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In memory of Donald G. Higman

1. Introduction

A distance-transitive graph G is one upon which the automorphism group acts
transitively on ordered pairs of vertices at every fixed distance. Only connected
graphs need to be considered. Those of diameter 2 are the rank-3 graphs, whose
careful study was initiated by Donald G. Higman in his breakthrough paper [16].

A huge amount of effort has gone into the classification of all finite distance-
transitive graphs. The classification naturally breaks into two parts, primitive and
imprimitive. The main part of the problem is the classification of all finite distance-
transitive graphs with primitive automorphism group, and it appears that this clas-
sification is nearly finished. For the imprimitive case, Smith [24] showed that the
possibilities for nontrivial blocks of imprimitivity are severely limited and that a
given imprimitive distance-transitive graph can in a sense be reduced to a primi-
tive distance-transitive graph. Van Bon and Brouwer [5] and Hemmeter [14; 15]
carried through the reverse of Smith’s theorem, classifying for most of the known
primitive distance-transitive graphs any associated imprimitive distance-transitive
graphs they might have.

In [3] the present authors gave a precise version of Smith’s theorem which im-
plies that any unknown imprimitive distance-transitive graph must arise from a
primitive distance-transitive graph of diameter at least 2 and valency at least 3. In
the present paper, we return to the work of van Bon and Brouwer [5] and Hem-
meter [14; 15] and show that, starting from each of the known distance-transitive
graphs of diameter and valency at least 3, there are no surprises—the only associ-
ated imprimitive graphs are ones already known and in the literature (see [7]).

The terminology and results will be made precise in the next section. In particu-
lar we give a precise version of Smith’s theorem (following [3]) and describe how
the present results fit into the general problem of classifying all distance-transitive
graphs. In Section 3 we give various general results about the parameters of a
distance-regular graph, particularly those that are imprimitive in one of the two
ways specified by Smith’s theorem. Section 4 discusses various of the geometries,
designs, and codes often used in constructing and describing the graphs under
consideration. Of particular import are the gamma spaces introduced by Higman.
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The final Section 5 is the heart of the paper. It describes all the primitive distance-
transitive graphs of diameter at least 3 (that are known to us) and in each case
describes all imprimitive graphs that have those graphs at their core.

This paper is based upon the thesis [1] of the first author, which was written
under the supervision of the second author. Our general reference is the book of
Brouwer, Cohen, and Neumaier [7]. All graphs and groups that we consider are
finite.

2. Results

2.1. The Basics of Distance-Regular Graphs

Let G be a connected graph of diameter d. Denote by Gi(x) the set of vertices of
G at distance i from the vertex x in G.

For y ∈Gi(x) set

a
x,y

i = |Gi(x) ∩G1(y)|;
b
x,y

i = |Gi+1(x) ∩G1(y)|;
c
x,y

i = |Gi−1(x) ∩G1(y)|.
The graphG is a distance-regular graph if, for all 0 ≤ i ≤ d, each of the parame-
ters ax,yi , bx,yi , and c x,yi depends not on the choice of x and y but only on i. In that
case we will write

a
x,y

i = ai = ai(G);
b
x,y

i = bi = bi(G);
c
x,y

i = ci = ci(G).

Often one writes λ = a1 and µ = c2. Trivially a0 = c0 = bd = 0 and c1 = 1. We
let ki = |Gi(x)| (a constant) so that k0 = 1. Set k = k1(G) = b0, the valency of
G. Then k = ai + bi + ci for 0 ≤ i ≤ d.

The sequence

i(G) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd}
is called the intersection array of G and contains all the necessary parameter in-
formation (see Proposition 3.1).

A connected diameter-d graph G is distance-transitive if it admits a group of
automorphisms that is transitive on all ordered pairs (x, y) with y ∈Gi(x) for all
0 ≤ i ≤ d. Clearly a distance-transitive graph is distance-regular, but the converse
is in general false.

We could also consider disconnected distance-regular and distance-transitive
graphs. Any connected component of such a graph is itself distance-regular or
distance-transitive (respectively). Indeed for a distance-transitive graph all the
connected components are isomorphic, whereas for a distance-regular graph all
such components must at least have identical intersection arrays.

A distance-transitive graph is, of course, vertex-transitive (setting i = 0), so we
may ask whether the automorphism group of the graph is vertex primitive or im-
primitive. As with distance-regularity, there is a purely combinatorical counterpart.
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Let us write x ∼i y if y ∈Gi(x). (So, e.g., x ∼2 y if and only if x and y are
at distance 2 in G.) The distance-regular graph G is then imprimitive if there is
a subset I of indices with {0} ⊂ I ⊂ {0,1, . . . , d} such that the union of the rela-
tions ∼i for i ∈ I is an equivalence relation on the vertex set ofG. (The cases I =
{0} and I = {0,1, . . . , d} give trivial equivalence relations.)

2.2. Smith’s Theorem

A famous theorem of Derek Smith [4; 24] shows that a connected, imprimitive
distance-regular graph of valency at least 3 is antipodal, bipartite, or both.

The graph G of diameter d is antipodal if the property of being at distance 0
or d is an equivalence relation on the vertices of G. We write AG for the quotient
graph induced on the antipodal classes of an antipodal graph G. In the bipartite
case, the halves are the connected components equipped with the adjacency rela-
tion ∼2 in G. We write B−G and B+G for the two halves.

We have two elementary but fundamental observations (see [7, Prop. 4.2.2] and
[4; 24]).

Proposition 2.1. LetG be a connected, antipodal distance-regular graph of va-
lency k and diameter d > 1. Then AG is a connected distance-regular graph of
diameter 
d/2�. For 0 ≤ i ≤ 
d/2�, two vertices (classes) α and β are at dis-
tance i in AG if and only if each pair a ∈ α and b ∈ β is at distance i or d − i in
G. If d ≥ 3 then AG also has valency k. If G is a distance-transitive graph, then
AG is also a distance-transitive graph.

Proposition 2.2. LetG be a connected, bipartite distance-regular graph of va-
lency k and diameter d > 1. Then (BεG, ∼2) is a connected distance-regular
graph of valency k(k − 1)/c2 and diameter 
d/2�. For 0 ≤ i ≤ 
d/2�, two ver-
tices are at distance i in BεG if and only if they are at distance 2i in G. If G is a
distance-transitive graph, then BεG is also a distance-transitive graph.

A precise version of Smith’s theorem [24] appears as [3, Thm. 2.9] and is repro-
duced here as Theorem 2.3.

Theorem 2.3. Let G be a connected distance-regular graph of diameter d and
valency k. Set µ = c2 and k ′ = k(k−1)/µ. Then one of the following statements
holds:

(1) G is primitive of diameter d ≥ 2 and valency k ≥ 3;
(2) k = 2, d = 
n/2�, and G is a cycle Cn for some n ≥ 3;
(3) d ≤ 1, and G is a complete graph Kk+1;
(4) d = 2, and G is a complete multipartite graph Kr,...,r with 1 + k/r parts of

size r ≥ 2;
(5) d = 3, and G is the bipartite incidence graph of a nontrivial symmetric de-

sign with block size k ≥ 3 and index µ;
(6) d = 3, and G is an antipodal cover of Kk+1 with k ≥ 3;
(7) d = 4,G is antipodal and bipartite, AG is Kk,k with k ≥ 3, and BεG is com-

plete multipartite;
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(8) d = 6, G is antipodal and bipartite, AG is bipartite of diameter 3, BεG is
antipodal of diameter 3, and the graphs {B−AG, B+AG} = {AB−G,AB+G}
are Kk ′+1 for k ′ ≥ k ≥ 3;

(9) d ≥ 4, G is antipodal but not bipartite, and AG is primitive of diameter

d/2� ≥ 2 and valency k ≥ 3;

(10) d ≥ 4, G is bipartite but not antipodal, and BεG is primitive of diameter

d/2� ≥ 2 and valency k ′ ≥ k ≥ 3;

(11) odd d = 2e+1 ≥ 5,G is antipodal and bipartite, all antipodal classes have
size 2, AG is primitive of diameter e ≥ 2 and valency k ≥ 3, and BεG is
primitive of diameter e ≥ 2 and valency k ′ ≥ k ≥ 3;

(12) even d = 2e ≥ 8, G is antipodal and bipartite, AG is bipartite of diam-
eter e, BεG is antipodal of diameter e, and the graphs {B−AG, B+AG} =
{AB−G,AB+G} are primitive of diameter 
e/2� ≥ 2 and valency k ′ ≥ k ≥ 3.

2.3. Some Terminology and Notation

Recall that the connected distance-regular graph G of diameter d is antipodal if
the property of being at distance 0 or d is an equivalence relation on the vertices
of G. We write AG for the quotient graph induced on the antipodal classes of an
antipodal graphG. We then say thatG is an antipodal cover or an A-cover of AG
and even an antipodal r-cover or r-fold A-cover, where r is the common cardinal-
ity of the antipodal classes. The antipodal quotient AG is usually called a folded
graph. One often finds AG denoted Ḡ (see e.g. [7, p. 140]).

If the connected distance-regular graph G is bipartite, then the halves are
uniquely determined as the only connected components under the adjacency rela-
tion ∼2 given by having distance 2 in G. The two halves are denoted B−G and
B+G, but we often write BG for either one of the halves. This is somewhat am-
biguous since the two graphs BεG = (BεG, ∼2) need not be isomorphic, but the
abuse will not cause any problems for us. The graphs (BεG, ∼2) have the same
intersection array (in particular, the same number of vertices and valency), and in
a distance-transitive graph they are indeed isomorphic.

The graph (BεG, ∼2) is a halved graph of G, and G is a B-double of BεG. In
some placesG is called a doubled graph (or doubling) of BεG (although this may
cause confusion in some situations; see Section 3.4). One often finds BεG denoted
1
2G

ε or even 1
2G [7, p. 140] or G′ [14; 15].

An A-cover of a B-double of the graph H will be called an AB-cover of H. In
view of Theorem 2.3, such a graphG will also be a B-double of an A-cover of the
same graph—that is, a BA-double of H. In this case, one also finds H = ABG =
BAG denoted as 1

2 Ḡ or Ḡ′.
Note that, according to our definitions, an A-cover, B-double, AB-cover, or

BA-double is always a connected distance-regular graph.

2.4. Results

Consider the various cases of Theorem 2.3 (Smith’s theorem) when we restrict our
attention to distance-transitive graphs.
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Under the seven exceptional cases, all distance-transitive graphs are known. The
specific graphs described in parts (2)–(4) of Theorem 2.3 are all distance-transitive.
The classification of distance-transitive antipodal covers of complete graphs, as
in Theorem 2.3(6), and of complete bipartite graphs, as in Theorem 2.3(7), has
been completely settled in [13] and [19], respectively. The bipartite, diameter-3
distance-regular graphs of Theorem 2.3(5) are exactly the incidence graphs of non-
trivial symmetric designs. As such, those that are distance-transitive were clas-
sified by Kantor [21]. (See also [15, Lemma 2; 7, Sec. 7.6.A; 3, Thm. 3.2].) The
present authors showed in [3, Thm. 3.3] that the 6-cube H(6, 2) is the unique
distance-transitive graph coming under Theorem 2.3(8). (This confirmed a con-
jecture of Brouwer, Cohen, and Neumaier [7, p. 416] for distance-regular graphs
in the case of distance-transitive graphs.)

This leaves us with the five generic cases, one primitive and four imprimitive.
A great deal of work has been done on the primitive case, and it seems likely that
the known list of primitive distance-transitive graphs is complete (see e.g. [18]
and [22]).

By Theorem 2.3, for distance-regular graphs H coming under one of the im-
primitive cases (9)–(12), at least one of AH, BH, or ABH = BAH is a primitive
distance-regular graphG of valency at least 3 and diameter at least 2. We call such
a graphG the primitive core ofH. The core is uniquely determined except in The-
orem 2.3(11) where there are two cores, AH and BH. (But BH is the distance-2
graph of AH ; for detailed discussion of the case (11), see Section 3.4.)

This paper addresses the four generic imprimitive cases under the assumption
that the primitive classification is complete. Specifically, we find all distance-
transitive imprimitive graphsH whose primitive coreG is one of the known prim-
itive distance-transitive graphs of diameter at least 3 and valency at least 3. Indeed,
we do something slightly stronger. We find all distance-regular H whose primi-
tive core G is a known distance-transitive graph with diameter at least 3. It must
be emphasized that a great deal of the needed work on these imprimitive cases
has been done already by van Bon and Brouwer [5] for antipodal distance-regular
graphs and by Hemmeter [14; 15] for bipartite distance-regular graphs.

Theorem 2.4. LetG be one of the distance-transitive graphs of diameter d ≥ 3
and valency at least 3 given in the first column of Table I, subject to the restric-
tions (if any) of the third column of the table. Then all imprimitive graphsH with
G as core are indicated (as described in what follows) in the three columns A, B,
and AB of the table.

If, in the row of the primitive graph G, the column A, B, or AB has the entry “×”
then G has no A-cover, B-double, or AB-cover (hence BA-double), respectively.
If the entry is “

√
” then there is an appropriate H and it is unique up to isomor-

phism. The two “
√√

” entries indicate that for these graphs G there are, up to
isomorphism, two distinct graphs H with G = AH.

The proof of the theorem is accomplished on a case-by-case basis in Section 5,
the appropriate section for each case being listed in the final column of the table.
By our version (Theorem 2.3) of Smith’s theorem we know that, leaving aside the
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known cases (2)–(8), we only need look for all H with primitive G equal to AH,
BH, or ABH (= BAH ). Additionally, in order for there to exist an H with G =
ABH, there must exist H1 with G = AH1 and H2 with G = BH2 (namely, H1 =
BH andH2 = AH ). Therefore if an appropriateH1 orH2 does not exist, then we
need not look further for H with G = ABH. This means that we concentrate on
finding A-covers and B-doubles, and only in the rare occasions when both exist
do we continue and look for AB-covers.

In the end, we encounter this possibility only for the quotient halved n-cube
ABH(n, 2) = BAH(n, 2) = 1

2 H̄(n, 2) with even n ≥ 12. This is treated in Sec-
tion 5.1.4 where we find only the expected AB-cover (i.e., BA-double)—namely,
the n-cube H(n, 2).

In almost all cases the imprimitive distance-regular graphs we find are in fact
distance-transitive. The only exceptional case is that of B-doubles of the gener-
alized 6-gons (see Section 5.6). For each prime power q the incidence graph is a
B-double of the distance-transitive G2(q) generalized 6-gon of order (q, q), but
these B-doubles are distance-transitive themselves if and only if q is a power of
3. Thus our smallest distance-regular imprimitive example that is not distance-
transitive is the bipartite incidence graph of the 6-gon of type (2, 2) and has
126 vertices.

The table only records results starting from primitive distance-transitive graphs
of diameter ≥ 3. In the body of the paper cases with diameter 2 are occasionally
treated (particularly if that case was handled without exception in the cited litera-
ture), but we have made no effort to consider diameter 2 systematically.

3. The Parameters and Structure of Distance-Regular Graphs

3.1. Basic Parameter Restrictions

The parameters of a distance-regular graph are subject to many simple but still
very useful constraints.

Proposition 3.1. Let G be a distance-regular graph with valency k and diame-
ter d. Then the following hold :

(a) ki−1bi−1 = kici (1 ≤ i ≤ d);
(b) if ki is odd then ai is even;
(c) 1 ≤ c2 ≤ · · · ≤ cd;
(d) k ≥ b1 ≥ · · · ≥ bd−1;
(e) if i + j ≤ d then cj ≤ bi.

Proof. Part (a) counts the edges betweenGi−1(x) andGi(x) in two ways. Part (b)
is in [7, 4.3.1], and parts (c)–(e) are in [7, 4.1.6].

There are many more restrictions on possible intersection arrays of distance-regular
graphs, some quite difficult and many given in [7]. In particular, we can make from



Imprimitive Distance-Transitive Graphs 39

the parameters ai(G), bi(G), and ci(G) a tridiagonal d × d matrix whose eigen-
values are those of the adjacency matrix ofG. The multiplicities can be calculated
and must, of course, be integral; see [7, Thm. 4.1.4]. This is a powerful condition.

We do not use further methods (e.g., eigenvalue calculations) here except indi-
rectly through the references and in particular by quoting Chapter 14 of [7]. In
that chapter, Brouwer, Cohen, and Neumaier gave extensive lists of possible in-
tersection arrays for distance-regular graphs, lists found using many results and
restrictions, including eigenvalue techniques. In particular the lists contain all
possible intersection arrays for distance-regular graphs of diameter at least 4 on at
most 4096 vertices. In a number of cases (twelve, to be exact) we have eliminated
specific A-covers on at most 4096 vertices by observing that the corresponding
intersection array is not one of those listed in [7, Chap. 14] as being possible.

When the intersection array of a possible distance-regular graph of diameter at
least 4 on at most 4096 vertices does not appear in the lists of [7, Chap. 14], the
array will be termed not feasible. In this case, the graph does not exist. In many
cases where we could appeal to [7, Chap. 14] we have instead given direct and
simple arguments. It is likely that in some of the remaining cases we could again
make ad hoc arguments along the lines of those in Propositions 5.42 and 5.47.

If we were to restrict our attention to distance-transitive graphs, then many of
the specific cases become easier. For instance, the only difficult case for imprim-
itive distance-regular graphs corresponding to the Perkel graph is that of 3-fold
A-covers; see Section 5.8.5. However, a distance-transitive 3-fold A-cover of the
Perkel graph must come from the permutation representation of 3 × PSL(2,19)
on the cosets of a subgroup Alt(5), and a contradiction follows easily.

3.2. The Parameters of Antipodal Distance-Regular Graphs

Theorem 3.2. Let G be a connected distance-regular graph of diameter d ≥ 2
with intersection array

i(G) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd}.
Suppose thatH is a distance-regular r-fold A-cover ofG with r ≥ 2. Then either
H has diameter D = 2d and

i(H ) =
{
b0, b1, . . . , bd−1,

r − 1

r
cd , cd−1, . . . , c1; c1, . . . , cd−1,

1

r
cd , bd−1, . . . , b0

}
,

or H has diameter D = 2d + 1 and

i(H ) = {b0, b1, . . . , bd−1, t(r − 1), cd , cd−1, . . . , c1; c1, . . . , cd−1, cd , t, bd−1, . . . , b0}
for the integer t = cd+1(H ).

Proof. The result is due to Gardiner [12, p. 264]; see also [7, p. 142].

This theorem gives some important numerical restrictions, which we will use often
to prove nonexistence of A-covers.
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Corollary 3.3. Let G and H be as in Theorem 3.2.

(a) For D = 2d even, r divides cd and r ≤ cd/max(cd−1, cd − bd−1).

(b) For D = 2d + 1 odd, t(r − 1) ≤ min(bd−1, ad) and cd ≤ t. In particular
cd ≤ min(bd−1, b0 − cd).

Proof. See [7, p. 142].

3.3. The Parameters and Structure of
Bipartite Distance-Regular Graphs

Proposition 3.4. Let H be a distance-regular graph with intersection array

i(H ) = {B0,B1, . . . ,BD−1;C1,C2, . . . ,CD}
and diameterD. ThenH is bipartite if and only if Bi +Ci = B0 for i = 1, . . . ,D.

In this case, each halved graph BH is distance-regular of diameter d = 
D/2�
with intersection array

i(BH ) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd},
where

bi = B2iB2i+1

C2
for 0 ≤ i ≤ d − 1,

cj = C2jC2j−1

C2
for 1 ≤ j ≤ d.

Proof. The second part of this proposition is proven as [14, Lemma] and [15,
Lemma 1]. The first part is given in [7, Prop. 4.2.2(i)] and attributed to Biggs and
Gardiner [4].

The conventions adopted in Proposition 3.4 are used at times throughout the paper.
Specifically, ifH is a bipartite distance-regular graph with halved graphG = BH,
then the parameters ai(H ), bi(H ), and ci(H ) may be written as Ai, Bi, and Ci,
while the parameters ai(G), bi(G), and ci(G) may be written as ai, bi, and ci .

Hemmeter [15] showed that the problem of finding B-doubles of a given distance-
regular graph is related to the study of maximal cliques in the graph.

Lemma 3.5. Let H be a connected bipartite distance-regular graph of diameter
at least 4, and let BH be a halved graph ofH havingG as its set of vertices. Then
for every y ∈H \G,H1(y) is a maximal clique in BH. Moreover, if y1 �= y2 then
H1(y1) �= H1(y2).

Proof. This is proven as [15, Lemma 2].

These results imply parameter restrictions that will be very helpful in proving
nonexistence of B-doubles.

Lemma 3.6. Let H be a connected bipartite distance-regular graph of diameter
at least 4, and let G = BH. Set b0 = b0(G) and b1 = b1(G).
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(a) There exists a maximal clique of size m in G such that b0 divides m(m− 1).
(b) In particular b0 ≤ (b0 − b1)((b0 − b1)+ 1).

Proof. By Lemma 3.5 there is a maximal cliqueM inG withH1(y) consisting of
the vertices ofM. Setm = |M| so that B0 = m (where Bi = bi(H ) and so forth).
Proposition 3.4 gives b0 = B0B1/C2. Here B0 = A1 + B1 + C1 = 0 + B1 + 1
since H is bipartite. Therefore b0 divides B0B1 = m(m− 1) as claimed in (a).

The number of triangles on a given edge of G is a1(G). Therefore

m ≤ a1(G)+ 2 = (b0 − b1 − c1(G))+ 2 = (b0 − b1)+ 1.

We conclude that m(m− 1) ≤ ((b0 − b1)+ 1)(b0 − b1), giving (b).

Lemma 3.7. Let H be a connected bipartite distance-regular graph of diameter
at least 4, and let G = BH. Set b0 = b0(G), B0 = b0(H ), and so forth.

(a) 1 = C1 ≤ C2 ≤ C3 ≤ C4 ≤ c2.

(b) The valency B0 ofH is a root of the polynomial x 2 −x− cb0 for some integer
c with 1 ≤ c ≤ c2.

Proof. By Proposition 3.4 with j = 2, C4 = c2C2/C3. From Proposition 3.1(c)
we have 1 = C1 ≤ C2 ≤ C3 ≤ C4. In particular C4 ≤ c2. This gives (a).

From Proposition 3.4 with i = 0 we find b0C2 = B0B1. Since H is bipartite,
A1 = 0 and B1 = B0 − A1 − C1 = B0 − 1. Therefore

0 = B0(B0 − 1)− b0C2 = B2
0 − B0 − b0C2.

That is, the valencyB0 of the B-doubleH is a root of the polynomial x 2 −x−b0c

where c = C2. Since 1 ≤ C2 ≤ C4 ≤ c2 by (a), we also have (b).

3.4. Bipartite Doubles

The next-to-last conclusion (11) of Theorem 2.3 is that of a distance-regular graph
H that is antipodal (with class size 2) and bipartite of odd diameter at least 5. It
turns out that, given either one of the graphsG = AH and J = BH, such a graph
H can be reconstructed explicitly and uniquely. Furthermore, the distance-regular
graphs G and J for which this is possible are completely characterized by condi-
tions on their parameters.

For an arbitrary graph L, its bipartite double 2 × L is the graph whose vertex
set isL×{+, −} with (v, a) adjacent to (w, b) precisely when v is adjacent tow in
L and a = −b. If in L the condition L1(v) = L1(w) always implies v = w (valid
in all distance-regular L except for complete bipartite graphs), then Aut(2 ×L) =
2 × Aut(L). If L is distance-transitive, then so is the bipartite double 2 × L.

Theorem 3.8. (a) Let the connected distance-regular graphH be antipodal and
bipartite of odd diameter 2d + 1 ≥ 5. Then antipodal classes have size 2 and H
is isomorphic to the bipartite double of G = AH. In this case G has diameter d
with a1(G) = · · · = ad−1(G) = 0 and ad(G) > 0. Also, J = BH is isomorphic
to the distance-2 graph G2 and has diameter d with kd(J ) = ad(J )+ 1> 1.
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(b) LetGbe a connected distance-regular graph of diameterd ≥ 2 witha1(G) =
· · · = ad−1(G) = 0 and ad(G) > 0. Then the bipartite double H of G is a
distance-regular graph as in (a).

(c) Let J be a connected distance-regular graph of diameter d ≥ 2 with kd(J ) =
ad(J )+1> 1. Then the distance-d graphG = Jd is a connected distance-regular
graph of diameter d ≥ 2 with a1(G) = · · · = ad−1(G) = 0 and ad(G) > 0 as in
(b), and J = G2.

Proof. This result can be found in [7, Sec. 4.2.D]. An antipodal and bipartite graph
of odd diameter D as in (a) must have antipodal classes of size 2 as otherwise it
would have cycles of length 3D; see Theorem 2.3(11).

Readers should be wary of the term “bipartite double”, which we get from [7,
Sec. 1.11]. A distance-regular bipartite double 2 × G is indeed bipartite and is a
2-fold A-cover ofG, but 2×G is not a B-double ofG. Instead 2×G is a B-double
of the distance-2 graph G2; that is, B(2 ×G) = G2.

4. Gamma Spaces and Related
Combinatorial Constructions

Many of the geometries and graphs of interest to us here are naturally described in
terms of Donald Higman’s gamma spaces. See [9] for further discussion of most
of the material in this section.

4.1. Partial Linear, Gamma, and Projective Spaces

A partial linear space (P, L, I) is a set of points P and a set of lines L equipped
with an incidence relation I subject to the following axiom:

There do not exist distinct p, q ∈ P and distinct m, n∈ L with p Im I q I n Ip.

The axiom is self-dual in the sense that (P, L, I) is a partial linear space if and
only if (L, P, I) is. We usually have the additional (self-dual) nondegeneracy con-
dition saying that every point is incident to at least two distinct lines and every line
is incident to at least two distinct points. In a nondegenerate partial linear space
we may identify a line with the set of points incident to it.

Essentially equivalent to the partial linear space is its incidence graph. This is
a bipartite graph whose vertex set has as its two parts the sets P and L, the two
vertices p ∈ P and l ∈ L being adjacent precisely when the point p is incident
to the line l. The axiom has a simple interpretation in this setting: The incidence
graph has no 4-cycles. The partial linear space is nondegenerate precisely when
all vertices of the incidence graph have valency at least 2. The partial linear space
(P, L, I) is connected when its incidence graph is connected.

There are two other important graphs derived from a partial linear space (P, L, I).
One is the collinearity graph (or point graph) whose vertex set is the point set P
with two vertices adjacent when there is a line incident to both. The line graph
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has as vertex set the line set L with two vertices adjacent when there is a point
incident to both. If H is the incidence graph of the partial linear space, then the
collinearity graph is the graph induced by its distance-2 graph H2 on P, while the
line graph is that induced by H2 on L.

A subspace (P0, L0, I) of the partial linear space (P, L, I) has P0 ⊆ P and
L0 ⊆ L with the property that if a and b are both points (or lines) of the subspace
and a I z I b, then z also belongs to the subspace. If we have identified each line
with its set of incident points, then a subspace corresponds to a set of points that is
line-closed. A subspace is convex if it contains all shortest paths between points.

The correspondence with bipartite graphs makes it clear that the class of par-
tial linear spaces is quite broad. Higman noted that a single additional axiom has
remarkable power and is valid in most of the classical and building geometries of
interest. According to Higman, a partial linear space (P, L, I) is a gamma space
provided:

For any point p and line l not incident to p, the point p is collinear with
zero, one, or all points of l.

This condition is not self-dual. The disjoint union of two gamma spaces is still a
gamma space, so we usually focus our attention on connected gamma spaces.

A particular type of connected gamma space is a linear space—that is, a par-
tial linear space in which every pair of points is collinear. This condition is not
self-dual, either. It corresponds to every pair of distinct points having distance 2
in the incidence graph. The rank of a linear space is one less than the length of
the longest chain of nonempty subspaces it contains, so a single point has rank 0
while a line has rank 1.

A projective space is a linear space (P, L, I) that satisfies the following axiom.

Pasch’s Axiom. If the lines m1 and m2 are incident to a common point
p, and if the two lines n1 and n2 are not incident to p but are both inci-
dent to points of each of m1 and m2, then there is a point q incident to
both n1 and n2.

The Veblen–Young Theorem [9, 2.1] says that a projective space with all lines on
at least three points and of rank at least 3 can be realized as the linear space of
1-spaces (projective points) and 2-spaces (projective lines) of a vector space of
dimension one more than the rank over a division ring.

4.2. Polar, Dual Polar, and Parapolar Spaces

A polar space is a partial linear space (P, L, I) satisfying:

Buekenhout–Shult Axiom. If p ∈ P and l ∈ L, then p is collinear either
with all points of l or with exactly one point of l.

Linear spaces arise when the “exactly one point” possibility fails to occur. A polar
space is a special kind of gamma space, since the defining property for gamma
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spaces is the Buekenhout–Shult axiom but with the possibility of zero collinear
points also allowed.

The Buekenhout–Shult Theorem [9, Sec. 3] gives a counterpart for polar spaces
of the Veblen–Young Theorem for projective spaces. We do not give the details,
but the heart of the theorem is that a typical polar space comes from the totally
isotropic or totally singular 1-spaces (points) and totally isotropic or totally singu-
lar 2-spaces (lines) of a sesquilinear or quadratic form defined on a vector space.

Let V be the vector space F
n, and let W = F

m. Let σ be an automorphism of
order at most 2 of the field F. Then the map f : V ×W → F is a σ -sesquilinear
form provided f is bi-additive and

f(av, bw) = af(v,w)bσ

for all v ∈V, w ∈W, and a, b ∈ F. Of particular interest is when V = W. In that
case, we will call a subspace U of V totally isotropic if f vanishes on U × U.

Again let V be the vector space F
n. Then the map f : V → F is a quadratic

form provided g(x, y) = f(x+ y)− f(x)− f(y) is bilinear (1-sesquilinear) and
f(av) = a2f(v) for all v ∈V and a ∈ F. In that case, we will call a subspace U
of V totally singular if f vanishes on U.

In the polar spaces coming from forms, the maximal linear subspaces are ex-
actly the maximal totally isotropic or totally singular subspaces. In particular they
are projective spaces of fixed rank. The form is nondegenerate if the intersection
of all the maximal linear subspaces is trivial. The associated dual polar space
is then the partial linear space whose point set consists of these maximal linear
subspaces and whose line set is the set of corank-1 totally isotropic or singular
subspaces with incidence given by containment.

A parapolar space is a more general kind of gamma space whose study was
initiated by Bruce Cooperstein [10], a student of Donald Higman’s. A parapolar
space is a connected gamma space equipped with a collection of nondegenerate
polar subspaces called symplecta with every symplecton convex (in the collinear-
ity graph) and such that every line is in a symplecton as is every noncollinear pair
of points that are commonly collinear with more than one further point. It turns
out that most buildings can be associated with a parapolar space in a manner ex-
tending the association of the projective space of rank k over F with the building
of type Ak over F.

4.3. Near and Generalized Polygons

A near polygon is a connected partial linear space (P, L, I) that satisfies the
following:

For each point p ∈ P and line l ∈ L, there is a unique point incident to
l that is closest to p in the collinearity graph.

In particular, a near polygon is a gamma space in which the “all points” possi-
bility fails to occur. The near polygon is a near 2d-gon if the diameter of its
collinearity graph is d. We will call a near polygon regular if its collinearity graph
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is distance-regular. The dual polar spaces mentioned before give examples of reg-
ular near polygons.

We have the following general result, which will be of help later.

Lemma 4.1. For d ≥ 2, the collinearity graph of a regular near 2d-gon has no
A-covers of diameter 2d + 1.

Proof. This is proven as part of [5, Cor. 2.3] and [7, Cor. 4.2.9].

A generalized polygon (resp. generalized 2d-gon) is a regular near polygon (resp.
near 2d-gon) in which the path connecting the point p and the nearest point on the
line l is always unique. Generalized polygons were introduced by Tits, and they
arise naturally as gamma spaces associated with buildings of rank 2. A general-
ized polygon is said to have order (s, t) provided each of its lines has 1+ s points
and each point is on 1 + t lines.

The incidence graph of a generalized 2d-gon of order (t, t) is itself a general-
ized 4d-gon of order (1, t), the edges of the graph being the lines of the generalized
polygon. The dual of a generalized polygon of order (s, t) is a generalized poly-
gon of order (t, s).

4.4. Other Incidence Systems

A partial linear space is a special sort of incidence system. An incidence system
(P, B, I) is a set of points P and a set of blocks B equipped with an incidence re-
lation I. The corresponding incidence graph H is the bipartite graph with vertex
set P ∪B, two such vertices being adjacent precisely when they are incident in the
incidence system. We no longer proscribe 4-cycles. Indeed in this section we are
primarily interested in incidence systems for which the point graph induced byH2

on P is complete.
A symmetric design of index µ is an incidence system (P, B, I) with |P| =

|B| = v and where the following self-dual condition holds.

For distinct points p, q ∈ P, there are exactly k blocks b ∈ B incident
to p and exactly µ blocks incident to both p and q; for distinct blocks
b, c ∈ B, there are exactly k points p ∈ P incident to b and exactly µ
points incident to both b and c.

The symmetric design is nontrivial if 1< k < v. Nontrivial symmetric designs of
index µ are exactly those incidence systems with incidence graphs that are bipar-
tite distance-regular graphs of diameter 3 as in Theorem 2.3(5).

A Steiner system S(l, k, v) is an incidence system {P, B, I} with |B| = v where
the number of points incident to a block is always k and where, for each l-tuple of
points, there is exactly one block incident to all members of the l-tuple. Clearly
these cannot exist for k < l, and for k ≥ l we can (and do) identify each block
with the set of points incident to it.

Of particular interest are the Steiner systems S(5, 6,12), S(3, 6, 22), S(4, 7, 23),
and S(5, 8, 24). These are the Witt designs, since they were discussed and proved
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to be unique by Witt [25]. Their automorphism groups are, respectively, the Math-
ieu groups M12, M22, M23, and M24.

4.5. Coset Graphs of Codes

For us a code C is a subspace of V = F
n for some n, which is called the length

of C. The code C and vector space V are equipped with the Hamming metric
under which two vectors v,w ∈V are at distance d provided they differ in exactly
d coordinate positions. The weight of a vector is its distance from the zero vec-
tor 0. A particularly important parameter for a code is its minimum distance, the
smallest distance between two distinct codewords. Since C is a subspace, this is
also the smallest nonzero weight of a codeword. See [23] for more information
about codes.

The monomial matrix group (F∗)n.Sym(n) acts onV preserving the Hamming
metric, and for us the automorphism group of a code is the subgroup of the mono-
mial group that takes the code to itself.

Given the code C, one can truncate (or puncture) it by deleting a fixed coordi-
nate position from all codewords. This produces a code with the same dimension
as C (except in trivial cases) and length n − 1, a code whose minimum distance
has remained the same or decreased by one. Another related code is the shortened
code, which one gets by first choosing all codewords that are 0 in a fixed posi-
tion and then truncating at that position. Again the length goes down by one, but
the shortened code will typically have the same minimum distance as the original
code but be of dimension one less. Clearly a shortened code is a subcode of the
corresponding truncated code.

We will be particularly interested in the Golay codes. The extended ternary
Golay code is a dimension-6 code in F

12
3 with minimum distance 6. It is (in an ap-

propriate sense) uniquely determined by these parameters and admits the central
extension 2.M12 as automorphism group. Its codewords of weight 6 “carry” the
blocks of the Witt design S(5, 6,12).

The binary Golay code in V = F
23
2 has dimension 12 and minimum distance 7.

Indeed its codewords of minimum nonzero weight are the characteristic vectors
of the blocks of the Witt design S(4, 7, 23) and span the code. Its automorphism
group is therefore the same as that of the Witt design—namely, M23.

The truncated binary Golay is then a code of dimension 12 and length 22 in F
22

spanned by the characteristic vectors of the blocks of the Witt design S(3, 6, 22)
and having these as its codewords of minimum nonzero weight. Its automorphism
group is M22.2. The corresponding shortened binary Golay code is of dimen-
sion 11 and length 22 in F

22, having codimension 1 in the truncated binary Golay
code. Its automorphism group is also M22.2.

The coset graph of the codeC ≤ V has as vertices the cosets ofC inV with two
cosets adjacent when they have coset representatives at Hamming distance 1. The
quotient space V/C acts by translation as a regular group of automorphisms of the
coset graph, and the extension of the quotient space by the automorphism group of
the code is an automorphism group of the coset graph. In particular, as the various
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Golay related codes have large Mathieu groups as automorphism groups, the as-
sociated coset graphs also have large automorphism graphs with regular normal
subgroups.

All of the code examples just given have minimum distance at least 5; there-
fore no two vectors of weight ≤ 2 are in the same coset. For the binary codes
this means that the cosets at distance 1 from C are exactly the n distinct cosets
of weight 1 (the weight of a coset being the minimum weight of a vector in the
coset), and at distance 2 from C we find the

(
n
2

)
distinct cosets of weight 2. Since

the truncated binary Golay code has codewords of weight 6, it will have cosets of
weight 3 containing more than one vector of weight 3 (exactly two, in fact).

The binary Golay codeC is a perfect 3-error-correcting code. For us, this means
exactly that every coset of C in F

23
2 contains a unique vector of weight at most 3.

5. Imprimitivity and the Known Distance-Transitive
Graphs of Diameter at Least 3

5.1. The Hamming Family

The Hamming graph H(n, q) has as vertex set all ordered n-tuples from a q-set
(q ≥ 2) with two such adjacent when they differ in exactly one coordinate po-
sition. The graph has diameter n. Its automorphism group is the wreath product
Sym(q) � Sym(n) and is distance-transitive. For each n ≥ 2 the only imprimi-
tive Hamming graph H(n, q) is the n-cube H(n, 2), which is both bipartite and
antipodal.

Two vertices of the n-cube (thought of as {0,1}-vectors) are at maximal distance
n precisely when they are complements of each other. The folded or quotient n-
cube H̄(n, 2) (sometimes denoted �n) is the corresponding antipodal quotient
AH(n, 2). It has diameter 
n/2� and is distance-transitive (by Proposition 2.1).

The halved n-cube is BH(n, 2) = 1
2 H(n, 2) and is distance-transitive of diame-

ter 
n/2� (by Proposition 2.2).
When n is even and at least 8, we have the quotient halved n-cube

ABH(n, 2) = BAH(n, 2) = 1

2
H̄(n, 2) = 1

2
�n,

which has diameter 
n/4� and again is distance-transitive.

5.1.1. Hamming Graphs H(n, q)

Proposition 5.1. The Hamming graph H(n, q) with n ≥ 3 has no A-covers.

Proof. This is proven as Proposition 5.1 of [5].

Proposition 5.2. The Hamming graph H(n, q) with n ≥ 3 has no B-doubles.

Proof. This is proven as Theorem 2 of [14].
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5.1.2. Quotient n-cube AH(n, 2) = H̄(n, 2)

Proposition 5.3. The only A-cover of the quotient n-cube AH(n, 2) = H̄(n, 2)
with n ≥ 6 is the n-cube H(n, 2).

Proof. This is proven as Proposition 5.2 of [5].

Proposition 5.4. The quotient Hamming graph AH(n, 2) = H̄(n, 2) with n ≥ 4
has no B-doubles.

Proof. This is proven as Theorem 15 of [15].

5.1.3. Halved n-cube BH(n, 2) = 1
2 H(n, 2)

Proposition 5.5. The halved n-cube BH(n, 2) = 1
2 H(n, 2) with n ≥ 4 has no

A-covers.

Proof. This is proven in Proposition 5.3 of [5].

Proposition 5.6. The only B-double of the halved n-cube BH(n, 2) = 1
2 H(n, 2)

with n ≥ 5 is the n-cube H(n, 2).

Proof. This is proven as Theorem 14 of [15].

5.1.4. Quotient Halved n-cube ABH(n, 2) = BAH(n, 2) = 1
2 H̄(n, 2)

Proposition 5.7. The only A-cover of the quotient halved n-cube ABH(n, 2) =
1
2 H̄(n, 2) with even n ≥ 8 is BH(n, 2) = 1

2 H(n, 2).

Proof. This is proven in Proposition 5.3 of [5].

Proposition 5.8. The only B-double of the quotient halved n-cube BAH(n, 2) =
1
2 H̄(n, 2) with even n ≥ 8 is AH(n, 2) = H̄(n, 2).

Proof. This is proven as Theorem 16 of [15].

Corollary 5.9. The only AB-cover of the quotient halved n-cube ABH(n, 2) =
BAH(n, 2) = 1

2 H̄(n, 2) with even n ≥ 8 is the n-cube H(n, 2).

Proof. This is immediate from Propositions 5.3 and 5.8 (and from Propositions
5.6 and 5.7).

5.2. The Johnson Family

The Johnson graph J(n,m) has as vertex set the m-subsets of an n-set with two
such adjacent when they intersect in a set of size m − 1. By complementation
J(n,m) is isomorphic to J(n, n−m), so without loss we may assume that n ≥ 2m.
With this assumption J(n,m) has diameter m. The symmetric group Sym(n) acts
distance-transitively.
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For each m the Johnson graph J(n,m) is imprimitive only for n = 2m, where
antipodal classes consist of complementary pairs of m-sets. The quotient John-
son graph is then AJ(2m,m) = J̄(2m,m) and is distance-transitive of diameter

m/2�.

When n = 2m+ 1 there is a second distance-transitive graph on the m-subsets
of an n-set, namely the distance-m graph J(2m+1,m)m where twom-subsets are
adjacent when they are disjoint. This graph is usually called the odd graph Om+1

and is primitive and distance-transitive of diameter m. (The subscript in Om+1 in-
dicates the valency of the odd graph. Hemmeter [14; 15] instead used Om to denote
this graph, presumably because it is defined in terms of m-subsets.)

A related graph is the bipartite double 2 × Om+1; see Section 3.4. This graph
is usually written 2Om+1 and is often called the doubled odd graph. (This is ter-
minology that we shall avoid because of possible confusion, as discussed in Sec-
tion 3.4.) The graph 2Om+1 can also be realized as the graph whose vertices are
the m- and (m + 1)-subsets of a (2m + 1)-set with incidence given by contain-
ment. This graph is distance-transitive of diameter 2m+1 and is clearly bipartite;
indeed B2Om+1 = (Om+1)2 = J(2m + 1,m). The bipartite double 2Om+1 is also
antipodal, a class consisting of a complementary m-set and (m+ 1)-set; we have
A2Om+1 = Om+1.

5.2.1. Johnson Graphs J(n,m)

Proposition 5.10. The Johnson graph J(n,m) with n ≥ 2m ≥ 4 has no A-
covers.

Proof. This is given in [5, p. 146].

Proposition 5.11. The only B-double of the Johnson graph J(n,m) with n ≥
2m ≥ 4 is the bipartite double 2Om+1 for n = 2m+ 1.

Proof. This is proven as Theorem 1 of [14].

5.2.2. Quotient Johnson Graphs AJ(2m,m) = J̄(2m,m)

Proposition 5.12. The only A-cover of the quotient Johnson graph AJ(2m,m) =
J̄(2m,m) with m ≥ 4 is the Johnson graph J(2m,m).

Proof. This is given in [5, p. 147].

Proposition 5.13. The quotient Johnson graph AJ(2m,m) = J̄(2m,m) with
m ≥ 4 has no B-doubles.

Proof. This is proven as Theorem 6 of [15].

5.2.3. Odd Graphs Om+1

Proposition 5.14. The only A-cover of Om+1 with m ≥ 3 is its bipartite double
2Om+1.
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Proof. This is proven as Proposition 4.1 of [5]. See also Ivanov [17, Lemma 5.3].

Proposition 5.15. The odd graph Om+1 with m ≥ 2 has no B-doubles.

Proof. This is proven as Theorem 9 of [15].

5.3. Lie-type Examples

5.3.1. Grassmann Graphs Jq(n,m)
The Grassmann graph Jq(n,m) has as vertex set the m-subspaces of an n-space
over Fq with two such adjacent when they intersect in a subspace of dimension
m−1. By duality Jq(n,m) is isomorphic to Jq(n, n−m), so without loss we may
assume that n ≥ 2m. With this assumption Jq(n,m) has diameter m. The general
linear group GL(n, q) acts distance-transitively.

A related graph is 2Jq(2m+1,m), whose vertex set consists ofm- and (m+1)-
subspaces of a (2m+1)-space over Fq with incidence given by containment. This
graph is distance-transitive of diameter 2m + 1 and is clearly bipartite; indeed
B2Jq(2m+ 1,m) = Jq(2m+ 1,m).

Proposition 5.16. The Grassmann graph Jq(n,m) with n ≥ 2m ≥ 4 has no A-
covers.

Proof. This is proven as Proposition 6.1 of [5].

Proposition 5.17. The only B-double of the Grassmann graph Jq(n,m)with n ≥
2m ≥ 4 is 2Jq(2m+ 1,m) for n = 2m+ 1.

Proof. This is proven as Theorem 8 of [15].

5.3.2. E7 Graph [E7,7(q)]
The E7 graph [E7,7(q)] defined over Fq admits E7(q) acting distance-transitively.
It is primitive of diameter 3 with intersection array{

q(q8 + q4 + 1)
q9 − 1

q − 1
, q9(q4 + 1)

q5 − 1

q − 1
, q17;

1, (q4 + 1)
q5 − 1

q − 1
, (q8 + q4 + 1)

q9 − 1

q − 1

}
.

The graph is the collinearity graph of the parapolar space with lines of size q + 1
constucted as the shadow space of type 7 for the building of type E7(q) where the
E7 diagram is labeled as follows.

❝

2

❝ ❝ ❝ ❝ ❝ ❝

1 3 4 5 6 7
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See Section 4.2, [7, Sec. 10.7], and [9, Sec. 4.19] for more infomation on parapolar
spaces.

Proposition 5.18. The graph [E7,7(q)] has no A-covers.

Proof. This is proven as Proposition 12.1 of [5].

Lemma 5.19. (a) The set of lines through a vertex of [E7,7(q)] has the structure
of the geometry E6,1(q).

(b) Maximal cliques in [E6,1(q)] are projective spaces over Fq of rank 4 and 5.
(c) Maximal cliques in [E7,7(q)] are projective spaces over Fq of rank 5 and 6.

Proof. Part (a) is clear from the preceding diagram since the parapolar shadow
space with collinearity graph [E6,1(q)] is isomorphic to that for [E6,6(q)]. For (b)
see [9, p. 693]. Part (c) then follows immediately from (a) and (b).

Proposition 5.20. The graph [E7,7(q)] has no B-doubles.

Proof. By Lemma 5.19 the maximal cliques of [E7,7(q)] are projective spaces
over Fq of rank 5 or 6. Hence by Lemma 3.5 a B-double H has valency k =
qn+1−1
q−1 with n∈ {5, 6}. Furthermore by Proposition 3.4 bipartite H has c1 = 1 and
a1+b1+c1 = k, hence b1 = k−1. Since [E7,7(q)] has valency q(q8 +q4 +1) q

9−1
q−1 ,

Proposition 3.4 with i = 0 gives for H

c2 = k(k − 1)(q − 1)

q(q8 + q4 + 1)(q9 − 1)
,

which is not an integer. Hence no B-double H exists.

5.3.3. Affine E6 Graph [AE6(q)]
IfG is the graph [E7,7(q)] of Section 5.3.2 and ∞ is a vertex ofG, then the graph
G3(∞) is the affine E6 graph [AE6(q)]. It is distance-transitive (via the stabilizer
of ∞ in E7(q)) and primitive of diameter 3 with intersection array{
(q12 − 1)(q9 − 1)

q4 − 1
, q8(q4 + 1)(q5 − 1), q16(q − 1);1, q4(q4 + 1), q8 q

12 − 1

q4 − 1

}
.

See [7, Sec. 10.8].

Proposition 5.21. The graph [AE6(q)] has no A-covers.

Proof. This is proven as Proposition 13.1 of [5].

Proposition 5.22. The graph [AE6(q)] has no B-doubles.

Proof. By Lemma 5.19 the maximal cliques of the parapolar space E6,1(q) are
projective spaces of rank 4 and 5. The subgraph [AE6(q)](x) of the affine E6

graph [AE6(q)] induced on the neighbors of the vertex x is a (q − 1)-clique
extension of the distance-regular graph [E6,1(q)] (see the remark after Theo-
rem 10.8.1 in [7]). Therefore, the maximal cliques of the graph [AE6(q)] have
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size (q − 1) q
n+1−1
q−1 + 1 = qn+1 with n = 4, 5 (indeed they have the structure of

affine spaces).
For the parameters of a B-double Lemma 3.5 gives valency k = qn+1 with n∈

{4, 5}. Also a1 = 0 and c1 = 1, so a1 + b1 + c1 = k leads to b1 = qn+1 − 1. Since

[AE6(q)] has valency (q12−1)(q9−1)
q4−1

, Proposition 3.4 with i = 0 gives

c2 = qn+1(qn+1 − 1)(q4 − 1)

(q12 − 1)(q9 − 1)
,

which is not an integer. Hence no B-double exists.

5.4. Dual Polar Graphs

Let V be a vector space of dimension n over the field Fq equipped with a nonde-
generate sesquilinear form or quadratic form. The corresponding dual polar graph
then has as point set the maximal totally isotropic or totally singular subspaces (as
appropriate) with two such adjacent when they intersect in a subspace of codimen-
sion 1. Ifm is the uniform dimension of these subspaces, then the dual polar space
has diameter m (and is, in fact, a subgraph of the Grassmann graph Jq(n,m)).

Specifically, we have one of the following:

(i) the symplectic dual polar graph [Sp(2m, q)] = [Cm(q)] with n = 2m;
(ii) the orthogonal dual polar graphs [2(2m+1, q)] = [Bm(q)] with n = 2m+1,

[2+(2m, q)] = [Dm(q)] with n = 2m, and [2−(2m+ 2, q)] = [2Dm+1(q)]
with n = 2m+ 2;

(iii) for q = l2, the unitary dual polar graphs [U(n, q)] = [2An−1(l )] with
m = 
n/2�.

These graphs are primitive except that the hyperbolic orthogonal dual polar graphs
[Dm(q)] are bipartite. The halved graph B[Dm(q)] = 1

2 [Dm(q)] is distance-
transitive of diameter 
m/2�.
Proposition 5.23. A dual polar graph of diameter at least 3 has no A-covers.

Proof. This is proven as Proposition 7.1 of [5].

Proposition 5.24. The halved graph B[Dm(q)] = 1
2 [Dm(q)] with m ≥ 4 has

no A-covers.

Proof. This is given in [5, p. 151].

Proposition 5.25. A dual polar graph of diameter at least 3 has no B-doubles.

Proof. This is proven as Theorem 11 of [15].

Proposition 5.26. The only B-double of the halved graph 1
2 [Dm(q)] withm ≥ 5

is [Dm(q)].

Proof. This is proven as Theorem 13 in [15] for m ≥ 8, but the arguments actu-
ally are valid for all m ≥ 5.
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5.5. Sesquilinear Form Graphs

Let V be the vector space F
n, and letW = F

m. Further let f : V ×W → F be a
σ -sesquilinear form.

For a fixed σ, the form f is completely determined by its Gram matrix 3 =
(γij )ij with γij = f(vi,wj), where {vi | 1 ≤ i ≤ n} is the canonical basis of V
and {wj | 1 ≤ j ≤ m} that of W. We then have, for all v ∈V and w ∈W, that

f(v,w) = v3wσ�.

We are specifically interested in those forms f belonging to one of three sets of
forms:

(i) the set of all bilinear forms on V andW—that is, those forms with σ = 1;
(ii) the set of all alternating forms f onV =W—that is, those forms with σ = 1

and f(v, v) = 0 and f(v,w) = −f(w, v) for all v,w ∈V ;
(iii) the set of all Hermitean forms f on V =W—that is, those forms with σ of

order 2 and f(v,w) = f(w, v)σ for all v,w ∈V.
The Gram matrix 3 for an alternating form is an alternating matrix in that it has

0 diagonal and 3 = −3�. The Gram matrix for a Hermitean form is a Hermitean
matrix in that 3 = 3σ�.

If we have two forms f and g in one of these classes and if a, b ∈ F, then clearly
af + bg is also a form in the same class, so the classes have a natural vector space
structure. This corresponds to standard scalar multiplication and matrix addition
for Gram matrices. We then can turn the vector space of forms, or equivalently
Gram matrices, into a graph by letting two Gram matrices be adjacent precisely
when their difference has minimal possible rank. This rank is 1 for bilinear and
Hermitean matrices and 2 for alternating matrices.

5.5.1. Bilinear Forms Graphs Hq(n,m)
The bilinear forms graph Hq(n,m) (n ≥ m) has as vertex set the n×m matrices
over Fq with two matrices joined by an edge if and only if their difference has
rank 1. The bilinear forms graph is distance-transitive with diameter m.

Proposition 5.27. The bilinear forms graph Hq(n,m) with n ≥ m ≥ 2 has no
A-covers.

Proof. This is proved as Proposition 8.1 of [5].

Proposition 5.28. The bilinear forms graph Hq(n,m) with n ≥ m ≥ 2 has no
B-doubles.

Proof. This is proved as Theorem 18 of [15].

5.5.2. Alternating Forms Graphs Alt(n, q)
The alternating forms graph Alt(n, q) has as vertex set the n× n alternating ma-
trices over Fq—that is, all n× n matrices (aij )ij with aij = −aji for 1 ≤ i, j ≤ n

and aii = 0 for all i. Alternating matrices always have even rank, and two such
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matrices are joined by an edge if and only if their difference has rank 2. The al-
ternating forms graph Alt(n, q) is distance-transitive of diameter 
n/2�.
Proposition 5.29. The alternating forms graph Alt(n, q) with n ≥ 4 has no A-
covers.

Proof. This is proven as Propositions 9.1 and 9.2 of [5].

Proposition 5.30. The alternating forms graph Alt(n, q) with n ≥ 4 has no B-
doubles.

Proof. This is proven as Theorem 20 of [15].

5.5.3. Hermitean Forms Graphs Her(n, l2)
The finite field Fq has a nontrivial automorphism σ of order 2 if and only if q =
l2 is a square prime power, in which case we have the Frobenius automorphism
σ : α �→ αl.

The Hermitean forms graph Her(n, l2) has as vertex set the n × n Hermitean
matrices over Fl2 —that is, all n×nmatrices (aij )ij with aij = alji for 1 ≤ i, j ≤ n.

Two such matrices are joined by an edge if and only if their difference has rank 1.
The Hermitean forms graph Her(n, l2) is distance-transitive of diameter n.

Proposition 5.31. The Hermitean forms graph Her(n, l2) with n ≥ 3 has no
A-covers except when (n, l ) = (3, 2). In the expectional case it has unique 2- and
4-fold A-covers, and they are both distance-transitive of diameter 6.

Proof. This is proven as Propositions 10.1 and 10.2 of [5] except for uniqueness
of the A-covers, which is given in [5, Sec. 14] and proven in [7, p. 365].

Proposition 5.3.2. The Hermitean forms graph Her(n, l2) with n ≥ 2 has no
B-doubles.

Proof. This is proven as Theorem 21 of [15].

5.6. Generalized Polygons

Generalized polygons were introduced in Section 4.3. The classification of finite
generalized polygons seems remote. Nevertheless, in Propositions 5.34 and 5.36
we are able to say something about A-covers of odd diameter and B-doubles of
arbitrary finite generalized polygons.

The finite distance-transitive generalized polygons were classified by Bueken-
hout and Van Maldeghem [8]. Their full result is too long to give here, but we
present the parts of specific interest to us. The collinearity graph of a generalized
2d-gon with s = 1 is bipartite.

Theorem 5.33 [8]. (a) A generalized 2d-gon of order (s, t) with s > 1 and
d ≥ 3 whose collinearity graph is distance-transitive is one of :

(i) the generalized 6-gon of order (q, 1) associated with PSL(3, q);
(ii) a generalized 6-gon of order (q, q) associated with G2(q);
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(iii) the generalized 6-gon of order (q, q3) or its dual of order (q3, q), both asso-
ciated with 3D4(q);

(iv) the generalized 8-gon of order (q, 1) associated with Sp4(q) for q = 2a;
(v) the generalized 8-gon of order (q, q2) or its dual of order (q2, q), both asso-

ciated with 2F4(q) for q = 22a+1;
(vi) the generalized 12-gon of order (q, 1) associated with G2(q) for q = 3a.

(b) A generalized 4-gon of order (q, q) with q > 1 whose collinearity graph
is distance-transitive is one of a dual pair of generalized 4-gons associated with
Sp4(q).

Proposition 5.34. Generalized 2d-gons with diameter d ≥ 2 have no A-covers
of odd diameter.

Proof. Since a generalized 2d-gon is a special type of near 2d-gon, this is imme-
diate from Lemma 4.1.

Proposition 5.35. The distance-transitive finite generalized 2d-gons with di-
ameter d ≥ 3 listed in Theorem 5.33(a) have no A-covers of even diameter.

Proof. This is from [2].

Proposition 5.36. LetG be the collinearity graph of a finite generalized 2d-gon
with diameter d ≥ 2 and order (s, t). Then there is a B-double ofG if and only if
s = t. In that case, the B-double is uniquely determined as the incidence graph
of the generalized 2d-gon.

Proof. Let H be a B-double of G, the collinearity graph of a generalized 2d-gon
of order (s, t) and diameter d ≥ 2. Also let Bi = bi(H ), bi = bi(G), and so forth.

The maximal cliques ofG are the lines of the generalized 2d-gons of order (s, t)
and have size s + 1. Therefore by Lemma 3.5 we have B0 = s + 1 and, since two
points are incident to at most one common line, C2 = 1.

As A1 = 0 in bipartite H and B1 + C1 = B1 + 1 = B0, we have B1 = s. Since
b0 = s(t + 1), Proposition 3.4 with i = 0 gives

1 = C2 = B0B1

b0
= s + 1

t + 1
;

hence s = t.

As in Lemma 3.5, the point set of H has bipartitionG ∪ Y with |G| = |Y |, and
each H1(y), y ∈ Y, is a maximal clique of G = BH, which can only be a line of
the generalized polygon. As s = t, there are the same number of points and lines.
Therefore for every line l there is a unique y in Y with l = H1(y). That is, H is
the incidence graph of generalized 2d-gon, as claimed.

Corollary 5.37. Let G be the collinearity graph of a finite distance-transitive
generalized 2d-gon of order (s, t)with d ≥ 2 and st > 1. Then there is a B-double
of G if and only if G is a generalized 4-gon of type Sp4(l ) or G is a generalized
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6-gon of type G2(q). In all cases, the unique B-double is the incidence graph of
G and so is a generalized 8-gon or 12-gon (respectively) with order (1, q).

The B-double is distance-transitive if and only if l is a power of 2 and q is a
power of 3, respectively.

Proof. By Theorem 5.33 the only distance-transitive finite generalized 2d-gons
with s = t are polygons (i.e., st = 1), the Sp4(l ) 4-gons, and the G2(q) 6-gons.
The previous lemma now gives the first paragraph.

The corresponding bipartite 8-gons and12-gons are distance-transitive precisely
when these 4-gons and 6-gons are isomorphic to their duals. This happens if and
only if l is a power of 2 and q is a power of 3, respectively (see e.g. [7, Sec. 6.5]).

Remark. The generalized 6-gons of type (q, q) with q not a power of 3 give our
only examples of distance-transitive primitive graphs of diameter at least 3 with
imprimitive covers that are distance-regular but not distance-transitive.

5.7. The Mathieu Family

The various graphs in the Mathieu family have combinatorial descriptions in terms
of the Witt Steiner systems and Golay codes, but they all are distance-transitive
because of the action of automorphism groups related to the Mathieu groups.

5.7.1. Coset Graph [36.2.M12 ] of the Extended Ternary Golay Code
Let C be the extended ternary Golay code inside V = F

12
3 . The coset graph

[36.2.M12 ] of the extended ternary Golay code has as vertex set the 36 = 729
cosets of C in V, two such adjacent when they contain vectors that differ in ex-
actly one coordinate position. It is distance-transitive with automorphism group
36.2.M12 and intersection array

{24, 22, 20;1, 2,12}.
Proposition 5.38. The coset graph [36.2.M12 ] of the extended ternary Golay
code has no A-covers.

Proof. This is given in [5, p. 163].
LetH be an r-fold A-cover of the coset graph [36.2.M12 ] of the extended ternary

Golay code having diameter D. Then by Theorem 3.2 either D = 6 and

i(H ) =
{

24, 22, 20,
r − 1

r
(12), 2,1;1, 2,

1

r
(12), 20, 22, 24

}

or D = 7 and

i(H ) = {24, 22, 20, t(r − 1),12, 2,1;1, 2,12, t, 20, 22, 24}.
Case 1: D = 6. By Corollary 3.3(a), r divides cd = 12 and

r ≤ cd

max(cd−1, cd − bd−1)
= 12

max(2,12 − 20)
.

Thus we have three possibilities of r—namely 2, 3, and 6.
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Therefore we have one of:

(i) r = 2, i(H ) = {24, 22, 20, 6, 2,1;1, 2, 6, 20, 22, 24}, |H | = r|G| = 1458;
(ii) r = 3, i(H ) = {24, 22, 20, 8, 2,1;1, 2, 4, 20, 22, 24}, |H | = r|G| = 2187;

(iii) r = 6, i(H ) = {24, 22, 20,10, 2,1;1, 2, 2, 20, 22, 24, |H | = r|G| = 2374.

In [7, Chap. 14] we find that none of these intersection arrays are feasible, and
therefore no such A-covers exist.

Case 2: D = 7. This graph is a near 6-gon, so by Lemma 4.1 there are no
A-covers of odd diameter. See also [5, p. 163].

Proposition 5.39. The coset graph [36.2.M12 ] of the extended ternary Golay
code has no B-doubles.

Proof. The graph has b0 = 24 and b0 − b1 = 2. Therefore

24 = b0 > (b0 − b1)((b0 − b1)+ 1) = 2 · 3 = 6,

and by Lemma 3.6(b) the graph has no B-doubles.

5.7.2. Coset Graph [211.M23] of the Binary Golay Code
Let C be the binary Golay code inside V = F

23
2 . The coset graph [211.M23] of the

binary Golay code has as vertex set the 211 = 2048 cosets of C in V, two such ad-
jacent when they contain vectors that differ in exactly one coordinate position. It
is distance-transitive with automorphism group 211.M23 and intersection array

{23, 22, 21;1, 2, 3}.
The graph [211.M23] has a 2-foldA-cover, namely its bipartite double 2×[211.M23],
which is distance-transitive under the action of its automorphism group 2×211.M23.

It has intersection array

{23, 22, 21, 20, 3, 2,1;1, 2, 3, 20, 21, 22, 23}.
Proposition 5.40. The coset graph [211.M23] of the binary Golay code has no
A-covers of even diameter.

Proof. Let H be an r-fold A-cover of G = [211.M23] of even diameter D. Then
by Theorem 3.2 we have D = 6 and

i(H ) =
{

23, 22, 21,
r − 1

r
(3), 2,1;1, 2,

1

r
(3), 21, 22, 23

}
.

By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 3

max(2, 3 − 21)
.

Thus r = 1, and hence no such A-covers exist.

Lemma 5.41. Let S be a nonempty subset of the set of blocks of the Steiner sys-
tem S(4, 7, 23) with the property that every triple of points is in exactly f of the
members of S. Then f = 5 and S consists of all blocks of S(4, 7, 23).
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Proof. Count the pairs (O, {a, b, c}) with {a, b, c} ⊂ O ∈ S in two ways. We have

|S| ·
(

7
3

)
= f ·

(
23
3

)
.

Therefore |S| = 253 · f/5. In particular 5 divides f and |S| ≥ 253. As there are
only 253 blocks in S(4, 7, 23), we conclude that |S| = 253 and f = 5.

Proposition 5.42. The only odd-diameter A-cover of the coset graph [211.M23]
of the binary Golay code is its bipartite double 2 × [211.M23], which is a distance-
transitive 2-fold A-cover.

Proof. LetH be an r-fold A-cover ofG = [211.M23] of odd diameterD. Then by
Theorem 3.2 we have D = 7 and

i(H ) = {23, 22, 21, t(r − 1), 3, 2,1;1, 2, 3, t, 21, 22, 23}.
We have the following distribution diagram for G.

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

– – 20

23 22 211 2 3
1 23 253 1771

Since the binary Golay code C is a perfect 3-error-correcting code, each coset
of C inV has a unique coset representative of weight at most 3. ViewingV as the
set of characteristic vectors forX = {1, 2, . . . , 23}, we identify each coset with the
unique small subset that represents it: ∅ for C itself, {i | i ∈X} for the cosets of
weight 1, {ij | i, j ∈ X} for the cosets of weight 2, and {ijk | i, j, k ∈ X} for the
cosets of weight 3. (We write ijk for {i, j, k} and so forth.)

As indicated in the distribution diagram, most of the adjacencies are clear. The
neighborhood G1(∅) of ∅ = (

X
0

)
is

(
X
1

) = {i | i ∈ X}. Next, G2(∅) = (
X
2

)
and

G3(∅) = (
X
3

)
. The adjacencies in

G =
(
X

0

)
∪

(
X

1

)
∪

(
X

2

)
∪

(
X

3

)

are then given by set containment except within
(
X
3

)
where ijk and mno are ad-

jacent if and only if they are disjoint and there is a block of the Steiner system
S(4, 7, 23) containing them both.

Let R be a set {p, q, . . . } of size r. The distribution diagram for the r-fold A-
cover H of diameter 7 can be thought of as a disjoint union of r copies

G[u] =
(
X

0

)[u]

∪
(
X

1

)[u]

∪
(
X

2

)[u]

∪
(
X

3

)[u]

of the preceding diagram for u∈R. (For J a subset ofG and S a subset of R, we
let J [S ] be {h[u] | h∈ J, u∈ S}.)
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Here the r vertices ∅[u] form a single antipodal class inH ; and, except for within

L =
(
X

3

)[R]

=
⋃
u∈R

(
X

3

)[u]

,

the adjacencies are precisely those inherited fromG. That is, the vertices v [p] and
w[q], not both in L, are adjacent if and only if p = q and v and w are adjacent
in G.

The subgraph L is an r-fold cover of the subgraph
(
X
3

)
of the G described pre-

viously. Each vertex of
(
X
3

)[p]
is adjacent to exactly t vertices of

(
X
3

)[q]
for q �= p.

Thus the subgraphH3(∅[p]) = (
X
3

)[p]
has degree a3(G)−(r−1)t = 20−(r−1)t.

We further have H4(∅[p]) = (
X
3

)[R\{p}]
.

The subgraphs J = (
X
3

)
and L are not distance-regular. In particular, c2(G) =

2 but there are distance-2 pairs x, y in J with c x,y2 (J ) = 1and others with c x,y2 (J ) =
2. Nevertheless

(
X
3

)
and L = J [R] have nice structure inherited fromG. Indeed it

is precisely the pairs of vertices with c x,y2 (J ) = 1 that are at the heart of our proof.
Distinct vertices ijk and ijl of J are both adjacent to ij and so are at distance 2

in G. The unique vertex of J adjacent to both is mno where O = ijklmno is the
unique block on ijkl. Indeed, the subgraph

(
O
3

)
of J induced byO is the graph of

all 3-subsets of a 7-set with two adjacent when disjoint; that is,
(
O
3

)
is a copy of

the odd graph O4. This has the following distribution diagram.

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

– – 2

4 3 31 1 2
1 4 12 18

The proof of Proposition 5.42 now proceeds in five steps.

Step 1. Let ijk [p] and mno[q] be adjacent in L. Then ijk and mno are disjoint
and there is a unique block O with ijkmno ⊂ O. In this case, {ijk,mno}[R] is
a disjoint union of r edges. The subgraph

(
O
3

)[R]
has valency 4 and is an r-fold

cover of O4.

Proof. This is clear.

Step 2. Let ijk [p] and mno[q] be adjacent in L as in Step 1. Then one of the
following statements holds:

(i) p = q and the connected component of this edge in
(
O
3

)[R]
is

(
O
3

)[p]
and

isomorphic to O4;
(ii) p �= q and the connected component of this edge in

(
O
3

)[R]
is

(
O
3

)[p,q]
and

isomorphic to the bipartite double 2O4.

Proof. Let O = ijklmno. Since O4 is connected of valency 4, by Step 1 it is
enough to show that each of ijk [p], ijl [p], ikl [p], and jkl [p] is adjacent to mno[q].

This is true by hypothesis for ijk [p], and by symmetry we need only consider ijl [p].
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The vertex ij [p] is the unique vertex of
(
X
2

)[p] = H2(∅[p]) adjacent to both
ijk [p] and ijl [p]. Hence there must be another vertex of H3(∅[p])∪H4(∅[p]) = L

adjacent to both. As L is a cover of
(
X
3

)
, this vertex can only be mno[u] for some

u∈R. But ijk [p] is already adjacent tomno[q], so by Step 1 we must have q = u.

Therefore ijl [p] is adjacent to mno[q], as desired.

Step 3. The case (i) of Step 2 does not occur.

Proof. Suppose otherwise that for some block O, the subgraph
(
O
3

)[p]
is a copy

of O4. Call a block F flat if
(
F
3

)[p]
is isomorphic to O4. Each edge comes from

a unique block, and O4 has valency 4; so an arbitrary vertex ijk [p] has valency
in

(
X
3

)[p]
equal to 4f(ijk) where f(ijk) is the number of flat blocks on the triple

ijk. Since
(
X
3

)[p]
has valency 20 − (r − 1)t, the numbers f(ijk) are equal to the

constant f determined by 4f = 20 − (r − 1)t. That is, the set of flat blocks
is nonempty and has the property that every triple of

(
X
3

)
is in exactly f =

(20 − (r − 1)t)/4 flat blocks. By Lemma 5.41 every block is flat and f = 5.
But then 5 = (20 − (r − 1)t)/4 and 0 = (r − 1)t, which is not the case. The con-
tradiction proves that there are no flat blocks, as claimed.

Step 4. We have r = 2 and t = 20.

Proof. By Step 3, we have 0 = 20− (r−1)t. Also since we are always in case (ii)
of Step 2, the parameter r must be even. Therefore the only possibilities are (r, t) =
(2, 20) and (r, t) = (6, 4).

Suppose that (r, t) = (6, 4). Since t = 4 is the valency of 2O4, for each triple
ijk there is a unique block O on ijk with

(
O
3

)[p,q]
isomorphic to 2O4. Call such

a block special. Then the set of special blocks is a subset of all blocks with every
triple ijk in exactly f = 1 special block. This contradicts Lemma 5.41, so (r, t) is
not (6, 4).

Step 5. H is the bipartite double of G.

Proof. We now have

i(H ) = {23, 22, 21, 20, 3, 2,1;1, 2, 3, 20, 21, 22, 23}.
In particular, by Theorem 3.2 the graph H is bipartite as well as antipodal of
diameter D = 7. Therefore H is isomorphic to the bipartite double of G by The-
orem 3.8(a).

This completes the proof of the five steps and thus of the proposition.

Proposition 5.43. The coset graph [211.M23] of the binary Golay code has no
B-doubles.

Proof. The coset graph [211.M23] of the binary Golay code has b0 = 23 and
b0 − b1 = 1. Therefore
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23 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.7.3. Distance-2 Graph 211.M23]2 of the Coset Graph of the Binary Golay Code
The distance-2 graph [211.M23]2 of the coset graph of the binary Golay code is
B(2 × [211.M23]) and so remains distance-transitive under the action of 211.M23.

Its intersection array is
{253, 210, 3;1, 30, 231}.

Proposition 5.44. The distance-2 graph [211.M23]2 of the coset graph of the bi-
nary Golay code has no A-covers.

Proof. Let H be an r-fold A-cover of [211.M23]2 of diameter D = 6 or 7.

Case 1: D = 6. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 231

max(30, 231 − 3)
.

Thus r = 1, and no such A-covers exist.

Case 2: D = 7. Since 231 = cd > min(bd−1, b0 − cd) = min(3, 22), no such
A-cover exists by Corollary 3.3(b).

Lemma 5.45. If M is a clique with |M| > 4 in the distance-2 graph G =
[211.M23]2 of the coset graphG+ = [211.M23] of the binary Golay code, then there
is a vertex x with M in the neighborhood G+

1 (x) of size 23.

Proof. Let V = F
23
2 , and view the vectors of V as the characteristic vectors of

subsets of X = {1, 2, . . . , 23}. Let C ≤ V be the binary Golay code, and set V̄ =
V/C, the vertex set of G and G+.

Assume (by transitivity) that ∅ ∈M.We haveG+
1 (∅) = {1, . . . , 23} andG+

2 (∅) =
{ij | i �= j ∈ X} (writing i for {i} and ij for {i, j}). Set M0 = M ∩ G+

2 (∅) =
M \ {∅}.

For distinct ij , kl ∈ M0, we must have kl ∈ G+
2 (ij); hence ij + kl ∈ G+

2 (∅).
(Translation by elements of V induces an automorphism group of G, where
the kernel is C.) Hence for some a, b ∈ X we have ij + kl = ab, and
{i, j} + {k, l} + {a, b} ∈ C. Since C has minimum distance 7, we must have
{i, j}+{k, l}+{a, b} = 0 inV. That is, {i, j, k, l, a, b} = {r, s, t} with each appear-
ing twice. In particular {i, j} ∩ {k, l} is nonempty, and this is true for any distinct
pair of elements from M0.

As |M| > 4, we have |M0| > 3. Therefore there is an i ∈X with i ∈ {k, l} for
all kl ∈M0. If we set x = i, then M ⊆ G+

1 (x) as claimed.

Proposition 5.46. A B-double of the distance-2 graph [211.M23]2 of the coset
graph of the binary Golay code is isomorphic to the bipartite double 2× [211.M23]
of the coset graph of the binary Golay code.
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Proof. Let H be a B-double of G = [211.M23]2 with G = BH one of the parts of
H. By Lemmas 3.5 and 3.6, for each h− ∈H \G, the neighborhood H1(h

−) is a
maximal cliqueM ofG having sizemwith 253 = m(m−1)/c2(H ). In particular
m > 4, so by Lemma 5.45 there is a vertex h+ ofG+ (as in the lemma) withM =
G+

1 (h
+) (as a set). Since there are exactly |G| such h+, there are exactly |G| such

cliques. Therefore each occurs as H1(h
−) exactly once, and H is revealed as the

bipartite double of the graph G+.

5.7.4. Coset Graph [210.M22.2] of the Truncated Binary Golay Code
Let C be the truncated (punctured) binary Golay code inside V = F

22
2 . The coset

graph [210.M22.2] of the truncated binary Golay code has as vertex set the 210 =
1024 cosets of C in V, two such adjacent when they contain vectors that differ in
exactly one coordinate position. It is distance-transitive with automorphism group
210.M22.2 and intersection array

{22, 21, 20;1, 2, 6}.
The graph has A-doubles. Its bipartite double 2 × [210.M22.2] is a 2-fold A-cover
of diameter 7 with intersection array

{22, 21, 20,16, 6, 2,1;1, 2, 6,16, 20, 21, 22}
and automorphism group 2 × 210.M22.2 acting distance-transitively.

Since the shortened binary Golay code has codimension 1 in the truncated bi-
nary Golay code, its coset graph [211.M22.2] is a 2-fold A-cover of [210.M22.2]
having diameter 6. It is distance-transitive with automorphism group 211.M22.2
and intersection array

{22, 21, 20, 3, 2,1;1, 2, 3, 20, 21, 22}.
Proposition 5.47. The only A-covers of the coset graph [210.M22.2] of the trun-
cated binary Golay code are its bipartite double 2 × [210.M22.2] and the coset
graph [211.M22.2] of the shortened binary Golay code.

Proof. Let H be an r-fold A-cover of G = [210.M22.2] of diameter D. Then by
Theorem 3.2 either D = 6 and

i(H ) =
{

22, 21, 20,
r − 1

r
(6), 2,1;1, 2,

1

r
(6), 20, 21, 22

}

or D = 7 and

i(H ) = {22, 21, 20, t(r − 1), 6, 2,1;1, 2, 6, t, 20, 21, 22}.
Case 1: D = 6. By Corollary 3.3(a), r divides cd = 6 and

r ≤ cd

max(cd−1, cd − bd−1)
= 6

max(2, 6 − 20)
.

Thus we have two possibilities for r, namely 2 and 3.
For r = 2,

i(H ) = {22, 21, 20, 3, 2,1;1, 2, 3, 20, 21, 22}
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and |H | = 2|G| = 2048. This is the intersection array for the coset graph of the
shortened binary Golay code. In [7, p. 365] it is shown that the coset graph is
uniquely determined by its parameters.

For r = 3,
i(H ) = {22, 21, 20, 4, 2,1;1, 2, 2, 20, 21, 22}

and |H | = 3|G| = 3072. In [7, Chap. 14] we find that this intersection array is not
feasible, and therefore no such A-cover exists.

Case 2: D = 7. By Corollary 3.3(b)

t(r − 1) ≤ min(bd−1, b0 − cd) = min(20, 22 − 6) = 16

and cd = 6 ≤ t. Thus either r = 2 and 6 ≤ t ≤ 16 or r = 3 and 6 ≤ t ≤ 8.
Since r is 2 or 3, we have |H | = r|G| equal to 2048 or 3072; so we can check

feasibility for each of these fourteen cases in [7, Chap. 14] and discover that only
the case (r, t) = (2,16) survives.

Rather than invoke [7, Chap. 14] thirteen times, we can argue as in Proposi-
tion 5.42 to get down to the case (r, t) = (2,16). We sketch the argument.

Let X be the set {1, 2, . . . , 22}, and view V = F
22
2 as the space of characteristic

vectors of subsets of X. The graph G = [210.M22.2] is(
X

0

)
∪

(
X

1

)
∪

(
X

2

)
∪ 1

2

(
X

3

)
.

Here
(
X
0

)
is the empty set ∅ (and represents the coset that is the truncated Golay

code itself ), and G1(∅) = (
X
1

)
and G2(∅) = (

X
2

)
are the 1- and 2-subsets of X.

Finally G3(∅) = 1
2

(
X
3

)
is a partition of

(
X
3

)
into 770 = 1

2

(
22
3

)
pairs of 3-subsets

with {{a, b, c}, {d, e, f }} = abc|def in 1
2

(
X
3

)
precisely when {a, b, c, d, e, f } =

abcdef is a block of S(3, 6, 22)—that is, a codeword of weight 6 in the truncated
Golay codeC. Except within 1

2

(
X
3

)
, adjacency inG is given by containment, where

ab and de of
(
X
2

)
are adjacent to abc|def of 1

2

(
X
3

)
, but cd is not.

The vertices abc|def and ijk |lmn are adjacent if and only if the coset represen-
tatives abc and ijk have abc+ ijk in a coset of weight 1. That is, there is an s with
abc+ijk+s inC. This happens exactly when abcijks is a codeword of weight 7 in
C, in which case defijks, abclmns, and def lmns are also codewords of weight 7.
There are 352 codewordsO of weight 7, and (as in Proposition 5.42) the subgraph
induced by

(
O
3

)
within 1

2

(
X
3

)
is a copy of the odd graph O4. In particular, for the

codeword O = abcijks, the vertices abc| · · · and abs| · · · have distance 2 in G,
the vertices between them being ijk| · · · of the O4 and ab of

(
X
2

) = G2(∅).
As in Proposition 5.42, we let R be a set of size r and we write H = G[R] =⋃
u∈R G[u] with G[u] = (

X
0

)[u] ∪ (
X
1

)[u] ∪ (
X
2

)[u] ∪ 1
2

(
X
3

)[u]
. The r vertices ∅[u]

form a single antipodal class in H ; and, except for within L = 1
2

(
X
3

)[R]
, adjacen-

cies are only those induced by G within each separate G[u].

The subgraph L is an r-fold cover of 1
2

(
X
3

)
. Again by keeping track of pairs of

vertices at distance 2 in L, we conclude that the connected components of
(O

3

)[R]

are either
(O

3

)[p]
and isomorphic to O4, or

(
O
3

)[p,q]
and isomorphic to 2O4.
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For O = abcijks a codeword of weight 7, suppose that
(
O
3

)[p]
is isomorphic

to O4. (This is the “flat” case.) Then the vertices abc| · · · [p] and ijk | · · · [p] form
an edge in this subgraph. If the full names of these two vertices are abc|def and
ijk |lmn, then they also are the vertices abc| · · · [p] and lmn| · · · [p] of an edge in
the subgraph

(P
3

)[p]
for P = abclmns, a codeword of weight 7 that therefore must

also be flat. That is, if abcijks is a flat codeword, then any codeword abclmns
matching it in exactly four coordinate positions is also flat. Since the relation of
matching in exactly four positions turns the codewords of weight 7 into a con-
nected graph, we see that all codewords of weight 7 must be flat. But then 1

2

(
X
3

)[p]

has valency 16 and (r − 1)t = 0, a contradiction.
Therefore no codewords of weight 7 are flat and (r −1)t = 16. Additionally all

connected components of
(
O
3

)[R]
are isomorphic to 2O4; hence r must be even.

So again (r, t) = (2,16) is the only case that must be considered further.
By whatever means, we arrive at the case r = 2 and t = 16, giving the intersec-

tion array
i(H ) = {22, 21, 20,16, 6, 2,1;1, 2, 6,16, 20, 21, 22}

with |H | = 2|G| = 2048. By Proposition 3.4, we see that such a graphH is bipar-
tite as well as antipodal. Since D = 7, H is uniquely determined as the bipartite
double of G by Theorem 3.8(a).

Proposition 5.48. The coset graph [210.M22.2] of the truncated binary Golay
code has no B-doubles.

Proof. The coset graph of the truncated binary Golay code has b0 = 22 and
b0 − b1 = 1. Therefore

22 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.7.5. Distance-2 Graph [210.M22.2]2 of the Truncated Golay Graph
The distance-2 graph [210.M22.2]2 of the coset graph of the truncated binary Golay
code is B(2 × [210.M22.2]) and so remains distance-transitive under the action of
210.M22.2. Its intersection array is

{231,160, 6;1, 48, 210}.
Proposition 5.49. The distance-2 graph [210.M22.2]2 of the coset graph of the
truncated binary Golay code has no A-covers.

Proof. Let H be an r-fold A-cover of G = [210.M22.2]2 of diameter D. Then by
Theorem 3.2 either D = 6 and

i(H ) =
{

231,160, 6,
r − 1

r
(210), 48,1;1, 48,

1

r
(210), 6,160, 231

}

or D = 7 and

i(H ) = {231,160, 6, t(r − 1), 210, 48,1;1, 48, 210, t, 6,160, 231}.
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Case 1: D = 6. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 210

max(48, 210 − 6)
.

Hence r = 1, and no such A-cover exists.

Case 2: D = 7. Since 210 = cd > min(bd−1, b0 − cd) = min(6, 21), no such
A-cover exists by Corollary 3.3(b).

Lemma 5.50. If M is a clique with |M| > 16 in the distance-2 graph G =
[210.M22.2]2 of the coset graph G+ = [210.M22.2] of the truncated binary Golay
graph, then there is a vertex x with M in the neighborhood G+

1 (x) of size 22.

Proof. The proof is similar to that of Lemma 5.45, but it is more complicated since
the truncated binary Golay code contains codewords of weight 6.

As before let V = F
22
2 , and view the vectors of V as the characteristic vectors

of subsets of X = {1, 2, . . . , 22}. Let C ≤ V be the truncated binary Golay code,
and set V̄ = V/C.

Assume (by transitivity) that ∅ ∈M.We haveG+
1 (∅) = {1, . . . , 22} andG+

2 (∅) =
{ij | i �= j ∈X}. Set M0 = M ∩G+

2 (∅) = M \ {∅}.
For distinct ij , kl ∈ M0, we must have kl ∈ G+

2 (ij); hence ij + kl ∈ G+
2 (∅).

Thus for some a, b ∈ X we have ij + kl = ab, and {i, j} + {k, l} + {a, b} ∈ C.
There are two possibilities: either {i, j} + {k, l} + {a, b} = 0 in V, in which case
{i, j} and {k, l} meet nontrivially; or {i, j, k, l, a, b} is a codeword of weight 6 in
the truncated Golay code C and is uniquely determined by any of its 3-subsets.

If always {i, j} ∩ {k, l} = ∅, then |M0| ≤ 22/2 = 11, which is not the case. So
we can assume that ij and ik are in M0. Let {i, j, k, a, b, c} be the unique word of
C containing {i, j, k}.

We claim that if gh∈M0 then either g,h∈ {i, j, k, a, b, c} or i ∈ {g,h}. In prov-
ing this, suppose i /∈ {g,h}. Then the 3- or 4-sets {i, j, g,h} and {i, k, g,h} are
contained in unique codewords of weight 6. Indeed, since i, g, and h are distinct,
they are in the same codeword. But this then contains i, j, and k and so must be
{i, j, k, a, b, c}. Therefore g,h∈ {i, j, k, a, b, c}, completing the claim.

If for all gh ∈ M0 we have g,h ∈ {i, j, k, a, b, c}, then |M0| ≤ 15, which is
not the case. Thus, by the claim, there is im ∈ M0 with m /∈ {i, j, k, a, b, c}.
Let {i, j,m, q, r, s} be the word of weight 6 in the code that contains {i, j,m}.
By the claim, for any gh ∈ M0 we must have either g,h ∈ {i, j, k, a, b, c} ∩
{i, j,m, q, r, s} = {i, j} or i ∈ {g,h}. Thus, for all gh ∈ M0, we have i ∈ {g,h}.
With x = i, we haveM0 and henceM in the neighborhoodG+

1 (x), as desired.

Proposition 5.51. A B-double of the distance-2 graph [210.M22.2]2 of the coset
graph of the truncated binary Golay code is isomorphic to the bipartite double
2 × [210.M22.2] of the coset graph of the truncated binary Golay code.

Proof. Let H be a B-double of G = [210.M22.2]2 with G = BH one of the parts
ofH. By Proposition 3.4 and Lemma 3.5, for each h− ∈H \G, the neighborhood
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H1(h
−) is a maximal cliqueM ofG having size m with 231 = m(m− 1)/c2(H ).

Therefore m ≥ 16. Indeed, since 16(16 − 1)/231 is not integral, we have m > 16.
By Lemma 5.50 there is a vertex h+ ofG+ (as in the lemma) withM = G+

1 (h
+)

(as a set). Since there are exactly |G| such h+, there are exactly |G| such cliques.
Therefore each occurs as H1(h

−) exactly once, and H is revealed as the bipartite
double of the graph G+.

5.7.6. Witt Graph [M24]
The large Witt graph has as vertex set the 759 blocks of the Steiner system
S(5, 8, 24) with two such adjacent when they are disjoint. It has intersection array

{30, 28, 24;1, 3,15}
and admits M24 acting primitively and distance-transitively.

Proposition 5.52. The large Witt graph [M24] has no A-covers.

Proof. This is proven as Proposition 14.1 of [5].

Proposition 5.53. The large Witt graph [M24] has no B-doubles.

Proof. The large Witt graph has b0 = 30 and b0 − b1 = 2. Therefore

30 = b0 > (b0 − b1)((b0 − b1)+ 1) = 2 · 3 = 6,

and by Lemma 3.6(b) the graph has no B-doubles.

5.7.7. Truncated Witt Graph [M23]
The truncated large Witt graph [M23] is the subgraph of the large Witt graph in-
duced by the 506 blocks of S(5, 8, 24) that miss a fixed symbol. It is itself distance-
transitive with automorphism group M23 and intersection array

{15,14,12;1,1, 9}.
Proposition 5.54. The truncated large Witt graph [M23] has no A-covers.

Proof. See [5, p. 162] and [20, Cor. 4.1].
LetH be an r-foldA-cover of [M23] of diameterD. Then by Theorem 3.2 either

D = 6 and

i(H ) =
{

15,14,12,
r − 1

r
(9),1,1;1,1,

1

r
(9),12,14,15

}

or D = 7 and

i(H ) = {15,14,12, t(r − 1), 9,1,1;1,1, 9, t,12,14,15}.
Case 1: D = 6. By Corollary 3.3(a), r divides cd = 9. Thus we have two pos-

sibilities for r, namely 3 and 9. For r = 3,

i(H ) = {15,14,12, 6,1,1;1,1, 3,12,14,15};
for r = 9,
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i(H ) = {15,14,12, 8,1,1;1,1,1,12,14,15}.
Ivanov and Shpectorov [20, Cor. 4.1] showed that neither A-cover exists.

Case 2: D = 7. Since 9 = cd > min(bd−1, b0 − cd) = min(12,15 − 9), no
such A-cover exists by Corollary 3.3(b).

Proposition 5.55. The truncated large Witt graph [M23] has no B-doubles.

Proof. The truncated large Witt graph has b0 = 15 and b0 − b1 = 1. Therefore

15 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.7.8. Doubly Truncated Witt Graph [M22.2]
The doubly truncated large Witt graph [M22.2] is the subgraph of the large Witt
graph induced by the 330 blocks of S(5, 8, 24) that miss two fixed symbols. It is
itself distance-transitive with automorphism group M22.2 and intersection array

{7, 6, 4, 4;1,1,1, 6}.
The graph has an A-cover. The Faradjev–Ivanov–Ivanov [11] 3-fold A-cover
[3.M22.2] has diameter 8 and 990 vertices. It is distance-transitive with auto-
morphism group 3.M22.2 and intersection array

{7, 6, 4, 4, 4,1,1,1;1,1,1, 2, 4, 4, 6, 7}.
Proposition 5.56. The only A-cover of the doubly truncated large Witt graph
[M22.2] is the Faradjev–Ivanov–Ivanov graph [3.M22.2].

Proof. See [5, p. 163], [6], and [11].
Let H be an r-fold A-cover of [M22.2] of diameter D. Then by Theorem 3.2

either D = 8 and

i(H ) =
{

7, 6, 4, 4,
r − 1

r
(6),1,1,1;1,1,1,

1

r
(6), 4, 4, 6, 7

}

or D = 9 and

i(H ) = {7, 6, 4, 4, t(r − 1), 6,1,1,1;1,1,1, 6, t, 4, 4, 6, 7}.
Case 1: D = 8. By Corollary 3.3(a), r divides cd = 6 and

r ≤ cd

max(cd−1, cd − bd−1)
= 6

max(1, 6 − 4)
.

Thus we have two possibilities for r, namely 2 and 3.
For r = 2, i(H ) = {7, 6, 4, 4, 3,1,1,1;1,1,1, 3, 4, 4, 6, 7}. Brouwer [6] showed

that no such 2-fold A-cover exists.
For r = 3, i(H ) = {7, 6, 4, 4, 4,1,1,1;1,1,1, 2, 4, 4, 6, 7}. Faradjev, Ivanov,

and Ivanov [11] constructed such a distance-transitive 3-fold A-cover admitting
3.M22.2, and Brouwer [6] showed that this graph is uniquely determined by its
parameters.
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Case 2: D = 9. Since 6 = cd > min(bd−1, b0 − cd) = min(4, 7 − 6), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.57. The doubly truncated large Witt graph has no B-doubles.

Proof. The doubly truncated large Witt graph has b0 = 7 and b0 − b1 = 1.
Therefore

7 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8. Other Sporadic Examples

5.8.1. Coxeter Graph [PSL(3, 2).2]
The Coxeter graph [PSL(3, 2).2] has as vertices the conjugacy class of 28 ele-
ments with order 2 in [PSL(3, 2).2] corresponding to the transpose-inverse auto-
morphism of PSL(3, 2) = GL(3, 2). Two such are adjacent when they commute.
Its intersection array is

{3, 2, 2,1;1,1,1, 2}.
Proposition 5.58. The Coxeter graph [PSL(3, 2).2] has no A-covers.

Proof. LetH be an r-fold A-cover of G = [PSL(3, 2).2] of diameterD. Then by
Theorem 3.2 either D = 8 and

i(H ) =
{

3, 2, 2,1,
r − 1

r
(2),1,1,1;1,1,1,

1

r
(2),1, 2, 2, 3

}

or D = 9 and

i(H ) = {3, 2, 2,1, t(r − 1), 2,1,1,1;1,1,1, 2, t,1, 2, 2, 3}.
Case 1: D = 8. By Corollary 3.3(a), r divides cd = 2. Thus 2 is the only pos-

sible value of r and

i(H ) = {3, 2, 2,1,1,1,1,1;1,1,1,1,1, 2, 2, 3}
with |H | = r|G| = 56. In [7, Chap. 14] we find that this intersection array is not
feasible, and therefore no such A-cover exists.

Case 2: D = 9. Since 2 = cd > min(bd−1, b0 − cd) = min(1,1), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.59. The Coxeter graph [PSL(3, 2).2] has no B-doubles.

Proof. The Coxeter graph has b0 = 3 and b0 − b1 = 1. Therefore

3 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.
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5.8.2. Sylvester Graph [P3L(2, 9)]
The Sylvester graph [P3L(2, 9)] has as vertices the conjugacy class of 36 ele-
ments with order 2 in P3L(2, 9) corresponding to nontrivial field automorphisms.
Two such are adjacent when they commute. The graph has intersection array

{5, 4, 2;1,1, 4}
and is distance-transitive with automorphism group P3L(2, 9).

Proposition 5.60. The Sylvester graph [P3L(2, 9)] has no A-covers.

Proof. Let H be an A-cover of G = [P3L(2, 9)] of diameter D. Then by Theo-
rem 3.2 either D = 6 and

i(H ) =
{

5, 4, 2,
r − 1

r
(4),1,1;1,1,

1

r
(4), 2, 4, 5

}

or D = 7 and

i(H ) = {5, 4, 2, t(r − 1), 4,1,1;1,1, 4, t, 2, 4, 5}.
Case 1: D = 6. By Corollary 3.3(a), r divides cd = 4 and

r ≤ cd

max(cd−1, cd − bd−1)
= 4

max(1, 4 − 2)
.

Thus 2 is the only possible value of r.
Hence i(H ) = {5, 4, 2, 2,1,1;1,1, 2, 2, 4, 5} with |H | = r|G| = 72. In [7,

Chap. 14] we find that this intersection array is not feasible, and therefore no such
A-cover exists.

Case 2: D = 7. Since 4 = cd > min(bd−1, b0 − cd) = min(2,1), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.61. The Sylvester graph [P3L(2, 9)] has no B-doubles.

Proof. The Sylvester graph has b0 = 5 and b0 − b1 = 1. Therefore

5 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8.3. Doro Graph [P3L(2,16)]
The Doro graph [P3L(2,16)] has as vertices the conjugacy class of 68 elements
with order 2 in P3L(2,16) corresponding to nontrivial field automorphisms. Two
such are adjacent when they have product of order 3. The graph has intersection
array

{12,10, 3;1, 3, 8}
and is distance-transitive with automorphism group P3L(2,16).

Proposition 5.62. The Doro graph [P3L(2,16)] has no A-covers.
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Proof. Let H be an r-fold A-cover of [P3L(2,16)] of diameterD. Then by The-
orem 3.2 either D = 6 or D = 7.

Case 1: D = 6. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 8

max(3, 8 − 3)
.

Thus r = 1, and no such A-cover exists.

Case 2:D = 7. Since 8 = cd > min(bd−1, b0 − cd) = min(3,12 − 8), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.63. The Doro graph [P3L(2,16)] has no B-doubles.

Proof. The Doro graph has b0 = 12 and b0 − b1 = 2. Therefore

12 = b0 > (b0 − b1)((b0 − b1)+ 1) = 2 · 3 = 6,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8.4. Biggs–Smith Graph [PSL(2,17)]
The Biggs–Smith graph [PSL(2,17)] has as vertices the conjugacy class of 102
subgroups Sym(4) in PSL(2,17). The graph has intersection array

{3, 2, 2, 2,1,1,1;1,1,1,1,1,1, 3}
and is distance-transitive with automorphism group PSL(2,17).

Proposition 5.64. The Biggs–Smith graph [PSL(2,17)] has no A-covers.

Proof. Let H be an r-fold A-cover of [PSL(2,17)] of diameter D. Then by The-
orem 3.2 either D = 14 or D = 15.

Case 1: D = 14. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 3

max(1, 3 − 1)
.

Thus r = 1, and no such A-cover exists.

Case 2:D = 15. Since 3 = cd > min(bd−1, b0 − cd) = min(1, 3 − 3), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.65. The Biggs–Smith graph [PSL(2,17)] has no B-doubles.

Proof. The Biggs–Smith graph has b0 = 3 and b0 − b1 = 1. Therefore

3 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8.5. Perkel Graph [PSL(2,19)]
The Perkel graph [PSL(2,19)] has as vertices a conjugacy class of 57 subgroups
Alt(5) in PSL(2,19). The graph has intersection array
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{6, 5, 2;1,1, 3}
and is distance-transitive with automorphism group PSL(2,19).

Proposition 5.66. The Perkel graph [PSL(2,19)] has no A-covers.

Proof. Let H be an r-fold A-cover of G = [PSL(2,19)] of diameter D. Then by
Theorem 3.2 either D = 6 and

i(H ) =
{

6, 5, 2,
r − 1

r
(3),1,1;1,1,

1

r
(3), 2, 5, 6

}

or D = 7 and

i(H ) = {6, 5, 2, t(r − 1), 3,1,1;1,1, 3, t, 2, 5, 6}.
Case 1: D = 6. By Corollary 3.3(a), r divides cd = 3 and so 3 is the only

possible value of r. Therefore i(H ) = {6, 5, 2, 2,1,1;1,1,1, 2, 5, 6} with |H | =
r|G| = 171. In [7, Chap. 14] we find that this intersection array is not feasible, and
therefore no such A-cover exists.

Case 2: D = 7. Since 3 = cd > min(bd−1, b0 − cd) = min(2, 6 − 3), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.67. The Perkel graph [PSL(2,19)] has no B-doubles.

Proof. The Perkel graph has b0 = 6 and b0 − b1 = 1. Therefore

6 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8.6. Locally Petersen Graph [P?L(2, 25)]
The locally Petersen graph [P?L(2, 25)] has as vertices the conjugacy class of 65
elements with order 2 in P?L(2, 25) corresponding to nontrivial field automor-
phisms. Two such are adjacent when they commute. The graph has intersection
array

{10, 6, 4;1, 2, 5}
and is distance-transitive with automorphism group P?L(2, 25).

Proposition 5.68. The locally Petersen graph [P?L(2, 25)] has no A-covers.

Proof. LetH be an r-fold A-cover of [P?L(2, 25)] of diameterD. Then by The-
orem 3.2 either D = 6 or D = 7.

Case 1: D = 6. By Corollary 3.3(a), r divides cd = 5 and

r ≤ cd

max(cd−1, cd − bd−1)
= 5

max(2, 5 − 4)
.

Thus r = 1, and no such A-cover exists.
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Case 2:D = 7. Since 5 = cd > min(bd−1, b0 − cd) = min(4,10 − 5), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.69. The locally Petersen graph [P?L(2, 25)] has no B-doubles.

Proof. The Petersen graph has no triangles, so maximal cliques in the locally Pe-
tersen graph [P?L(2, 25)] have size 3. As b0 = 10 > 3(3−1) = 6, Lemma 3.6(a)
implies that the graph has no B-doubles.

5.8.7. Distance-3 Hermitean Forms Graph Her(3, 4)3

The distance-3 graph Her(3, 4)3 of the Hermitean forms graph Her(3, 4) is itself
distance-transitive with 280 vertices and intersection array

{9, 8, 6, 3;1,1, 3, 8}.
Its automorphism group is P3L(3, 4).2.

Proposition 5.70. The distance-3 graph Her(3, 4)3 of the Hermitian forms
graph has no A-covers.

Proof. Let H be an r-fold A-cover of Her(3, 4)3 of diameter D. Then by Theo-
rem 3.2 either D = 8 or D = 9.

Case 1: D = 8. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 8

max(3, 8 − 3)
.

Thus r = 1, and no such A-cover exists.

Case 2: D = 9. Since 8 = cd > min(bd−1, b0 − cd) = min(3, 9 − 8), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.71. The distance-3 graph Her(3, 4)3 of the Hermitian forms graph
has no B-doubles.

Proof. The graph Her(3, 4)3 has b0 = 9 and b0 − b1 = 1. Therefore

9 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8.8. Unitary Nonisotropics Graph [P3U(3, 42)]
Let V = F

3
16, and let f be a Hermitean form on V of full rank 3. There are

208 1-spaces F16x with f(x, x) �= 0. (Such a 1-space is nonisotropic.) The uni-
tary nonisotropics graph [P3U(3, 42)] has these 1-spaces as vertices with F16x1

and F16x2 adjacent when f(x1, x2) = 0. Its automorphism group P3U(3, 42) is
distance-transitive with intersection array

i(G) = {12,10, 5;1,1, 8}.
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Proposition 5.72. The unitary nonisotropics graph [P3U(3, 42)] has no A-
covers.

Proof. Let H be an r-fold A-cover ofG = [P3U(3, 42)] of diameterD. Then by
Theorem 3.2 either D = 6 and

i(H ) =
{

12,10, 5,
r − 1

r
(8),1,1;1,1,

1

r
(8), 5,10,12

}

or D = 7 and

i(H ) = {12,10, 5, t(r − 1), 8,1,1;1,1, 8, t, 5,10,12}.
Case 1: D = 6. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 8

max(1, 8 − 5)
.

Thus 2 is the only possible value of r. Therefore i(H ) = {12,10, 5, 4,1,1;
1,1, 4, 5,10,12}, and so |H | = r|G| = 416. In [7, Chap. 14] we find that this
intersection array is not feasible, and therefore no such A-cover exists.

Case 2: D = 7. Since 8 = cd > min(bd−1, b0 − cd) = min(5, 4), no such A-
cover exists by Corollary 3.3(b).

Proposition 5.73. The unitary nonisotropics graph [P3U(3, 42)] has no B-
doubles.

Proof. The graph [P3U(3, 42)] has b0 = 12 and b0 − b1 = 2. Therefore

12 = b0 > (b0 − b1)((b0 − b1)+ 1) = 2 · 3 = 6,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8.9. Hoffman–Singleton Line Graph [P?U(3, 52)]
The Hoffman–Singleton graph has as vertex set a conjugacy class of 50 subgroups
Aut(Sym(6)) = Sym(6).2 in the group P?U(3, 52). It is distance-transitive of di-
ameter 2 and has intersection array

{7, 6;1,1}.
Its line graph [P?U(3, 52)] has as vertex set the 175 edges of the Hoffman–
Singleton graph, two such adjacent when they share a Hoffman–Singleton ver-
tex. The line graph has intersection array

{12, 6, 5;1,1, 4}
and is distance-transitive with automorphism group P?U(3, 52).

Proposition 5.74. The line graph [P?U(3, 52)] of the Hoffman–Singleton graph
has no antipodal A-covers.

Proof. LetH be an r-fold A-cover ofG = [P?U(3, 52)] of diameterD. Then by
Theorem 3.2 either D = 6 and
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i(H ) =
{

12, 6, 5,
r − 1

r
(4),1,1;1,1,

1

r
(4), 5, 6,12

}

or D = 7 and

i(H ) = {12, 6, 5, t(r − 1), 4,1,1;1,1, 4, t, 5, 6,12}.
Case 1: D = 6. By Corollary 3.3(a), r divides cd = 4. Thus we have two pos-

sibilities for r, namely 2 and 4.
For r = 2,

i(H ) = {12, 6, 5, 2,1,1;1,1, 2, 5, 6,12}
with |H | = r|G| = 350; for r = 4,

i(H ) = {12, 6, 5, 3,1,1;1,1,1, 5, 6,12}
with |H | = r|G| = 700. In [7, Chap. 14] we find that these intersection arrays are
not feasible, and therefore no such A-covers exist.

Case 2: D = 7. By Corollary 3.3(b)

t(r − 1) ≤ min(bd−1, b0 − cd) = min(5, 8)

and cd = 4 ≤ t. Thus we have r = 2 and t ∈ {4, 5} and

i(H ) = {12, 6, 5, t, 4,1,1;1,1, 4, t, 5, 6,12}
with |H | = r|G| = 350. In [7, Chap. 14] we find that these intersection arrays are
not feasible, and therefore no such A-covers exist.

Proposition 5.75. The line graph [P?U(3, 52)] of the Hoffman–Singleton graph
has no B-doubles.

Proof. The Hoffman–Singleton graph J has

a1(J ) = b0(J )− b1(J )− c1(J ) = 7 − 6 − 1 = 0;
that is, it has no triangles.Therefore, for any cliqueM in its line graph [P?U(3,52)],
there must be a vertex x of J with the J -edges in M all containing x. This im-
plies that the only maximal cliques of [P?U(3, 52)] are the 50 cliques of size 7
induced by the 50 vertex neighborhoods in the Hoffman–Singleton graph J. By
Lemma 3.5, for the line graph [P?U(3, 52)] to have a B-double it must have at
least 175 = |[P?U(3, 52)]| distinct maximal cliques. Therefore, the line graph
has no B-double.

5.8.10. Livingstone Graph [J1]
The Livingstone graph [J1] has as vertices a conjugacy class of 266 subgroups
PSL(2,11) in the sporadic Janko group J1. The graph has intersection array

{11,10, 6,1;1,1, 5,11}
and is distance-transitive with automorphism group J1.

Proposition 5.76. The Livingstone graph [J1] has no A-covers.
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Proof. Let H be an r-antipodal A-cover of [J1] of diameter D. Then by Theo-
rem 3.2 either D = 8 or D = 9.

Case 1: D = 8. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 11

max(5,11 − 1)
.

Thus r = 1, and hence no A-cover exists.

Case 2: D = 9. Since 11 = cd > min(bd−1, b0 − cd) = min(1,11 − 11), no
such A-cover exists by Corollary 3.3(b).

Proposition 5.77. The Livingstone graph [J1] has no B-doubles.

Proof. The Livingstone graph [J1] has b0 = 11 and b0 − b1 = 1. Therefore

11 = b0 > (b0 − b1)((b0 − b1)+ 1) = 1 · 2 = 2,

and by Lemma 3.6(b) the graph has no B-doubles.

5.8.11. Hall–Janko Near Octagon [HJ.2]
The Hall–Janko near octagon graph [HJ.2] has as vertices a conjugacy class of
315 elements with order 2 in the sporadic group HJ. Two such are adjacent when
they commute. The graph has intersection array

{10, 8, 8, 2;1,1, 4, 5}
and is distance-transitive with automorphism group Aut(HJ) = HJ.2. The graph
is the incidence graph of a near 8-gon with three points per line.

Proposition 5.78. The Hall–Janko near octagon graph [HJ.2] has no A-covers.

Proof. Let H be an r-fold A-cover of G of diameter D. Then by Theorem 3.2
either D = 8 or D = 9.

Case 1: D = 8. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 5

max(4, 5 − 2)
.

Thus r = 1, and no such A-cover exists.

Case 2:D = 9. Since 5 = cd > min(bd−1, b0 − cd) = min(2,10 − 5), no such
A-cover exists by Corollary 3.3(b).

Proposition 5.79. The Hall–Janko near octagon graph [HJ.2] has no B-doubles.

Proof. The graph [HJ.2] has b0 = 10 and b0 − b1 = 2. Therefore

10 = b0 > (b0 − b1)((b0 − b1)+ 1) = 2 · 3 = 6,

and by Lemma 3.6(b) the graph has no B-doubles.
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5.8.12. Patterson Graph [Suz.2]
The Patterson graph [Suz.2] has as vertices a conjugacy class of 22,880 subgroups
with order 3 in the sporadic Suzuki group Suz. Two such are adjacent when they
commute. The graph has intersection array

{280, 243,144,10;1, 8, 90, 280}
and is distance-transitive with automorphism group Aut(Suz) = Suz.2.

Proposition 5.80. The Patterson graph [Suz.2] has no A-covers.

Proof. LetH be an r-foldA-cover of [Suz.2] of diameterD. Then by Theorem 3.2
either D = 8 or D = 9.

Case 1: D = 8. By Corollary 3.3(a),

r ≤ cd

max(cd−1, cd − bd−1)
= 280

max(90, 280 − 10)
.

Thus r = 1, and hence no such A-cover exists.

Case 2: D = 9. Since 280 = cd > min(bd−1, b0 − cd) = min(10, 280 − 280),
no such A-cover exists by Corollary 3.3(b).

Proposition 5.81. The Patterson graph [Suz.2] has no B-doubles.

Proof. By Lemma 3.7 the valency B0(H ) of the B-double H ofG = [Suz.2] is a
root of the polynomial

x 2 − x − 280c,

where c = C2(H ) satisfies 1 ≤ c ≤ c2(G) = 8. This polynomial has discriminant√
1 + 1120c. However, for integral c with 1 ≤ c ≤ 8, this discriminant is never an

integer. The contradiction proves that no such B-double H exists.
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