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Abstract A generic distance-regular graph is primitive of diameter at least two and
valency at least three. We give a version of Derek Smith’s famous theorem for reduc-
ing the classification of distance-regular graphs to that of primitive graphs. There are
twelve cases—the generic case, four canonical imprimitive cases that reduce to the
generic case, and seven exceptional cases. All distance-transitive graphs were previ-
ously known in six of the seven exceptional cases. We prove that the 6-cube is the
only distance-transitive graph coming under the remaining exceptional case.

Keywords Imprimitive distance-transitive graph . Imprimitive distance-regular
graph

1. Introduction

An important theorem by Derek Smith [14] is frequently cited as the avenue for
reduction of the classification of distance-regular and distance-transitive graphs to
that of primitive graphs. Occasionally these citations (and proofs) are inexact and the
specific reduction not clear. It is our view that a generic distance-regular graph is
primitive of diameter at least two and valency at least three. In Theorem 2.9 below
we give a version of Smith’s Theorem which describes precisely how most distance-
regular graphs can be reduced to the generic case and details the exceptions.
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Brouwer, Cohen, and Neumaier [5, p. 416] have conjectured that one case, that of
antipodal and bipartite distance-regular graphs of diameter 6 and valency at least 3,
leads uniquely to the 6-cube. In Theorem 3.3 we prove their conjecture for the class
of distance-transitive graphs.

In Section 2 we give an introduction to imprimitivity and reduction for distance-
regular graphs, and we present several versions of Smith’s Theorem. In the most
detailed version (Theorem 2.9) there are twelve cases—the generic primitive case,
four canonical imprimitive cases that reduce to the generic case, and seven excep-
tional cases. In Section 3 we discuss this case division in the context of distance-
transitive graphs. In six of the exceptional cases all distance-transitive examples have
been characterized previously, and we provide here the classification in the remaining
exceptional case.

All graphs and groups that we consider are finite. We usually blur the distinction
between a graph and its set of vertices. Our general reference is the book of Brouwer,
Cohen, and Neumaier [5].

2. Smith’s Theorem

Derek Smith [14] observed that the possible blocks of imprimitivity for a distance-
transitive graph (DTG) are very limited, and it was soon noted that (with the appropriate
definitions) this remains true for distance-regular graphs (DRGs). We present a detailed
version of Smith’s result. While nothing in this section is strictly new, it is difficult
to find in the literature a precise version of Smith’s Theorem with complete proof.
We make clear the case divisions involved in using Smith’s Theorem inductively to
classify all distance-regular and distance-transitive graphs. For related refinements of
Smith’s Theorem, see [3] and [5, p. 140].

If the distance-regular graph � is disconnected, then each connected component
is itself a distance-regular graph. Different components have the same size and inter-
section numbers. (Different components need not be isomorphic, although they are
if � is distance-transitive.) Therefore we usually restrict our attention to connected
distance-regular graphs. We write k for p0

11, the valency of �, and also λ = p1
11 and

μ = p2
11. (Recall that if vertices a and b are at distance h in �, then the intersection

number ph
i j is the number of vertices z at distance i from a and distance j from b.)

The connected components of a graph are special examples of congruence classes
of the graph. Let � be a distance-regular graph of diameter d. A subset I ⊆ [0, d] is
a congruence of � if

⋃
i∈I �i is an equivalence relation on �, where the relation �i

consists of the pairs of vertices at distance i in �. Clearly 0 must be in I and any union
is symmetric, so transitivity is the only issue.

Associated with any congruence I there are two types of related graphs—the fibers,
that is, the equivalence classes, and the quotient �/I , whose vertices are the fibers with
two adjecent if they contain adjacent vertices of �. There are two trivial congruences,
namely I = [0] where �/I = � and I = [0, d] where � itself is the only fiber. If there
are nontrivial congruences, then we call � imprimitive.

If � is a distance-transitive graph, then imprimitivity corresponds precisely to im-
primitivity for the action of Aut(�) on �, with the fibers being the blocks of the
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associated system of imprimitivity. As with the group case, one often focuses on
primitive distance-regular graphs, since any DRG can be decomposed (in some sense)
into primitive DRGs by passing to fibers and quotients.

A graph is bipartite if it can be partitioned into two nonempty parts so that all edges
pass from one part to the other; in particular {0, 2, 4, . . .} is a congruence, each fiber
being within one part or the other. A graph of diameter d is antipodal if {0, d} is a
congruence.

The original result is

Theorem 2.1 (Smith [14]). Let � be a connected distance-regular graph with valency
k ≥ 3. If � is imprimitive, it is either bipartite or antipodal. Both possibilities can occur
in the same graph.

For instance, the complete bipartite graph Kk,k is both bipartite and antipodal. A
connected graph of valency 2 is an n-cycle Cn and has blocks of imprimitivity of size
m for all proper divisors m of n. In particular C9 is imprimitive but neither bipartite
nor antipodal.

For the nonnegative integers t and d, we let 〈t〉 = 〈t〉d be the set of all multiples
of t that lie in the interval [0, d]. Therefore a distance-regular graph � of diameter d
that is bipartite has 〈2〉 as a congruence, while � is antipodal precisely when 〈d〉 is a
congruence. The trivial congruences are 〈0〉 and 〈1〉.

Theorem 2.2. Let � be a connected distance-regular graph of diameter d, and let I
be a congruence of �.

1. There is a t with I = 〈t〉.
2. If 2 < t < d, then � has valency 2.
3. If t = 2 then � either is a regular, complete multipartite graph Kr,...,r (of diameter

2) or is bipartite.

Proof:

(1) By transitivity, if ph
i j �= 0 with i, j ∈ I then h ∈ I as well. Therefore:

(a) If t ∈ I , then 〈t〉 ⊆ I .
(b) If i, j ∈ I with i < j , then j − i ∈ I .
Assume that we do not have I = 〈0〉, and let t be the smallest nonzero member of
I . By (a) we have I ⊇ 〈t〉. Indeed by (b) we have equality.

(2) Now assume that 0 < t < d and the valency k is at least 3. We wish to prove that
t ≤ 2.
Let {g0, g1, . . . , gt+1} be a path in � connecting the vertices g0, gt+1 at distance
t + 1 ≤ d . Consider an arbitrary vertex g adjacent to gt but not equal to gt+1. Thus
g0 and g are at distance t − 1, t , or t + 1. If that distance is t then {g0, gt , g} exhibits
p1

t t �= 0, so t = 1. If that distance is t + 1 then {g1, gt+1, g} exhibits p1
t t + p2

t t �= 0,
hence t ≤ 2. So we may assume that any such g is at distance t − 1 from g0. That
is, pt

1,t−1 = k − 1. In particular, since g1 and gt+1 are at distance t , there are k − 1
vertices at distance t − 1 from g1 and adjacent to gt+1. Any such vertex must be
at distance t from g0, one example being gt . As k − 1 ≥ 2, there is an f �= gt at
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distance t − 1 from g1 and adjacent to gt+1. But then {g0, gt , f } gives p2
t t �= 0.

Thus in all cases t ≤ 2.
(3) Assume that 〈2〉 is a congruence but � is not bipartite. If � has no triangles, then

by hopping around an odd circuit we could discover that adjacent vertices are in
the same fiber for 〈2〉, which is not the case. Therefore � contains triangles.
Suppose {g0, g1, g2, g3} is an induced path in �, and let {g, g0, g1} be a triangle. The
vertex g2 is not adjacent to g0 by assumption, so it is adjacent to g as p1

22 = 0. But
similarly the vertex g3, not adjacent to g1, must also be adjacent to g. Thus g0, g, g3

is a path of length 2, and we conclude that � has diameter 2. Nonadjacency is now
the equivalence relation 〈2〉, so � is complete multipartite. As it also is regular,
each part has fixed size r , say. �

In particular, a fiber is always a connected component under some relation �t .
Let � be a connected DRG of diameter d. If 〈d〉 is a nontrivial congruence, then we

say that � is antipodal imprimitive (usually shortened to antipodal, although this is
a mild abuse since complete graphs are antipodal and primitive). Similarly � is even
imprimitive (or even) if 〈2〉 is a nontrivial congruence.

Theorem 2.2 shows that a connected, imprimitive DRG of valency at least 3 is either
antipodal or even and that, when even, it is either bipartite or complete multipartite (and
hence antipodal of diameter 2). In particular, this gives a proof of Smith’s Theorem
2.1. We now want to use our precise knowledge of congruences to decompose every
DRG into primitive pieces.

In the bipartite case, the two fibers or halves are uniquely determined (by Theorem
2.2) as the only connected components under the adjacency relation ≈ given by having
distance 2 in �. We write B� for either one of the halves. This is somewhat ambiguous
since the two graphs (B�, ≈) need not be isomorphic, but the abuse is usually not a
problem. The two graphs have the same intersection numbers (in particular, the same
number of vertices), and in a DTG they are indeed isomorphic. When appropriate we
write B−� and B+� to distinguish the two halves. The graph (B�, ≈) is a halved
graph of �, and � is a doubled graph (or doubling) of B�. Similarly we write A� for
the quotient graph induced on the fibers of an antipodal graph �. We then say that �

is an antipodal cover of A� and even an antipodal r-cover, where r is the common
cardinality of the antipodal classes. The antipodal quotient A� is also called a folded
graph.

We have two elementary but fundamental observations; see [5, Proposition 4.2.2],
[3, 14].

Proposition 2.3. Let � be a connected, bipartite DRG of valency k and diameter
d (> 1). Then (B�, ≈) is a connected DRG of valency k(k − 1)/μ and diameter �d/2.
For 0 ≤ i ≤ �d/2, two vertices are at distance i in B� if and only if they are at distance
2i in �. If � is a DTG, then B� is also a DTG.

If the set of �-relations I ⊆ 〈2〉d gives a congruence of (Bε�, ≈), then I also gives
a congruence of (B−ε�, ≈) and of � itself.

Proposition 2.4. Let � be a connected, antipodal DRG of valency k and diameter
d (>1). Then A� is a connected DRG of diameter �d/2. For 0 ≤ i ≤ �d/2, two
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vertices (fibers) α and β are at distance i in A� if and only if each pair a ∈ α and
b ∈ β is at distance i or d − i in �. If d ≥ 3 then A� also has valency k. If � is a
DTG, then A� is also a DTG.

A symmetric design is an incidence systemD of v points and v blocks, with k points
per block and k blocks per point, and with the additional condition that each pair of
distinct blocks intersects in exactly μ points, the intersection index, and dually each
pair of points is together in exactly μ blocks. The design is nontrivial if 1 < k < v or,
equivalently, if 0 < μ < k. (See [5, p. 439] or [12].)

Proposition 2.5. Let � be a connected distance-regular graph of diameter d and
valency k in which 〈2〉 is a congruence. Then one of:

1. 0 ≤ d ≤ 1 or 0 ≤ k ≤ 2; that is, � is Kk+1 or Cn, for some n;
2. d = 2, and � is a regular, complete multipartite graph;
3. d = 3, and � is the bipartite incidence graph of a nontrivial symmetric design with

block size k ≥ 3 and index μ;
4. d = 4; � is antipodal and bipartite; A� is Kk,k with k ≥ 3, and B� is complete

multipartite;
5. d ≥ 4; � is bipartite; B� has diameter �d/2 ≥ 2 and valency k0 = k(k − 1)/μ ≥

k ≥ 3, and B� is not even.

Proof: Assume we are not in the first case, so d ≥ 2 and k ≥ 3. If d = 2, then we
have the second case by Theorem 2.2.3. (A bipartite graph of diameter 2 is complete.)

Thus we may assume that d ≥ 3, so by Theorem 2.2.3 the graph � is bipartite (with
each half connected under ≈). Furthermore by Proposition 2.3 the halved graphs
B� have diameter �d/2 and valency k0 = k(k − 1)/μ. If this is less than k, then
μ > k − 1 hence μ = k; but then � is Kk,k of diameter 2, which is not the case. Thus
k0 ≥ k.

Suppose d = 3. Let the two halves B� be P (points) and B (blocks). Each block
is incident to (adjacent to) k points, and dually each point is incident to k blocks.
As each half B� is complete under ≈, each pair of points is incident to exactly μ

common blocks, and each pair of blocks is incident to exactly μ common points.
Finally 0 < μ < k, since � has diameter 3. This gives the third conclusion.

It remains to consider the case where d ≥ 4. Here � is bipartite with B� of
diameter �d/2 ≥ 2 and valency k0 ≥ k ≥ 3. When B� is even, 〈4〉 is a congruence
of �. As d ≥ 4 and k ≥ 3, we then have d = 4 by Theorem 2.2. That is, � is also
antipodal of diameter 4. This implies that A� is bipartite of diameter 2, hence
complete bipartite. Also B� is antipodal of diameter 2 and so is complete multipartite
by Theorem 2.2.3.

�

Remark . Under Proposition 2.5.3 the converse is also true: the incidence graph of a
nontrivial symmetric design is a bipartite DRG of diameter 3. (The block size is 2 if
and only if the incidence graph is C6.) The relationship between bipartite DRGs of
diameter 3 and symmetric designs was noted by Hemmeter [8, 9].
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Proposition 2.6. Let � be a connected distance-regular graph of diameter d and
valency k in which 〈d〉 is a congruence. Then one of:

1. 0 ≤ d ≤ 1 or 0 ≤ k ≤ 2; that is, � is Kk+1 or Cn, for some n;
2. d = 2, and � is a regular, complete multipartite graph;
3. d = 3, and � is an antipodal cover of Kk+1 with k ≥ 3;
4. d = 4; � is antipodal and bipartite; A� is Kk,k with k ≥ 3, and B� is complete

multipartite;
5. d ≥ 4; A� has diameter �d/2 ≥ 2 and valency k ≥ 3, and A� is not antipodal.

Proof: Assume that we do not have the first two cases, so d ≥ 3 and k ≥ 3 as in
the previous proposition. If d = 3 then A� has diameter �3/2 = 1 and valency k by
Proposition 2.4, giving the third conclusion.

Now let d ≥ 4, so that A� has diameter e = �d/2 ≥ 2 and valency k (again
by Proposition 2.4). Suppose that A� is antipodal. Then I = {0, e, d − e, d} is a
congruence of � with |(d − e) − e| ≤ 1. Therefore by Theorem 2.2 we have d = 4 =
2e, and � is both bipartite and antipodal of diameter 4. As before, we have conclusion
(4). �

Lemma 2.7. Let � be a connected DRG of diameter d = 2e + 1 ≥ 5 and valency
k ≥ 3.

1. If � is antipodal, then A� is primitive.
2. If � is bipartite, then B� is primitive.

Proof: If � is antipodal, then by Proposition 2.6 the quotient A� is not antipodal. As
there are paths in � connecting vertices at distance d = 2e + 1, the quotient A� has
odd circuits and so is not bipartite. Thus A� is primitive by Smith’s Theorem 2.1.

If � is bipartite, then by Proposition 2.5 the graph B� is not bipartite. If B� is
antipodal, then {0, 2e} is a congruence of B� and � by Proposition 2.3, which is not
the case since 2e �= d ≥ 5 and k ≥ 3. �

Lemma 2.8. Let � be a connected DRG of diameter d = 2e ≥ 4 and valency k ≥ 3.

1. Assume � is antipodal. Then A� is even if and only if � is bipartite, in which case
A� is bipartite.

2. Assume � is bipartite. Then B� is antipodal if and only if � is antipodal.
3. Assume � is bipartite and antipodal. Then we have {B−A�, B+A�} =

{AB−�, AB+�}.

Proof: Assume � is antipodal. By Proposition 2.4 the fibers or vertices of A� are the
{0, d}-classes with two such vertices at distance i , for 0 ≤ i ≤ e, when the correspond-
ing fibers have relation {i, 2e − i}. So A� is even precisely when I = ∪ j {2 j, 2e − 2 j}
is a congruence of A� and so of �. This is equivalent to � itself being even and so
bipartite by Theorem 2.2.3.

The even graph A� is bipartite or complete multipartite. If A� is complete multi-
partite, then it is antipodal; so by Proposition 2.6 A� is Kk,k and again bipartite. The
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DRGs BεA� have as vertices the {0, d}-classes, two such adjacent when they are in
relation {2, d − 2}.

Assume � is bipartite. Within the DRGs (Bε�, ≈), the distances 0, 1, . . . , e are
given by the �-distances 0, 2, . . . , 2e. By Proposition 2.3, Bε� is antipodal if and
only if {0, 2e} is a congruence of B−�, B+�, and � itself. The DRGs ABε� then have
as vertices the {0, d}-classes with adjacency given by the relation {2, d − 2}.

When � is both antipodal and bipartite, we see that the graphs BεA� and ABε�

have the same vertices and adjacency relation, giving (3). �

We now revisit Smith’s Theorem.

Theorem 2.9. Let � be a connected distance-regular graph of diameter d and valency
k. Set μ = p2

11 and k0 = k(k − 1)/μ. Then one of:

1. � is primitive of diameter d ≥ 2 and valency k ≥ 3;
2. k = 2, d = �n/2, and � is a cycle Cn for some n ≥ 3;
3. d ≤ 1, and � is a complete graph Kk+1;
4. d = 2, and � is a complete multipartite graph Kr,...,r with 1 + k

r parts of size
r ≥ 2;

5. d = 3, and � is the bipartite incidence graph of a nontrivial symmetric design
with block size k ≥ 3 and index μ;

6. d = 3, and � is an antipodal cover of Kk+1 with k ≥ 3;
7. d = 4; � is antipodal and bipartite; A� is Kk,k with k ≥ 3, and B� is complete

multipartite;
8. d = 6; � is antipodal and bipartite; A� is bipartite of diameter 3, and B� is

antipodal of diameter 3; the graphs {B−A�, B+A�} = {AB−�, AB+�} are Kk0+1,
for k0 ≥ k ≥ 3;

9. d ≥ 4; � is antipodal but not bipartite, and A� is primitive of diameter �d/2 ≥ 2
and valency k ≥ 3;

10. d ≥ 4; � is bipartite but not antipodal, and B� is primitive of diameter �d/2 ≥ 2
and valency k0 ≥ k ≥ 3;

11. odd d = 2e + 1 ≥ 5; � is antipodal and bipartite; all antipodal classes have size
2, and A� is primitive of diameter e ≥ 2 and valency k ≥ 3; B� is primitive of
diameter e ≥ 2 and valency k0 ≥ k ≥ 3;

12. even d = 2e ≥ 8; � is antipodal and bipartite; A� is bipartite of diameter e, and
B� is antipodal of diameter e; the graphs {B−A�, B+A�} = {AB−�, AB+�} are
primitive of diameter �e/2 ≥ 2 and valency k0 ≥ k ≥ 3.

Proof: Assume that we do not have (1), (2), or (3). Therefore � is imprimitive of
diameter d ≥ 2 and valency k ≥ 3. If d is 2 or 3, then we have one of (4), (5), (6) by
Theorem 2.2 and Propositions 2.5 and 2.6. We now assume that d ≥ 4.

First suppose that � is antipodal but not bipartite. By Proposition 2.6, A� has
diameter �d/2 ≥ 2, valency k ≥ 3, and is not antipodal. If A� is not primitive, then
it is bipartite and by Lemma 2.7.1 its diameter would be even; but then � would be
bipartite by Lemma 2.8.1, against assumption. This gives case (9).

Next suppose that � is bipartite but not antipodal. By Propostion 2.5, B� has
diameter �d/2 ≥ 2, valency k0 ≥ k ≥ 3, and is not even. If B� is not primitive, then
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it is antipodal and by Lemma 2.7.2 its diameter would be even. Then � itself would
be antipodal by Lemma 2.8.2, a contradiction. This gives case (10).

Therefore we may assume for the balance of the proof that � is both antipodal
and bipartite. We have A� and B� of diameter e = �d/2 and of respective valencies
k(≥3) and k0(≥ k ≥ 3) by Propositions 2.5 and 2.6.

For odd d = 2e + 1 ≥ 5, by Lemma 2.7 both A� and B� are primitive. If the
antipodal classes had size greater than 3, then there would be cycles of odd length 3d
in bipartite �, which does not happen. This gives case (11).

Now we additionally assume d = 2e ≥ 4. By Lemma 2.8.1–2, A� is bipartite and
B� is antipodal. By Lemma 2.8.3, the DRGs {B−A�, B+A�} = {AB−�, AB+�} have
diameter �e/2 and valency k0 ≥ k ≥ 3.

If d = 4, then we have case (7) by Propositions 2.5 and 2.6. If d = 6, then the
DRGs {B−A�, B+A�} = {AB−�, AB+�} have diameter 1 = �3/2; they are com-
plete, giving case (8).

Now assume d = 2e ≥ 8, and choose notation so that BεA� = ABε�. To show
that we are in the final case (12), we must prove that the DRGs BεA� = ABε� are
primitive.

Set � = A� of diameter e ≥ 4 and valency k ≥ 3. By Proposition 2.5 the halved
graphs Bε� (= Bε(A�)) are not even, except possibly when e = 4 and� is an antipodal
cover of a complete bipartite graph. On the other hand, as � has diameter at least 8,
its quotient � = A� is not antipodal by Proposition 2.6. We conclude that BεA� is
not even.

Next set � = Bε� (for a fixed but arbitrary ε) of diameter e ≥ 4 and valency k0 ≥ 3.
By Proposition 2.6 the quotient graph A� (= A(Bε�)) is not antipodal, except possibly
when e = 4 and � is a bipartite, antipodal cover of a complete bipartite graph. On
the other hand, as � has diameter at least 8, its halved graph � = Bε� is not even by
Proposition 2.5. We conclude that ABε� is not antipodal.

We now have that BεA� is not even and ABε� is not antipodal. Therefore BεA� =
ABε� is primitive as in (12), completing the proof of the theorem. �

Corollary 2.10. Let � be a connected distance-regular graph. Then almost always
� occurs under a unique case in Theorem 2.9. The only exceptions are given by
C3 = K3, which comes under (2.9.2) and (2.9.3); C4 = K2,2, which comes under
(2.9.2) and (2.9.4); and Kk+1,k+1 \ 1 (the complete bipartite graph minus a 1-factor),
which among valency k (≥ 3) graphs is the unique antipodal graph under (2.9.5) and
the unique bipartite graph under (2.9.6).

Proof: Primitive graphs occur under (2.9.1), (2.9.2) (for n prime), and (2.9.3); so
C3 = K3 is the only overlap in the primitive case. The graph C4 = K2,2 is the only
valency 2 graph in (2.9.4–12).

By Propositions 2.5 and 2.6, a DRG of diameter 3 and valency k (≥3) is bipartite
and antipodal if and only if it occurs under both (2.9.5) and (2.9.6). Suppose an
incidence graph as in (2.9.5) comes from a design with v points, k points per block,
and v − k > 1. Then for a block b not incident to points p1, p2, the block b has distance
3 from both p1 and p2, which are at distance 2 from each other. Thus this graph is
not antipodal. Therefore a graph under both (2.9.5) and (2.9.6) must be the incidence
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graph of a symmetric design with k + 1 points and k points per block. Such a graph
is a complete bipartite graph Kk+1,k+1 minus a 1-factor (a matching).

The graphs of (2.9.7), (2.9.8), (2.9.11), and (2.9.12) are distingished from each
other by their diameters and from (2.9.9) and (2.9.10) by having imprimitive antipodal
quotients and halved graphs. Clearly no graph comes under both (2.9.9) and (2.9.10).

�

3. A characterization of the 6-cube

Consider the various cases of Theorem 2.9 when we restrict our attention to distance-
transitive graphs �.

Due to the efforts of many people, the complete classification of distance-transitive
graphs in the generic primitive case (2.9.1) is nearly complete; see, for instance, [10]
and [13].

A large segment of the four canonical imprimitive distance-transitive cases (2.9.9-
12) has also been handled; see [1, 2, 4, 8, 9].

For the exceptional cases, the specific graphs of (2.9.2–4) are all distance-transitive.
The classification of distance-transitive antipodal covers of complete graphs, as in
(2.9.6), and of complete bipartite graphs, as in (2.9.7), has been completely settled
by, respectively, Godsil, Liebler, and Praeger in [7] and Ivanov, Liebler, Penttila, and
Praeger in [11].

It remains to discuss the exceptional cases (2.9.5) and (2.9.8).
The bipartite, diameter 3 distance-regular graphs of (2.9.5) are exactly the incidence

graphs of nontrivial symmetric designs. It is routine to extend this to

Proposition 3.1. The distance-transitive graph � is bipartite of diameter 3 if and
only if it is the incidence graph of a self-dual nontrivial symmetric design D for which
Aut(D) is 2-transitive on points.

Given a symmetric design D with v points, block size k, and intersection
index μ, its complementary design D′ is the symmetric design with the same
point set but whose blocks are the complements of the blocks in the origi-
nal design. Therefore v remains fixed but the complementary design D′ has
block size k ′ = v − k and index μ′ = v − 2k + μ. Clearly D admits a 2-transitive
group of automorphisms if and only if D′ does. Since nontrivial symmetric de-
signs are those with 1 < k < v, the complementary design of a nontrivial de-
sign is also nontrivial provided k �= v − 1. When k = v − 1 we have the sym-
metric design of all k-subsets of a (k + 1)-set with μ = k − 1. (See Corollary
2.10.)

In view of Proposition 3.1, the classification of DTGs as in (2.9.5) is given by

Theorem 3.2 (Kantor[12]). Let D be a symmetric design with v points, k points per
block, and intersection index μ, 3 ≤ k < v. Further assume that A ≤ Aut(D) is 2-
transitive on the points of D. Then one of:
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1. D is a Desarguesian projective space with v = (qd − 1)/(q − 1), k =
(qd−1 − 1)/(q − 1), and μ = (qd−2 − 1)/(q − 1), or its complementary design;
PSL(d, q) ≤ A ≤ P�L(d, q) with d ≥ 3 or A = Alt(7) and (d, q) = (4, 2);

2. D is the unique Hadamard design with v = 11, k = 5, and μ = 2, or its comple-
mentary design; P SL(2, 11) ≤ A ≤ PGL(2, 11);

3. D is a unique design with v = 176, k = 50, and μ = 14, or its complementary
design; A = H S, the Higman-Sims group;

4. D is a design with v = 22m, k = 2m−1(2m − 1), and μ = 2m−1(2m−1 − 1), or its
complementary design; there are unique 2-transitive, complementary examples for
each m ≥ 2; A(∞) is V .A0 with V = F2m

2 and A0 equal to Sp(2k, 2e)′ for m = ke
( but (k, e) �= (1, 1)) or G2(2e)′ for m = 3e.

5. D is the unique design with v = k + 1 and μ = k − 1; A is any 2-transitive sub-
group of Sym(k + 1).

Each of these designs is self-dual. In particular, the incidence graph of each of these
designs is a bipartite DTG of diameter 3. Conversely, every bipartite DTG of diameter
3 is one of these incidence graphs.

Here the subgroup G(∞) denotes the last term in the derived series of the group G.
The rest of this section is devoted to the classification of those DTGs that appear

under the remaining exceptional case (2.9.8):

Theorem 3.3. An antipodal and bipartite distance-transitive graph of diameter 6 and
valency k ≥ 3 is isomorphic to the 6-cube.

The 6-cube has as vertices the 64 = 26 subsets of a 6-set with two subsets adjacent when
their symmetric difference has size 1. It is distance-transitive, bipartite, and antipodal
(with r = 2, antipodal fibers consisting of complementary subsets). Brouwer, Cohen,
and Neumaier [5, p. 416] have conjectured that the theorem holds under the weaker
hypothesis that the graph is distance-regular.

Let � be a distance-transitive graph as in the theorem: antipodal and bipartite of
diameter 6 with valency k ≥ 3. By Theorem 2.9 we know various additional things
about �. Set k0 = k(k − 1)/μ ≥ k and v = k0 + 1. The graph � is an antipodal r -
cover, r ≥ 2, of the distance-transitive quotient A� of diameter 3, which is the bipartite
incidence graph of a symmetric design with v points and v blocks, k points per block,
and index μ. The distance-transitive halved graph B� is a diameter 3 antipodal r -cover
of the complete graph Kv . The primitive graph BA� = AB� is Kv .

Lemma 3.4 (Brouwer, Cohen, Neumaier [5], p. 416). We have

(r − 1)μ2(μ + 2) = kμ + k − μ .

In particular,

1. r = kμ+k−μ

μ2(μ+2)
+ 1;

2. μ divides k, and μ2 divides k − μ.

Proposition 3.5. We have one of:
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1. r = (2q + 4)/3, and A� is the incidence graph of a Desarguesian projective plane
of order q;

2. r = 2, and A� is the incidence graph of the unique 2-transitive symmetric design
with 16 points, 6 points per block, and index 2.

Proof: The graph A� is the incidence graph of one of the symmetric designs D or
D′ from Kantor’s Theorem 3.2. The possible parameter sets (v, k, μ) are given in

Case v k μ

1 qd −1
q−1 for d ≥ 3 qd−1−1

q−1
qd−2−1

q−1

1′ qd −1
q−1 for d ≥ 3 qd−1 qd−2(q − 1)

2 11 5 2

2′ 11 6 3

3 176 50 14

3′ 176 126 90

4 22m for m ≥ 2 2m−1(2m − 1) 2m−1(2m−1 − 1)

4′ 22m for m ≥ 2 2m−1(2m + 1) 2m−1(2m−1 + 1)

5 k + 1 for k ≥ 3 k k − 1

By Lemma 3.4, we must have k divisible by μ. As gcd(qa − 1, qa−1 − 1) = q − 1
and gcd(2m + 1, 2m−1 + 1) = 1, that leaves us with

Case v k μ

1 q2 + q + 1 q + 1 1

1′ 2d − 1 for d ≥ 3 2d−1 2d−2

2′ 11 6 3

4 16 6 2

By Lemma 3.4, μ2 divides k − μ. Therefore cases 1′ and 2′ do not occur.
In Case 1

r = kμ + k − μ

μ2(μ + 2)
+ 1 = (q + 1)1 + (q + 1) − 1

12(1 + 2)
+ 1 = 2q + 1

3
+ 1 .

In Case 4, Kantor’s Theorem 3.2 says that the 2-transitive symmetric design with
(v, k, μ) = (16, 6, 2) is unique. We have

r = kμ + k − μ

μ2(μ + 2)
+ 1 = 6 · 2 + 6 − 2

22(2 + 2)
+ 1 = 2 .

�

Lemma 3.6. If � has parameters (v, k, μ, r ) = (16, 6, 2, 2), then it is the 6-cube.

Proof: The 6-cube has the desired properties. It is relatively well-known that the 6-
cube is uniquely determined by its parameters [5, p. 416]. Indeed, as such a graph �
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is bipartite, λ = 0 and

d = 6 = 2 · 6

0 + 2
= 2k

λ + 2
;

so [5, Corollary 5.24] applies. As λ = 0 < 1 = μ − 1, � is not a Terwilliger graph.
Therefore � is one of four specific graphs of diameter 6, and of these only the 6-cube
has 64 vertices. �

Lemma 3.7. Suppose � has parameters

(v, k, μ, r ) = (q2 + q + 1, q + 1, 1, (2q + 4)/3) ,

and let H ≤ Aut(�) be distance-transitive on �. Then H (∞) has a normal elementary
abelian 2-subgroup J (possibly trivial) with H (∞)/J isomorphic to P SL(3, q).

Proof: Let K be the kernel of the action on the set of antipodal fibers of �. Then
G = H/K is distance-transitive on the bipartite incidence graph A� of a projective
plane with parameters (v, k, μ) = (q2 + q + 1, q + 1, 1). By Kantor’s Theorem 3.2,
we have G(∞) = PSL(3, q).

The kernel K is faithful and semiregular on each fiber, since by connectivity only the
identity can fix a vertex and all fibers. If K �= 1, then it is semiregular and normal in the
2-transitive group induced on a given fiber α by its stabilizer Hα . Thus by Burnside’s
Theorem [6, Theorem 4.3], K is an elementary abelian l-subgroup of order r acting
regularly on α. Since r = (2q + 4)/3 is even, we have l = 2.

With J = K ∩ H (∞) we have H (∞)/J = G(∞) as described. �

Lemma 3.8. � does not have the parameter set

(v, k, μ, r ) = (q2 + q + 1, q + 1, 1, (2q + 4)/3) .

Proof: Again let H be a distance-transitive group of automorphisms of�, and consider
the group it induces on the halved graph B�, an antipodal r -cover of the complete
graph Kv . The stabilizer L of the two bipartite halves of � has index 2 in H and is
faithful on each half. (As k > μ, the vertex a is the unique vertex adjacent to all the
vertices adjacent to a. Thus the vertexwise stabilizer of one half also fixes all vertices
of the other half.) Therefore L is a distance-transitive group of automorphism of the
graph B�, an antipodal r -cover of the complete graph Kv , and L has index 2 in H .
By Lemma 3.7, L has a unique nonsolvable composition factor, namely PSL(3, q).

Godsil, Liebler, and Praeger [7] have classified all distance-transitive antipodal
covers of complete graphs and their groups. The group PSL(3, q) can appear as a
composition factor only for q = 2 (via PSL(2, 7) � PSL(3, 2)). But this gives r =
(2 · 2 + 4)/3 = 8

3
, a contradiction. Therefore no examples occur. �

Proposition 3.5 and Lemmas 3.6 and 3.8 give a proof of Theorem 3.3.
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Remark 1. Brouwer, Cohen, and Neumaier [5, Corollary 5.8.3] use a version of
Lemma 3.4 above to show that a distance-regular bipartite antipodal 2-cover of diam-
eter 6 and valency k ≥ 3 must be isomorphic to the 6-cube, thereby verifying their
conjecture for the case of 2-covers.

Remark 2. In the proof of Lemma 3.8 the appeal to Godsil, Liebler, and Praeger’s [7]
is heavy-handed, as that is a long and difficult paper proving much more than needed
here. Elementary arguments could be extracted from [7] to handle Lemma 3.8 directly.
But that would still leave us dependent upon the classification of finite simple groups
via Kantor’s Theorem 3.2.
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