projection 2–sphere using the common term projection plane. In particular,
D(K) cuts the projection “plane” into compact regions each of which is a polygon with vertices at the
crossings of D.

Given a crossing on a link diagram D(K) there are two ways to resolve it; the A- resolution and the
B-resolution as shown in Figure 2. The figure is borrowed from [13]. Note that if the link K is oriented,
only one of the two resolutions at each crossing will respect the orientation of K. A Kauffman state σ on
D(K) is a choice of one of these two resolutions at each crossing of D(K) [14]. For each state σ of a link
diagram the state graph Gσ is constructed as follows: The result of applying σ to D(K) is a collection
vσ(D) of non-intersecting circles in the plane, called state circles, together with embedded arcs recording
the crossing splice. Next we obtain the state surface Sσ, as follows: Each circle of vσ(D) bounds a disk
in S3. This collection of disks can be disjointly embedded in the ball below the projection plane. At each
crossing of D(K), we connect the pair of neighboring disks by a half-twisted band to construct a surface
Sσ ⊂ S3 whose boundary is K.

Figure 1. The A-resolution (left), the B-resolution (right) of a crossing and their contri-
bution to state surfaces.

Example 2.1. Given an oriented link diagram D = D(K), the Seifert state, denoted by s(D), is the
one that assigns to each crossing of D the resolution that is consistent with the orientation of D. The
corresponding state surface Ss = Ss(D) is oriented (a.k.a. a Seifert surface). The process of constructing
Ss is known a Seifert’s algorithm [17].
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Figure 2. Left to right: A diagram, the all-A state graph GA and the corresponding
state surface SA.

By applying the A–resolution to each crossing of D, we obtain a crossing–free diagram sA(D). Its state
graph, denoted by GA = GA(D), is called the all–A state graph and the corresponding state surface is
denoted by SA = SA(D). An example is shown in Figure 2, which is borrowed from [10]. Similarly, for the
all–B state the crossing–free resulting diagram is denoted by sB(D), the state graph is denoted GB , and
the state surface by SB .

By construction, Gσ has one vertex for every circle of vσ (i.e. for every disk in Sσ), and one edge for
every half–twisted band in Sσ. This gives a natural embedding of Gσ into the surface, where vertices
are embedded into the corresponding disks, and edges run through the corresponding half-twisted bands.
Hence, Gσ is a spine for Sσ.

Lemma 2.2. The surface Sσ is orientable if and only if Gσ is a bipartite graph.

Proof. Recall that a graph is bipartite if and only if all cycles (i.e. paths from any vertex to itself) contain
an even number of edges.

If Gσ is bipartite, we may assign an orientation on Sσ, as follows: Pick a normal direction to one disk,
corresponding to a vertex of Gσ, extend over half–twisted bands to orient every adjacent disk, and continue
inductively. This inductive process Sσ will not run into a contradiction since every cycle in Gσ has even
number of edges. Thus Sσ is a two–sided surface in S3, hence orientable. This is the case with the example
of Figure 2.

Conversely, suppose Gσ is not bipartite, hence contains a cycle with an odd number of edges. By
embedding Gσ as a spine of Sσ, as above, we see that this cycle is an orientation–reversing loop in Sσ. �

�

3. Genus and crosscap number of alternating links

The genus of an orientable surface S with with k boundary components is defined to be 1−(χ(S)+k)/2,
where χ(S) is the Euler characteristic of S and the crosscap number of a non-orientable surface with k
boundary components is defined to be 2− χ(S)− k.

Definition 3.1. Every link in S3 bounds both orientable and non-orientable surfaces. The genus of an
oriented link K, denoted by g(K), is the minimum genus over all orientable surfaces S bounded by K.
That is we have ∂S = K. The crosscap number (a.k.a. non-orientable genus) of a link K, denoted by
C(K), is the minimum crosscap number over all non-orientable surfaces spanned by K.

For alternating links the genus and the crosscap number can be computed using state surfaces of
alternating link diagrams. For the orientable case, we recall the following classical result due to Crowell
[7] (see also [17]).

Theorem 3.2. [7] Suppose that D is a connected alternating diagram of a k-component link K. Then
the state surface Ss(D) corresponding to the Seifert state of D realizes the genus of K. That is we have
g(K) = 1− (χ(Ss(D)) + k)/2.
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In [2], Adams and Kindred used state surfaces to give an algorithm for computing crosscap numbers of
alternating links. To summarize their algorithm and state their result, consider a connected alternating
diagram D(K) as 4-valent a graph on S2. Each region in the complement of the graph is an m-gon with
vertices at the vertices of the graph.

Lemma 3.3. Suppose that D(K) is a connected alternating link diagram whose complement has no bigons
or 1-gons. Then at least one region must be a triangle.

Proof. Let V , E, F denote the number of vertices, edges and complimentary regions of D(K), respectively.
Then, V − E + F = 2 and E = 2V , which implies that F > V . Suppose that none of the F regions is a
triangle. Then, F < 4V/4 = V since each region has at least four vertices and each vertex can only be on
at most 4 distinct regions. This is a contradiction. � �

Observe that the Euler characteristic of a surface, corresponding to a state σ, is χ(Sσ) = vσ − c, where
c is the number of crossings on D(K). Thus to maximize χ(Sσ) we must maximize the number of state
circles vσ. Now we outline the algorithm from [2] that finds a surface of maximal Euler characteristic (and
thus of minimum genus) over all surfaces (orientable and non-orientable) spanned by an alternating link.

Adams-Kindred algorithm: Let D(K) be a connected, alternating diagram.

(1) Find the smallest m for which the complement of the projection D(K) contains an m-gon.
(2) If m = 1, then we resolve the corresponding crossing so that the 1-gon becomes a state circle.

Suppose that m = 2. Then some regions of D(K) are bigons. Create one branch of the algorithm
for each bigon on D(K). Resolve the two crossings corresponding to the vertices of the bigon so
that the bigon is bounded by a state circle. See Figures 1.4 and 5 below.

(3) Suppose m > 2. Then by Lemma 3.3, we have m = 3. Pick a triangle region on D(K). Now the
process has two branches: For one branch we resolve each crossing on the triangle’s boundary so
that the triangle becomes a state circle. For the other branch, we resolve each of the crossings the
opposite way.

Figure 3. The two branch of the algorithm for triangle regions. The is figure borrowed
from [13].

(4) Repeat Steps 1 and 2 until each branch reaches a projection without crossings. Each branch
corresponds to a Kauffman state of D(K) for which there is a corresponding state surface. Of
all the branches involved in the process choose one that has the largest number of state circles.
The surface S corresponding to this state has maximal Euler characteristic over all the states
corresponding to D(K). Note that, a priori , more than one branches of the algorithm may lead to
surfaces of maximal Euler characteristic.

Theorem 3.4. [2] Let S be any maximal Euler characteristic surface obtained via above algorithm from
an alternating diagram of k-component link K. Then,

(1) If there is a surface S as above that is non-orientable then C(K) = 2− χ(S)− k.

(2) If all the surfaces S as above are orientable, we have C(K) = 3 − χ(S) − k. Furthermore, S is a
minimal genus Seifert surface of K and C(K) = 2g(K) + 1.
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Figure 4. A diagram of 41 with bigon regions 1 and 2 and the result of applying step 2
of the algorithm to bigon 1.

Example 3.5. Different choices of branches as well as the order in resolving bigon regions following the
algorithm above, may result in different state surfaces. In particular at the end of the algorithm we may
have both orientable and non-orientable surfaces that share the same Euler characteristic:

Suppose that we choose the bigon labeled by 1 in the left hand side picture of Figure 1.4. Then, for the
next step of the algorithm, we have three choices of bigon regions to resolve, labeled by 1 and 2 and 3 of
the figure.

Figure 5. Two algorithm branches corresponding to different bigons.

The choice of bigon 1 leads to a non-orientable surface, shown in the left panel of Figure 5, realizing the
crosscap number of 41, which is two. The choice of bigon 2 leads to an orientable surface, shown in the
right panel of Figure 5, realizing the genus of the knot which is one. Both surfaces realize the maximal
Euler characteristic of -1.

4. Jones polynomial and state graphs

A connected link diagram D defines a 4–valent planar graph Γ ⊂ S2, which leads to the construction
of the Turaev surface F (D) as follows [8]: Thicken the projection plane to S2 × [−1, 1], so that Γ lies in
S2×{0}. Outside a neighborhood of the vertices (crossings) the surface intersect S2× [−1, 1], in Γ× [−1, 1].
In the neighborhood of each vertex, we insert a saddle, positioned so that the boundary circles on S2×{1}
are the components of the A–resolution sA(D), and the boundary circles on S2×{−1} are the components
of sB(D).

When D is an alternating diagram, each circle of sA(D) or sB(D) follows the boundary of a region in
the projection plane. Thus, for alternating diagrams, the surface F (D) is the projection sphere S2. For
general diagrams, the diagram D still is alternating on F (D).

The surface F (D) has a natural cellulation: the 1–skeleton is the graph Γ and the 2–cells correspond to
circles of sA(D) or sB(D), hence to vertices of GA or GB . These 2–cells admit a checkerboard coloring,
in which the regions corresponding to the vertices of GA are white and the regions corresponding to GB
are shaded. The graph GA (resp. GB) can be embedded in F (D) as the adjacency graph of white (resp.
shaded) regions. The faces of GA (that is, regions in the complement of GA) correspond to vertices of GB ,
and vice versa. Hence the graphs are dual to one another on F (D). Graphs, together with such embeddings
into an orientable surface, called ribbon graphs have been studied in the literature [4]. Building on this
point of view, Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [8] showed that the ribbon graph embedding
of GA into the Turaev surface F (D) carries at least as much information as the Jones polynomial JK(t).
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To state the relevant result from [8], recall that a spanning subgraph of GA is a subgraph that contains all
the vertices of GA. Given a spanning subgraph G of GA we will use v(G), e(G) and f(G) to denote the
number of vertices, edges and faces of G respectively.

Theorem 4.1. [8] For a connected link diagram D, the Kauffman bracket 〈D〉 ∈ Z[A,A−1] is expressed as

〈D〉 =
∑

G⊂GA

Ae(GA)−2e(G)(−A2 −A−2)f(G)−1,

where G ranges over all the spanning subgraphs of GA.

Given a diagram D = D(K), the Jones polynomial of K, denoted by JK(t), is obtained from 〈D〉 as
follows: Multiply 〈D〉 by (−A)−3w(D), where w(D) is the writhe of D, and then substitute A = t−1/4

[14, 17].
Theorem 4.1 leads to formulae for the coefficients of JK(t) in terms of topological quantities of the state

graphs GA , GB corresponding to any diagram of K [8, 9]. These formulae become particularly effective if
GA,GB contain no 1-edges loops. In particular, this is the case when GA,GB correspond to an alternating
diagram that is reduced (i.e. contains no redundant crossings).

Corollary 4.2. [9] Let D(K) be a reduced alternating diagram and let βK and β′K denote the second
and penultimate coefficient of JK(t), respectively . Let G′A and G′B denote the simple graphs obtained by
removing all duplicate edges between pairs of vertices of GA(D) and GB(D). Then,

|βK | = 1− χ(G′B), and |β′K | = 1− χ(G′A).

5. Geometric Connections

To a link K in S3 corresponds a compact 3-manifold with boundary; namely MK = S3 rN(K), where
N(K) is an open tube around K. The interior of MK is homeomorphic to the link complement S3rK. In
the 80’s, Thurston [19] proved that link complements decompose canonically into pieces that admit locally
homogeneous geometric structures. A very common and interesting case is when the entire S3 rK has a
hyperbolic structure, that is a metric of constant curvature −1 of finite volume. By Mostow rigidity, this
hyperbolic structure is unique up to isometry, hence invariants of the metric of S3 r K give topological
invariants of K.

State surfaces obtained from link diagrams D(K) give rise to properly embedded surfaces in MK . Many
geometric properties of state surfaces can be checked through combinatorial and link diagrammatic criteria.
For instance, Ozawa [18] showed that the all -A surface SA(D) is π1–injective in MK if the state graph
GA(D) contains no 1-edge loops. Futer, Kalfagianni and Purcell [10] gave a different proof of Ozawa’s
result and also showed that MK is a fiber bundle over the circle with fiber SA(D), if and only if the simple
state graph G′A(D) is a tree.

State surfaces have been used to obtain relations between combinatorial or Jones type link invariants
and geometric invariants of link complements. Below we give a couple of sample of such relations. For
additional applications the reader is referred to to [1, 5, 10, 11, 15, 16] and references therein. The first
result, proven combining [2] with hyperbolic geometry techniques, relates the crosscap number and the
Jones polynomial of alternating links. It was used to determine the crosscap numbers of 283 alternating
knots of knot tables that were previously unknown [6].

Theorem 5.1. [13] Given an an alternating, non-torus knot K, with crosscap number C(K), we have⌈
TK
3

⌉
+ 1 ≤ C(K) ≤ min

{
TK + 1,

⌊sK
2

⌋}
where TK := |βK | + |β′K |, βK , β′K are second and penultimate coefficients of JK(t) and sK is the degree
span of JK(t). Furthermore, both bounds are sharp.

Example 5.2. For K = 41 we have JK(t) = t−2− t−1 + 1− t+ t2. Thus TK = 1 and sk = 4 and Theorem
5.1 gives C(K) = 2.
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The next result gives a strong connection of the Jones polynomial to hyperbolic geometry as it estimates
volume of hyperbolic alternating links in terms of coefficients of their Jones polynomials. The result follows
by work of Dasbach and Lin [9] and work of Lackenby [15].

Theorem 5.3. Let K be an alternating link whose exterior admits a hyperbolic structure with volume
vol(S3 rK). Then we have

voct
2

(TK − 2) ≤ vol(S3 rK) ≤ 10vtet(TK − 1),

where voct = 3.6638 and vtet = 1.0149.

To establish the lower bound of Theorem 5.3 one looks at the state surfaces SA, SB corresponding
to a reduced alternating diagram D(K): Use MK\\SA to denote the complement in MK of a collar
neighborhood of SA. Jaco-Shalen-Johannson theory [12] implies that there is a canonical way to decompose
MK\\SA along certain annuli into three types of pieces: (i) I–bundles over subsurfaces of SA; (ii) solid tori;
and (iii) the remaining pieces, denoted by guts(M,S). On one hand, by work Agol, Storm, and Thurston
[3], the quantity |χ(guts(MK , SA))| gives a lower bound for the volume vol(S3 rK). On the other hand,
[15] shows that this quantity is equal to 1−χ(G′A), which by Corollary 4.2 is |β′K |. A similar consideration
applies to the surface SB giving the lower bound of Theorem 5.3. The approach was developed and
generalized to non-alternating links in [10].
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