Math 496, Fall 2013: Homework 1

Due Friday September 20

Problem 1: (a) Give an example of a 4-component link such that every two of its components have linking number zero.
(b) Show that for every integer n there is a 3 -component link such that every two of its components have linking number n.

Problem 2: Determine whether the knot 6_{2} of the knot table is tricolorable.

Problem 3: For a knot K let $c(K)$ denote the crossing number of the knot (that is the minimum number of crossings over all the knot diagrams of K). Show that for any knots K, K^{\prime} we have

$$
c\left(K \# K^{\prime}\right) \leq c(K)+c\left(K^{\prime}\right),
$$

where $K \# K^{\prime}$ denotes the connect sum of K and K^{\prime}.
Problem 4: Do exercise 1.26 on page 25 of the book.
Problem 5: Do exercise 1.11 on page 16 of the book.
Problem 6: Do exercise 2.5 on page 37 of the book.

