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On peut dire que le principe de dualité de la Géometrie projective est
remplacé ici par un principe de trialité. E. Cartan [Car25, p. 373]

There are classical and well-studied relationships among duality of finite
dimensional vector spaces, order 2 outer automorphisms of the general linear
groups (Lie type An), and algebras with involution.

Here we discuss the more specialized relationships among triality of hyper-
bolic orthogonal 8-space [Stu13], order 3 outer automorphisms of orthogonal
groups (Lie type D4) [Car25], and composition algebras [Mou35, SpV00]. In
particular we examine the paper by Tits [Tit58].

Other relevant references include [Dor78, Hal00, HaN01, Tay92]. We steal
from, improve, and even correct some of the arguments of the original version
of [Hal00].

1 Orthogonal geometry

Throughout F will be a commutative field and V will be finite dimensional
vector space over F . For any subset W of V , we let 〈W 〉 ≤ V be the F -subspace
of V spanned by W .

Let Q : V −→ F be a quadratic form on the finite dimensional F -space V .
That is,

Q(αx) = α2Q(x) ,

for all α ∈ F and x ∈ V , and the associated form B(·, ·) : V ×V −→ F given by

B(a, b) = Q(a+ b)−Q(a)−Q(b)

is bilinear (and symmetric). For any subspace W of V , the restriction of Q to
W is a quadratic form on W .

1



We may call (V,Q) an orthogonal space or a quadratic space.
Always B(a, a) = 2Q(a). So in characteristic other than 2, the bilinear form

B determines Q. That is not the case in characteristic 2.
An important example for us will be the vector space M2(F ) of 2×2 matrices

over F with Q the determinant function.

For W ⊆ V , we let W⊥ = {x ∈ V |B(x, b) = 0, b ∈W }, a F -subspace of V .
The form Q is nondegenerate if V ⊥ = 0.

(1.1) Lemma. Let Q be a nondegenerate quadratic form.
(a) For a subspace U , dimF U + dimF U

⊥ = dimF V .
(b) If U ∩ U⊥ = 0, then V = U ⊕ U⊥ (which we write as U ⊥ U⊥). 2

A subset S of V is singular (or sometimes even totally singular) if the re-
striction of Q to S is identically 0. Notice that if U is a singular subspace, then
Q induces a quadratic form on the quotient space U⊥/U , nondegenerate if Q is
nondegenerate.

(1.2) Proposition. Let Q be a quadratic form on V of dimension 2 over F .
(a) There is a quadratic extension E of F for which the extension of Q to

E ⊗F V has nonzero singular vectors.
(b) If 0 6= x ∈ V is singular with x⊥ 6= V , then Q is nondegenerate and there

are exactly two 1-spaces in V consisting of singular vectors. These are spanned
by the singular vectors x and y with B(x, y) = 1.

Proof. (a) Choose a basis {u, v} of V with Q(u) = a, Q(v) = c, and
B(u, v) = b. Then Q(αu+βv) = aα2 + bαβ+ cβ2. The polynomial ax2 + bx+ c
has a root in some quadratic extension E of F .

(b) As Q(x) = 0, B(x, x) = 0; so for w /∈ 〈x〉 = x⊥, B(x,w) 6= 0. If necessary,
replace w by a scalar multiple so that B(x,w) = 1. Consider y = αx+w. Then

B(x, y) = B(x,w) = 1 , and Q(y) = Q(αx) +Q(w) +B(αx,w) = Q(w) + α .

Therefore α = −Q(w) gives a second 1-space 〈y〉 of singular vectors and all
other nonzero vectors are nonsingular. 2

In the second part of the proposition, V is a hyperbolic 2-space and the pair
{x, y} is a hyperbolic pair. As in the proof

Q(x+ αy) = Q(x) + α2Q(y) + αB(x, y) = α .

Therefore in a hyperbolic 2-space every element of the field F is realized as a
Q-value.

2 Isometry and similarity groups

Let Q be a quadratic form on V . An isometry of (V,Q) is a g ∈ GL(V ) with

Q(vg) = Q(v) , for all v ∈ V .

2



The full isometry group (orthogonal group) of (V,Q) is then O(V,Q).
A similarity of (V,Q) is a g ∈ GL(V ) with

Q(vg) = αgQ(v) , for all v ∈ V ,

for some nonzero constant αg ∈ F . The full similarity group (general orthogonal
group) of (V,Q) is GO(V,Q).

An isometry g is precisely a similarity with αg = 1, so the isometry group is
a normal subgroup of the similarity group. All nonzero scalar transformations
αI are similarities, but of these only ±I are isometries.

Isometries (and similarities) of B are defined similarly. An isometry (or
similarity) of Q always gives one of B. In characteristic 2 the converse is not
true in general.

(2.1) Proposition. For any nonsingular h ∈ V , consider the map

sh : v 7→ v − B(v, h)

Q(h)
h

(a) sh is an isometry of order 2 of the quadratic form Q on V (and so also of
B).

(b) If g is an isometry of (V,Q), then g−1shg = shg.

(c) For W ≤ V , Wsh = W if and only if h ∈W or W ≤ h⊥.

(d) sh = sk if and only if k = αh for some nonzero α ∈ F . 2

The isometry sh is a symmetry of (V,Q).

3 Hyperbolic orthogonal spaces

The orthogonal space (V,Q) admits the hyperbolic basis H = {. . . , fi, gi, . . . }
(1 ≤ i ≤ m) provided for all i, j, l:

Q(fi) = Q(gj) = B(fi, fl) = B(gj , gl) = 0 , B(fi, gj) = δi,j .

Notice that the dimension 2m of V is even and that Q is nondegenerate.
A dimension 4 example is M2(F ) with determinant form, where the four

matrix units form a hyperbolic basis (up to sign).
If (V,Q) has a hyperbolic basis, then we say that Q and V are split or

hyperbolic.

(3.1) Proposition. If Q is a nondegenerate quadratic form on the F -space
V of finite dimension, then the following are equivalent:

(1) There is a singular subspace of dimension at least dimF (V )/2.
(2) Every maximal singular subspace has dimension dimF (V )/2.
(3) There are maximal singular subspaces M and N with V = M ⊕N .
(4) V is a perpendicular direct sum of hyperbolic 2-spaces.
(5) V has a hyperbolic basis.
(6) for any basis χ of singular X, V has a hyperbolic basis containing χ.
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Proof. (4) and (5) are clearly equivalent, and both are consequences of (6).
(1) is an easy consequence of all the others, and (4) easily implies (3).

Also (6) implies (2) as every singular subspace spanned by a subset of a
hyperbolic basis is contained in such a subspace of dimension dimF (V )/2.

It remains to prove that (1) implies (6), which we do by induction on dim(V )
with Proposition 1.2 providing the initial step. (The case of dimension 1 being
trivial since nondegenerate 1-spaces contain no nonzero singular vectors.) If M
is a singular subspace of dimension at least dim(V )/2 and z is singular, then
z⊥ ∩M contains a hyperplane of M and singular 〈z, z⊥ ∩M〉 has dimension
at least that of M . Thus, if necessary replacing M or enlarging χ, we may
assume that M ∩ χ is nonempty. Let x ∈M ∩ χ. Then, for any y in (χ \ {x})⊥
but not its hyperplane χ⊥, the 2-space 〈x, y〉 is hyperbolic by Proposition 1.2.
Nondegenerate 〈x, y〉⊥ contains M ∩ y⊥ and χ \ {x}. By induction χ \ {x}
embeds in a hyperbolic basis of 〈x, y〉⊥, and therefore χ is in a hyperbolic basis
of V . 2

(3.2) Proposition. Let Q be hyperbolic on V of dimension 2m.
(a) Every singular (m − 1)-space is contained in exactly two singular m-

spaces.
(b) Let U be a maximal singular subspace, and let S be a singular subspace

not contained in U . Then for every s ∈ S \U there is a unique maximal singular
subspace T with s ∈ T and U∩T of dimension m−1. The space T is 〈s, s⊥∩U〉,
and dimF (S ∩ T ) = 1 + dimF (S ∩ U).

Proof. (a) If U has codimension 1 in a maximal singular subspace, then
U⊥/U is a hyperbolic 2-space; so (a) follows from Proposition 1.2.

(b) As s /∈ U , s⊥ ∩ U is a hyperplane of U and T = 〈s, s⊥ ∩ U〉 is a singular
m-space. It is unique since any T as described must contain s, whence T ∩U ≤
s⊥ ∩ U .

The hyperplane T ∩ U = s⊥ ∩ U of T contains S ∩ U , so the dimension of
S ∩ T is equal to that of S ∩ U or exceeds it by 1. But s ∈ T \ U . 2

(3.3) Proposition. Let the quadratic form Q be hyperbolic on the F -space
V of dimension 2m.

The graph (M,∼) on the set M of maximal singular subspaces, with two
such adjacent when their intersection has codimension 1 in each, is connected
bipartite of diameter m. In this graph, the distance between two maximal sin-
gular subspaces M and N equals the codimension of M ∩N in each.

Proof. We first claim that, for all S ∈M and T1 ∼ T2 in M, we have

|dim(S ∩ T1)− dim(S ∩ T2)| = 1 .

Let U = T1 ∩ T2 of codimension 1 in each, and set R = S ∩ U . If necessary
passing to R⊥/R, we may assume R = 0 in proving the claim. Then U⊥ has
dimension m + 1 and so intersects S nontrivially. Therefore T = 〈U,U⊥ ∩ S〉
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is totally singular of dimension m. By the previous proposition, T is equal to
exactly one of T1 or T2. Thus

{dim(S ∩ T1),dim(S ∩ T2)} = {0, 1} ,

giving the claim.
Let d(M,N) be the distance between M,N in (M,∼). Again by the previous

proposition, d(M,N) ≤ m−dim(M ∩N). In particular the graph is connected.
To prove d(M,N) = m− dim(M ∩N), we induct on d(M,N). The result is

true by definition for d(M,N) = 0, 1. Suppose d(M,N) = d, and choose a T ∈
M with T ∼ N and d(T,M) = d−1. Then by induction d−1 = m−dim(M∩T ).
By the preceding paragraph and the claim d ≤ m−dim(M∩N) = (d−1)±1 ≤ d,
as desired.

It remains to prove (M,∼) bipartite. Otherwise, there is a minimal cycle C
of odd length, say 2k+ 1. But for S ∈ C, the two vertices T1 and T2 at distance
k from S in C are adjacent with dim(S ∩ T1)− dim(S ∩ T2) = 0, contradicting
the earlier claim. 2

(3.4) Corollary. The groups O(V,Q) and GO(V,Q) induce automorphisms
of the bipartite graph (M, ∼ ). If sh is a symmetry of O(V,Q) and M ∈ M is
a singular m-space, then M ∼ Msh. In particular symmetries switch the two
parts and O(V,Q) and GO(V,Q) have normal subgroups of index 2 that globally
fix the two parts of the bipartition.

Proof. M = M⊥ for every maximal singular space, so h⊥ ∩M is a hyper-
plane of M that is equal to M ∩Msh. Thus M ∼ Msh. 2

The subgroup of index 2 in O(V,Q) will be written as SO(V,Q). It contains
all products of an even number of symmetries (indeed, by the Cartan-Dieudonné
Theorem [Tay92] is almost always equal to it). If the characteristic of F is not
2, it is the subgroup of O(V,Q) containing the isometries of determinant 1.

4 The oriflamme and triality geometries

Let (V,Q) be a hyperbolic orthogonal space of dimension 2m.

4.1 Oriflamme geometries

Consider the graph (Γ, ∼ ) whose vertices are the nonzero singular spaces of V .
Two singular spaces are incident (that is, adjacent in Γ) precisely when

one is properly contained in the other or they both have dimension
m and intersect in a (m− 1)-space.

This graph is (m+1)-partite by Proposition 3.3 above, with the collection of m-
spaces falling into two partsMρ andMλ while the remaining singular subspaces
provide a part Sk for each dimension 1 ≤ k ≤ m− 1.
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The associated oriflamme Dm geometry is this graph with the part Sm−1

(the vertices of dimension m− 1) removed.

(4.1) Proposition. The group SO(V,Q) acts on (Γ, ∼ ), sending every part
to itself and transitive on maximal cliques (of size m+ 1).

If C is a maximal such clique, then there is a symmetry sh that fixes all
vertices of C of dimension less that m and switches the two vertices of C of
dimension m.

Proof. Let C be a maximal clique in (Γ, ∼ ), so it consists of m − 1
singular spaces Ck (of dimension 1 ≤ k ≤ m − 1) and two spaces Cρm and
Cλm of dimension m. If i < j then Ci is contained in Cj (and Cρm and Cλm)
and Cm−1 = Cρm ∩ Cλm. Start with a nonzero vector of c1 ∈ C1 and continue
adding vectors of ck ∈ Ck \ Ck−1 until arriving a basis χ = {c1, . . . , cm−1} of
Cm−1. Then in C⊥m−1 choose a hyperbolic pair {x, y} with 〈χ, x〉 = Cρm and
〈χ, y〉 = Cλm. Call χ ∪ {x, y} a clique basis for the maximal clique C.

By Proposition 3.1 there is a hyperbolic basis that contains the clique basis
χ ∪ {x, y}. As O(V,Q) is transitive on hyperbolic bases, any clique basis, and
so any maximal clique, can be mapped to any other. Indeed, given the ordering
of hyperbolic bases, the map can be chosen in SO(V,Q). Alternatively, for
h = x + y the symmetry sh fixes all vectors of Cm−1 ≤ h⊥ and switches the
1-spaces spanned by x and y. 2

(4.2) Corollary. O(V,Q) is transitive on nonincident pairs of a singular
1-space and a singular m-space.

Proof. For such a pair, there is a clique basis that is the union of a basis
of the 1-space and a basis of the m-space. 2

(4.3) Corollary. In the action of SO(V,Q) on R, where R is any one of
the parts Sk or Mρ or Mλ, the kernel is {±I}.

Proof. The intersection of all members of R containing the singular 1-
space S is S. Therefore we need only consider S1. But in that case the result is
clear by Propositon 1.2. 2

The quotient of SO(V,Q) by {±I} is PSO(V,Q).

4.2 Triality geometries

We now restrict to the case of a hyperbolic space (V,Q) of dimension 8, so
m = 4.

Consider the tripartite subgraph T of Γ, consisting of the parts T1 = S1,
T2 =Mλ, and T3 =Mρ. This is the triality graph T (V,Q) = T +

8 (F ) of (V,Q).
We have immediately from Corollary 3.4 and Proposition 4.1:
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(4.4) Corollary. The group SO(V,Q) acts as automorphisms of T preserv-
ing each part Ti and is transitive on maximal cliques. Each symmetry sh fixes
the part T1 and switches the two parts T2 and T3. Indeed, for {j, k} = {2, 3}, if
M ∈ Tj then M is incident to Msh ∈ Tk. 2

The next two results give basic properties of T and its automorphism group.
They provide motivation for the paper of Tits [Tit58]; see Section 6.

(4.5) Theorem. Let {i, j, k} = {1, 2, 3}.

(a) For every nonincident pair pi ∈ Ti and pj ∈ Tj, there is a unique pk ∈ Tk
that is incident to both pi and pj.

(b) If pi, qi ∈ Ti are both incident to pj ∈ Tj, then there are distinct pk, p
′
k ∈ Tk

that are incident simultaneously to pi and pj but not to qi.

Proof. (a) There are two distinct cases: {i, j} = {1, 2} and {i, j} = {2, 3}.
The case {i, j} = {1, 2} is contained in Proposition 3.2(b) with p1 = S,

p2 = U , and p3 = T = 〈S, S⊥ ∩ U〉.
The case {i, j} = {2, 3} comes from Proposition 3.3: as p2 and p3 are not

incident, their intersection must have dimension 1—the unique singular 1-space
p1 = p2 ∩ p3 ∈ T1 incident to both p2 and p3.

(b) There are two distinct cases: k = 1 and k = 3.
First let k = 1, so without loss of generality (i, j) = (2, 3). As the two

singular 4-spaces p2 and q2 both intersect the 4-space p3 in a 3-space, their
intersection p2 ∩ q2 is a 2-space. We can therefore select independent singular
1-spaces p1 and p′1 of T1 from p2 ∩ p3 \ q2 ∩ p3. Both p1 and p′1 are incident
simultaneously to p2 and p3 but not q2, as desired.

Now consider k = 3. There are initially two subcases: (i, j) = (1, 2) and
(i, j) = (2, 1). In the first subcase, p1 and q1 are both incident to singular p2,
so 〈p1, q1〉 is a singular 2-space that is also contained in a singular 4-space q2 of
T2, distinct from p1. Similarly, in the second subcase, if the singular 4-spaces p2

and q2 of T2 are both incident to p1, then their intersection is a singular 2-space,
and we can pick a second singular 1-space q1 in that intersection.

Therefore in both subcases we have singular 1-spaces p1, q1 and singular 4-
spaces p2, q2 from T2, with p1 and q1 both incident to p2 and q2. We will be
done when we find 4-spaces p3, p

′
3 ∈ T3 that are incident to both p1 and p2 but

to neither q1 nor q2.
Let U and U ′ be 3-spaces in p2 that contain p1 but not q1. By Propositions

3.2 and 3.3 there are unique 4-spaces p3, p
′
3 of T3 with p3∩p2 = U and p′3∩p2 =

U ′. Thus p3 and p′3 are incident to p1 and p2 but not to q1. If p3 was incident
to q2, then p3 ∩ q2 would have dimension 3 and U ∩ q2 would have dimension at
least 2, whereas q1 /∈ U ∩ q2 ≤ p2 ∩ q2 = 〈p1, q1〉. Thus q2 is not incident to p3

and similarly not to p′3. 2

(4.6) Theorem. Let i = 1 and {j, k} = {2, 3}. For each nonsingular h, the
automorphism g = sh of T has the following properties.
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(a) g fixes Ti and and each pj of Tj is incident to pjg, which belongs to Tk.

(b) If pi ∈ Ti is incident to both pj ∈ Tj and pjg ∈ Tk, then pig = pi.

(c) g2 = 1.

Proof. Part (a) is contained in Corollary 4.4. Part (c) holds as all symme-
tries have order 2 by Proposition 2.1.

For (b), if the singular 1-space p1 is incident to the incident pair of singular
4-spaces p2 and p3 = p2sh, then it is in the hyperplane p2 ∩ p3 of each. But
p2 ∩ p3 = p2 ∩ h⊥ = p3 ∩ h⊥, so p1 ≤ h⊥ is fixed by g = sh. 2

Tits [Tit58] studies T -geometries—tripartite graphs T satisfying Theorem
4.5(a), particularly those that admit automorphisms g as in Theorem 4.6 for
all choices of {i, j, k} = {1, 2, 3}. (In this case he shows that, for a T -geometry
with the nondegeneracy property Theorem 4.5(b), the properties of Theorem
4.6(b, c) follow from Theorem 4.6(a).)

So what we need to get to Tits’ situation is the fundamental fact of triality
for (V,Q):

The graph T admits automorphisms inducing the full group Sym(3)
on the index set of {T1, T2, T3}, not just the transposition (1)(2, 3)
provided by the symmetries.

This will be done in Theorem 5.18 and Proposition 5.19 below.

5 Composition algebras

An algebra over the field F is a F -vector space A combined with a bilinear
product π : A×A −→ A. For the purpose of these notes, we will always assume
that algebras have identity elements. As A is a F -algebra, we immediately have

(5.1) Lemma. The maps La : x 7→ ax and Ra : x 7→ xa are F -linear transfor-
mations of A. 2

The algebra admits composition if there is defined on A a nondegenerate
quadratic form Q : A −→ F with the additional property that

Q(a)Q(b) = Q(ab) .

for all a, b ∈ A. Especially Q(1) = 1.

(5.2) Theorem. (Hurwitz’ Theorem) A finite dimensional composition
algebra has dimension 1, 2, 4, or 8 over the field F . 2

An immediate consequence of the composition law is that all invertible ele-
ments of A are nonsingular. The converse is also true (see Corollary 5.7 below).
Therefore if all nonzero elements of a composition algebra A are nonsingular,
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then A is a division algebra. If A is not a division algebra, then Q is actu-
ally hyperbolic (see Lemma 5.9 below). In this case, the algebra is called split.
Proposition 1.2 and the following lemma (which we do not prove) guarantee
that every division composition algebra over F tensors up to a split composi-
tion algebra over E, where E is a quadratic extension of F . In particular, it is
enough to prove Hurwitz’ Theorem for split composition algebras.

(5.3) Lemma. If E is an extension field for F , then the algebra E ⊗F A also
admits composition with respect to the induced quadratic form. 2

It turns out that the split algebras are uniquely determined up to isomor-
phism by dimension and field. For a proof of this and Lemma 5.3, see [Hal00].
Here we are mainly interested in properties of the split composition algebras
of dimension 8, although a short detour in our arguments provides a proof of
Hurwitz’ Theorem (in the finite dimensional, split case).

5.1 Examples

A composition algebra of dimension 1 is just a field with Q(x) = x2 and is not
split. (As Q is nondegenerate, the field cannot have characteristic 2.)

A composition algebra of dimension 4 is usually called a quaternion algebra.
There is a canonical example of a split composition F -algebra of dimension 4,
namely the algebra of all 2 × 2 matrices over F with the usual multiplication
and with Q(x) = det(x):

det

[
α β
γ δ

]
= αδ − βγ .

The diagonal matrices give a nondegenerate split subalgebra of dimension 2,
and the scalar matrices give a subalgebra of dimension 1.

A composition algebra of dimension 8 is usually called an octonion or Cayley
algebra. As already mentioned, a split Cayley algebra over F is unique up to
isomorphism. The following construction is essentially due to Zorn.

Consider the set of matrices

Oct+
8 (F ) =

{[
x1 x234

x567 x8

]}
,

where x1, x8, y1, y8 ∈ F and x234, x567, y234, y567 ∈ F 3. Addition of such matri-
ces is defined naturally. Multiplication is given by[

x1 x234

x567 x8

] [
y1 y234

y567 y8

]
=

[
x1y1 + x234 · y567 x1y234 + x234y8 + x567 × y567

x567y1 + x8y567 − x234 × y234 x8y8 + x567 · y234

]
=

9



[
x1y1 + x234 · y567 x1y234 + x234y8

x567y1 + x8y567 x8y8 + x567 · y234

]
+

[
0 x567 × y567

−x234 × y234 0

]
.

Here on F 3, in addition to scalar multiplication (from both sides), the two
products · and × are, respectively, the usual dot product

(a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3

and cross product (vector product)

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a1b3 − a3b1, a2b1 − a1b2) .

The associated quadratic form is

x1x8 − x234 · x567 .

(5.4) Theorem. Oct+
8 (F ) with the notation and operations defined above is

a split octonion algebra—a split composition algebra of dimension 8.

Proof. The set is closed under addition and multiplication with identity
element [

1 0
0 1

]
.

The dot and cross products are bilinear, so we do have an F -algebra. There are
clearly nonzero matrices that are singular with respect to the given quadratic
form.

It remains to check that the form admits composition. This is not difficult
and depends upon certain identities involving the dot and cross products:

Let a, b, c, d ∈ F 3. Then

(i) a · b = b · a.

(ii) a× b = −(b× a) and a× a = 0.

(iii) a · (a× b) = 0.

(iv) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). 2

Within Oct+
8 (F ) there are numerous nondegenerate split 4-dimensional sub-

algebras represented as matrix algebras:{[
α βe
γe δ

]}
,

for any e ∈ F 3 with e · e = 1, in particular (1, 0, 0), (0, 1, 0), and (0, 0, 1).
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5.2 Structure

We assume throughout that A is a finite dimensional algebra with identity 1
over F admitting composition with respect to nondegenerate Q.

The composition law, when written

Q(Lax) = Q(Rax) = Q(a)Q(x) ,

reveals the maps La and Ra to be similarities for Q with respect to the scaling
constant Q(a) (when invertible—see Corollary 5.7 below). They are then also
similiarities for the associated bilinear form B(·, ·); and we find, for a, x, y ∈ A,

B(xa, ya) = B(ax, ay) = Q(a)B(x, y) .

We define the operation of conjugation on A by x 7→ x̄ = −x+B(x, 1)1. For
instance, in the split quaternion algebra of 2× 2 matrices we have the familiar[

α β
γ δ

]
=

[
δ −β
−γ α

]
.

This formula then carries over to Zorn’s representation of the split octonions.

(5.5) Lemma.

(a) ¯̄x = x

(b) Q(x) = Q(x̄) and B(x, y) = B(x̄, ȳ)

Proof. x̄ = −s1(x), so this follows from Proposition 2.1. 2

(5.6) Proposition.

(a) x̄(xy) = Q(x)y = (yx)x̄. In particular x̄x = Q(x)1 = xx̄.

(b) x̄(yz) + ȳ(xz) = B(x, y)z and (zy)x̄+ (zx)ȳ = B(x, y)z.

(c) B(x, v̄y) = B(vx, y) and B(x, yv̄) = B(xv, y).

Proof. In each case, we only prove the first identity. We first prove (c):

B(x, v̄y) = B(x, (B(1, v)− v)y)
= B(x, y)B(1, v)−B(x, vy)
= B(x, y)(Q(1 + v)−Q(1)−Q(v))−B(x, vy)
= B((1 + v)x, (1 + v)y)−B(x, y)−B(vx, vy)−B(x, vy)
= B(vx, y) .

Next, for (a):
B(x̄(xy), z) = B(xy, xz)

= Q(x)B(y, z)
= B(Q(x)y, z) ,

for all z. Therefore by nondegeneracy x̄(xy) = Q(x)y, giving (a).
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We linearize (a) to get (b):

(x̄+ ȳ)((x+ y)z) = Q(x+ y)z
x̄(xz) + ȳ(yz) + x̄(yz) + ȳ(xz) = Q(x)z +Q(y)z +B(x, y)z

x̄(yz) + ȳ(xz) = B(x, y)z . 2

The first part of the proposition immediately gives:

(5.7) Corollary. The following are equivalent:

(1) x is nonsingular.

(2) x is invertible.

(3) x has inverse Q(x)−1x̄.

(4) Rx is invertible.

(5) Lx is invertible. 2

(5.8) Corollary.

(a) x2 −B(x, 1)x+Q(x) = 0.

(b) xy = ȳx̄.

Proof. By definition x̄x = (−x + B(x, 1)1)x = −x2 + B(x, 1)x, so (a)
follows directly from Proposition 5.6(a).

For (b), we use Proposition 5.6(c) many times:

B(xy, z) = B(1, (xy)z) = B(z̄, xy)
= B(z̄ȳ, x) = B(ȳ, zx)
= B(ȳx̄, z) ,

for all z. Therefore, by nondegeneracy, xy = ȳx̄. 2

In particular F1 + Fx is always a commutative, associative subalgebra.

(5.9) Lemma. If x is a nonzero singular vector in A, then there exist singular
vectors y with B(x, y) 6= 0. Furthermore, for any such pair {x, y}, always
A = xA⊕yA = Ax⊕Ay with each xA and Ax maximal singular. In particular,
(A,Q) is hyperbolic.

Proof. For all singular x, the subspaces xA and Ax are both singular since
Q(xA) = 0 = Q(Ax).

By Proposition 1.2 any nondegenerate 2-subspace containing x contains a
hyperbolic pair {x, y}. Especially x+ y is nonsingular. Thus by Corollary 5.7

A = Lx+yA = (x+ y)A ≤ xA+ yA ≤ A .

That is, A = xA + yA . As Q is nondegenerate xA ∩ yA = 0, and both are
maximal singular. Therefore A = xA⊕ yA, and Q is hyperbolic by Proposition
3.1.
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A similar argument proves the claims for Ax and Ay. (Here and elsewhere,
lefthanded and righthanded versions of a result can be proven by similar argu-
ments or seen to be equivalent using Corollary 5.8(b). We may only give one
version.) 2

From now on we will assume that the set S of nonzero singular vectors is not
empty. By the lemma (A,Q) is hyperbolic. As before S1 is the set of singular
1-spaces of A, and M is the set of all maximal singular subspaces of A. Let m
be the dimension of each member of M, so that A has F -dimension 2m.

(5.10) Lemma.

(a) If x ∈ S, then the image of Lx is xA and its kernel is x̄A.

(b) If x ∈ S, then the image of Rx is Ax and its kernel is Ax̄.

Proof. Certainly the image of Lx is xA. By Proposition 5.6(a) the m-space
x̄A is contained in the kernel of Lx, which has dimension 2m−m = m. 2

(5.11) Lemma. Assume m ≥ 2. Let x, y ∈ S.

(a) If xy = 0, then xA ∩Ay = x(y⊥) = (x⊥)y of codimension 1 in each.

(b) xA 6= Ay.

Proof. By Proposition 5.6(b), for all a ∈ A,

x̄(ay) + ā(xy) = B(x, a)y ,

and by Lemma 5.10
xA ∩Ay = kerLx̄ ∩Ay .

(a) If xy = 0 then x̄(ay) = B(x, a)y. Thus xA ∩ Ay = (x⊥)y and also
x⊥ ≥ kerRy = Aȳ. As x⊥ has codimension 1 in A, the codimension of (x⊥)y in
Ay = imRy is 1.

(b) If xA = Ay then ā(xy) = B(x, a)y, so A(xy) ≤ 〈y〉 has dimension at most
1. By Corollary 5.7 and Lemma 5.10, for nonzero w the linear transformation
Rw has rank m or 2m. As we are assuming m ≥ 2, this forces xy = 0 and so
contradicts (a). 2

(5.12) Lemma. Assume m ≥ 2.

(a) Let x be singular and U a maximal singular subspace with xA ∩ U of codi-
mension 1 in each. Then there is a singular y with xy = 0, U = Ay, and
xA ∩ U = xA ∩Ay = x(y⊥) = (x⊥)y.

(b) Let x be singular and U a maximal singular subspace with Ax ∩ U of codi-
mension 1 in each. Then there is a singular y with yx = 0, U = yA, and
Ax ∩ U = yA ∩Ax = y(x⊥) = (y⊥)x.
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Proof. We only prove (a). Let U0 = U ∩ xA, of codimension 1 in each.
Let W be the preimage of U0 under Lx, so that W has codimension 1 in A. By
Lemma 5.10, ker(Lx) = x̄A is contained in W . As W has codimension 1 in A,
there is a y, uniquely determined up to scalar multiple, with W = y⊥, hence
U0 = LxW = xW = x(y⊥). Furthermore, 〈y〉 = W⊥ ⊆ (x̄A)⊥ = x̄A, hence
y ∈ S. Also 0 = xy ∈ x(x̄A), by Proposition 5.6 or Lemma 5.10.

By the previous paragraph and Lemma 5.11, we have

xA ∩Ay = x(y⊥) = U0 = xA ∩ U .

Therefore Ay = U by Proposition 3.2(a). 2

(5.13) Proposition. Assume m ≥ 2. For every maximal singular subspace
U , there is a singular x with U equal to one of xA or Ax. The two parts of
the incidence graph (M, ∼ ) on the set M of maximal singular subspaces are
Mρ = {Ax |x ∈ S} and Mλ = {xA |x ∈ S}.

Proof. Consider the two sets of maximal singular subspaces {Ax |x ∈ S}
and {xA |x ∈ S}. They are disjoint by Lemma 5.11. By Lemma 5.12 every
edge on yA in the incidence graph (M, ∼ ) goes to {Ax |x ∈ S}, and every edge
of (M, ∼ ) on Ay goes to {xA |x ∈ S}. By Proposition 3.3 (M, ∼ ) is bipartite
and connected, so these sets are the two parts of the bipartition. 2

(5.14) Lemma. Assume m ≥ 3. Let x, y ∈ S be with 〈x〉 6= 〈y〉.
(a) If B(x, y) = 0 then xA∩ yA has codimension 2 in each and Ax∩Ay has

codimension 2 in each.
(b) xA 6= yA and Ax 6= Ay.

Proof. Let U0 be singular of dimension m− 1 (≥ 2) and containing 〈x, y〉.
By Lemma 5.12 and Proposition 5.13, there are w, z ∈ S with U0 = wA ∩ Az.
As 〈x, y〉 ⊆ Az, we have xz̄ = yz̄ = 0 by Lemma 5.10. Therefore xA ∩ Az̄ and
yA∩Az̄ both have dimension m−1 by Lemma 5.11. This implies that xA∩ yA
has dimension at least m − 2. The dimension of xA ∩ yA cannot be m − 1 by
Lemmas 5.11 and 5.12, so (a) will follow from (b).

If xA = yA, then B(x, y) = 0; so in proving (b) we may make use of the
previous paragraph. By Lemma 5.11 again xA∩Az̄ = yA∩Az̄ equals the m−1
space (x⊥)z̄ = (y⊥)z̄. Its preimage under Rz̄ is then x⊥ = y⊥. This forces
〈x〉 = 〈y〉, which is not the case.

Starting again with w̄x = w̄y = 0, we find the rest of the lemma. 2

(5.15) Corollary. Assume m ≥ 3. Then the map 〈x〉 7→ Ax gives a
bijection of S1 and Mρ and 〈x〉 7→ xA gives a bijection of S1 and Mλ.

Proof. This follows from Lemmas 5.11 and 5.14 and Proposition 5.13.
2

We can now prove Hurwitz’ Theorem (in the split, finite dimensional case).
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(5.16) Theorem. (Hurwitz’ Theorem) A finite dimensional, split compo-
sition algebra A has dimension 2, 4, or 8.

Proof. Since Q is hyperbolic, the dimension 2m is even. We must prove
that m is 1, 2, or 4. Assume that m is at least 3. Consider the part Mλ =
{xA |x ∈ S} of the graph (M, ∼ ) and distances within it.

By Propositions 3.3 and 5.13, the distance from xA to yA in (M, ∼ ) is even
and equal to the codimension of xA ∩ yA in each. Every even number in the
range 0 to m must be realized, since (M, ∼ ) is connected of diameter m. But
by Lemmas 5.9 and 5.14, the only distances realized withinMλ = {xA |x ∈ S}
are 0 (when 〈x〉 = 〈y〉), 2 (when B(x, y) = 0 but 〈x〉 6= 〈y〉), and m (when
B(x, y) 6= 0). This forces m to be even and 2 ≥ m − 2 (≥ 1). That is, m = 4.
2

We now consider only the triality case 2m = 8 and the associated triality
geometry T = T1 ] T2 ] T3 where T1 = S1, T2 =Mλ, and T3 =Mρ.

(5.17) Lemma. For 〈x〉, 〈y〉 ∈ T1, the following are equivalent:
(1) xy = 0;
(2) 〈y〉 ∼ x̄A;
(3) 〈x〉 ∼ Aȳ;
(4) 〈ȳ〉 ∼ Ax;
(5) 〈x̄〉 ∼ yA;
(6) xA ∼ Ay;
(7) ȳA ∼ Ax̄.

Proof. By Lemma 5.10, x̄A is the kernel of Lx, so y ∈ x̄A if and only if
xy = 0. Similarly 〈x〉 ∈ Aȳ = ker(Ry) if and only if xy = 0. Also 〈ȳ〉 ∈ Ax if
and only if ȳx̄ = 0 if and only if xy = 0 by Corollary 5.8(b), and similarly for
〈x̄〉 ∈ yA.

By Lemmas 5.11, 5.12, and 5.14 the intersection xA∩Ay has codimension 1
in each if and only if xy = 0, and similarly ȳA ∩ Ax̄ has codimension 1 in each
if and only if ȳx̄ = 0. 2

Define on T the map τ , for all 〈x〉 ∈ T1:

〈x〉 τ−→ x̄A
τ−→ Ax̄

τ−→ 〈x〉 .

The map τ is well-defined by Corollary 5.15.

(5.18) Theorem. The map τ is an automorphism of T of order 3, a triality
automorphism.

Proof. We have τ acting on pairs:

(〈y〉, x̄A)
τ−→ (ȳA,Ax̄)

τ−→ (Aȳ, 〈x〉) τ−→ (〈y〉, x̄A) .

By the lemma, any one of these is an edge of T if and only if xy = 0, in which
case they are all edges. Therefore τ is an automorphism of the graph T . 2

Let κ be the permutation of T determined by the conjugation map in A:

κ(〈x〉) = 〈x̄〉; κ(xA) = Ax̄; κ(Ax) = x̄A .
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(5.19) Proposition. κ is an automorphism of T of order 2 that inverts the
triality automorphism τ .

Proof. We have on pairs

(〈y〉, x̄A)
κ←→ (〈ȳ〉, Ax) and (ȳA,Ax̄)

κ←→ (Ay, xA) .

Again by Lemma 5.17, any of these pairs is an edge if and only if xy = 0, in
which case all are edges. Futhermore

〈x〉 κ−→ 〈x̄〉 τ−→ xA
κ−→ Ax̄ ,

and so forth, leading to

〈x〉 κτκ−→ Ax̄
κτκ−→ x̄A

κτκ−→ 〈x〉 .

Therefore κτκ = τ−1, as claimed. 2

Of course, it should be no surprise that κ is an automorphism of T . From
Proposition 2.1, we see that κ is induced by the negative of the orthogonal
symmetry s1 on A.

6 Symmetric T -geometries

This section is based upon §§3-4 of [Tit58]. A T -geometry is a tripartite graph
T with nonempty parts T1, T2, T3 and satisfying, for {i, j, k} = {1, 2, 3}:

for every nonincident pair pi ∈ Ti and pj ∈ Tj , there is a unique
pk ∈ Tk that is incident to both pi and pj .

In particular T is connected of diameter at most 3. There are many examples.

(6.1) Example. (Gated T -geometries) Let U be a tripartite graph with parts
U1, U2, and U3 and having the property:

if pi ∼ pj ∼ pk, for pi ∈ Ui, pj ∈ Uj , pk ∈ Uk and {i, j, k} = {1, 2, 3},
then pi ∼ pk.

For example, this will be the case for any tripartite U in which all connected com-
ponents are complete tripartite, allowing degenerate components Km,n,0—a complete
bipartite subgraph meeting only two parts of S—and K1,0,0, a single vertex.

For each i let Ti = Ui ∪ {∞i}, where ∞i is a new vertex, a “gate.” For {i, j, k} =

{1, 2, 3} let the gate∞i be incident to every vertex of Tj and Tk. The tripartite graph

T = T1 ] T2 ] T3 is then a T -geometry.

In particular any complete tripartite graph Km,n,p is a T -geometry [Tit58, §4.1].

(6.2) Example. The 6-cycle C6 is a T -geometry.
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Among the above examples of T -geometries, the complete graphs Km,m,m

and the cycle C6 have large automorphism groups.
Specifically, consider the subgroup Sym(3) of Aut(C6) whose three elements

of order 2 are the reflections of the 6-cycle that fix none of its vertices. If a is one
such element, then a fixes Ti, switches Tj and Tk (for an appropriate numbering
of the three parts of C6), and has the following three properties:

(i) for all pi ∈ Ti, pi and pai are incident;

(ii) if pi ∈ Ti is incident simultaneously to pj (∈ Tj) and paj (∈ Tk),
then pai = pi;

(iii) a2 = 1.

Of course for C6, the second property holds trivially.
Similarly, consider the complete graph Km,m,m. Here the wreath product

Sym(m)
3 o Sym(3) acts on the associated T -geometry with each involution a

of the wreathing quotient Sym(3) having the three properties above. In this
example, the first property is essentially trivial but the second is very strong,
saying that a fixes each vertex of the part it leaves invariant.

We call an automorphism a of the T -geometry T acting as above a symmetry
of T . For a given automorphism group G of T , we denote by Di the set of
symmetries of T that leave part Ti fixed and switch Tj and Tk. Further set
∆ = D1 ∪D2 ∪D3. In Aut(T ) a conjugate of a symmetry is again a symmetry,
so ∆ is a normal set of elements of order 2.

The automorphisms of Di induce the permutation (i)(j, k) on the parts of
T . Tits [Tit58, §3.2] calls T a symmetric T -geometry provided all permutations
of {1, 2, 3} are induced by Aut(T ). Thus C6 and Km,m,m are symmetric.

We next have Tits’ “Fundamental Lemma” [Tit58, §3.3]:

(6.3) Lemma. Let {i, j, k} = {1, 2, 3}. If a ∈ Di and b ∈ Dj, then

(a) aba = bab ∈ Dk;

(b) (ab)3 = 1.

Proof. As a conjugate of a symmetry is a symmetry, both a−1ba = aba
and bab are in Dk, inducing the permutation (k)(i, j). It remains to prove

1 = (aba)(bab) = (ab)3 .

First let p ∈ T3. Then p ∼ pb by (i), hence pab ∼ pbab. Similarly pba ∼
(pba)b = pbab as pba ∈ Ti. That is,

pab ∼ pbab ∼ pba ,

and by symmetry
pba ∼ paba ∼ pab .
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If pab 6∼ pba, then by the defining axiom for T -spaces pbab = paba and p(ab)3 = p.
On the other hand, if pab ∼ pba this would combine with pab ∼ pbab = (pba)b

(from above) to give pab = (pab)b = pa by (ii). That is, paba = p and by

symmetry pbab = p ; again pbab = paba and p(ab)3 = p. Therefore for p ∈ Tk we
always have p(ab)3 = p.

This in turn implies that

(pab)(ab)3 = p(ab)4 = (p(ab)3)ab = pab

and
(p(ab)2)(ab)3 = p(ab)5 = (p(ab)3)(ab)2 = p(ab)2 .

We conclude that (ab)3 is trivial on Tk and additionally on T abk ∪T
(ab)2

k = Ti∪Tj .
That is, (ab)3 = 1, as desired. 2

(6.4) Corollary. Let G ≤ Aut(T ) with D = G ∩∆ meeting at least two of
D1, D2, and D3. Then D is a conjugacy class in G and in 〈D〉 such that, for
arbitrary a ∈ Di ∩D and b ∈ Dj ∩D (with i 6= j) we have (ab)3 = 1.

In particular 〈a, b〉 ' Sym(3), and T is symmetric. 2

(6.5) Remarks.

(a) The consequences of the previous lemma and corollary for T = Km,m,m,

where the automorphism group is the wreath product Aut(T ) = Sym(m)
3 o

Sym(3), were detailed by Tits [Tit58, §4.1] and later (and independently)
rediscovered by Doro [Dor78] and Zara [Zar85].

(b) Tits [Tit58, §3.4] also observes that, provided a certain nondegeneracy con-
dition (namely that of Theorem 4.5(b)) holds in the T -geometry T , the two
defining properties (ii) and (iii) of symmetries are consequences of the prop-
erty (i). The nondegeneracy condition holds in T +

8 (F ) by Theorem 4.5(b)
but not in C6 or Km,m,m.

One of Tits’ motivating observations is:

(6.6) Theorem. (Tits [Tit58, §4.2].) Each T +
8 (F ) is a symmetric T -

geometry with D1 containing all orthogonal symmetries.

Proof. This is immediate from Theorems 4.6 and 5.18. 2

Thus by Tits’ Fundamental Lemma 6.3, for the class D of PSO+
8 (F )oSym(3)

containing the orthogonal symmetries:

for arbitrary a, b ∈ D with a and b mapping to different involutions
of the quotient Sym(3), we have (ab)3 = 1 .

This is the motivating example for abstract triality in groups [Dor78, HaN01].

18



References

[Car25] E. Cartan, Le principe de dualité et la théorie des groupes simples et
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