Math 496, Fall 2013: Homework 2

Due Monday October 21

Problem 1: (a) Calculate the Kauffman bracket of the knot 4_{1}. See the table on page 280 for a projection of the knot.
(b) Use your answer from (a) to calculate the Jones polynomial of the knot 4_{1}.

Problem 2: Let L be an oriented 2-component link.
(a) Show that the Jones polynomial of L remains unchanged if we change the orientation of both compenents of L.
(b) What happens to the Jones polynomial of L if we change the orientation of only one component of L ? Back up your answer by direct proof, reference to a theorem or by (counter)example
Problem 3: Give an example of an infinite family of different knots. You must show that your knots are different by direct arguments or by carefully referring to theorems you know.
Problem 4: Let D be a reduced, connected, alternating projection of a link. Let $r(D)$ denote the number of regions in D and let $r(D)$ denote the number of crossings in D. Prove that

$$
r(D)=c(D)+2 .
$$

Problem 5: Solve exercise 6.16 on page 167 of the book.
Problem 6: Use Problem 4 to show that the 2-component link shown in Figure 6.28 (page 169 of the book) is not splittable.

