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1. Composition algebras

An algebra over the field K is a K-vector space A combined with a bilinear
product π : A × A −→ A. The algebra admits composition if there is defined
on A a nondegenerate quadratic form q : A −→ K with the additional property
that q(a)q(b) = q(ab), for all a, b ∈ A.

One goal is Hurwitz’

(1.1) Theorem. A finite dimensional composition algebra has dimension 1,
2, 4, or 8 over the field K.

In each of these dimensions examples always exist, and we find out a great
deal about the examples as well. Indeed, if we were only interested in a proof
of the theorem, then the usual doubling methods (see [6] or Section 6.4 below)
are quicker. We also wish to study carefully the related geometries (and groups,
although we do not really get to them much).

Hurwitz’ theorem does not require the hypothesis of finite dimensionality.
The doubling proof makes no distinctions; see Corollary 6.2 below. The proof
of Section 4 might adapt in some form to include infinite dimension (countable
suffices since any finitely generated algebra has at most countable dimension).

Our main motivation/reference is the chapter by Buekenhout and Cohen [2],
which is in turn greatly influenced by Van der Blij and Springer [1]. Also of
help are the books of Chevalley [3] and Jacobson [6]. Two good references on
quaternion and octonion algebras are the article of Curtis [4] and the chapters
by Koecher and Remmert in [5].

2. Some geometry

Let q : A −→ K be a quadratic form on the finite dimensional K-space A. That
is,

q(αx) = α2q(x) ,

1



for all α ∈ K and x ∈ A, and the associated form (·|·) : A×A −→ K given by

(a|b) = q(a+ b)− q(a)− q(b)

is bilinear. For B ⊆ A, we let B⊥ = {x ∈ A | (x|b) = 0, b ∈ B }, a K-subspace
of A. The form q is nondegenerate if A⊥ = 0.

For any subset B of A, we let [B] be the K-subspace of A spanned by B.

(2.1) Proposition. If A has dimension 2 and q is nondegenerate on A, then
A is either anisotropic (that is, q(a) = 0 if and only if a = 0) or hyperbolic.
If q is anisotropic, then there is a quadratic extension F of K with F ⊗K A
hyperbolic.

Proof. Choose a basis x, y ∈ A with (x|y) = 1, and set q(x) = a and
q(y) = b. Then q(αx + βy) = aα2 + αβ + bβ2. Thus A is anisotropic if
f(t) = at2 + t+ b is irreducible in K[t]. If f(t) is reducible, then we could have
originally chosen an x with a = q(x) = 0. Then, after we replace y with −bx+y,
our new x and y form a hyperbolic pair: q(x) = q(y) = 0 and (x|y) = 1. (By
definition, a hyperbolic 2-space is one spanned by a hyperbolic pair.)

If {x, y} is a hyperbolic pair, as in the proof, then

q(x+ αy) = q(x) + α2q(y) + α(x|y) = α .

Therefore in a hyperbolic 2-space every element of the field K is realized as a
q-value.

A subset S of A is singular (or sometimes even totally singular) if the re-
striction of q to S is identically 0. Notice that if U is a singular subspace, then
nondegenerate q induces a nondegenerate quadratic form on the quotient space
U⊥/U .

(2.2) Proposition. If q is a nondegenerate quadratic form on the K-space
A of finite dimension, then the following are equivalent:

(1) there is a singular subspace of dimension at least dimK(A)/2;
(2) every maximal singular subspace has dimension dimK(A)/2;
(3) there are maximal singular subspaces M and N with A = M ⊕N ;
(4) A is a perpendicular direct sum of hyperbolic 2-spaces.

Proof. (1) is an easy consequence of all the others, and (4) easily implies
(3). The remainder we prove by induction on dim(A), with Proposition 2.1
providing the initial step (the result being trivial in dimension 1).

We first show that each of (1) and (3) implies (4) Let x be a nonzero singular
vector in the maximal singular subspace M (of dimension at least dim(A)/2 for
(1)). Then, for any y ∈ A\x⊥ (chosen from N for (3)), the 2-space [x, y] is
hyperbolic by Proposition 2.1. By induction [x, y]⊥ is a perpendicular sum of
hyperbolic 2-spaces, giving (4).

We conclude by proving that (4) implies (2). Let x be nonzero in the maximal
singular space M . The quotient space x⊥/[x] is a perpendicular direct sum of
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hyperbolic 2-spaces, since (1) implies (4). Therefore by induction the maximal
singular subspace M/[x] has dimension half that of x⊥/[x].

In the situation of the proposition, we say that q and A are split (or hyper-
bolic). The index of q (and A) is then k = dimK(A)/2.

(2.3) Proposition. Let the quadratic form q be nondegenerate and split of
finite index k on the K-space A.

(1) Every singular subspace of codimension 1 in a maximal singular subspace
is contained in exactly two maximal singular subspaces.

(2) The graph on the set of maximal singular subspaces M, with two such
adjacent when their intersection has codimension 1 in each, is connected bipar-
tite of diameter k. In this graph, the distance between two maximal singular
subspaces M and N equals the codimension of M ∩N in each.

Proof. If U has codimension 1 in a maximal singular subspace, then U⊥/U
is a hyperbolic 2-space; so (1) follows from Proposition 2.1.

Let I be the graph described on the set M, and write M ∼ N when M is
adjacent to N . Let d(M,N) be the distance between M,N in I.

We first claim that, for all S ∈M and T1 ∼ T2 in I, we have

|dim(S ∩ T1)− dim(S ∩ T2)| = 1 .

Let U = T1 ∩ T2 of codimension 1 in each, and set R = S ∩ U . If necessary
passing to R⊥/R, we may assume R = 0 in proving the claim. Then U⊥ has
dimension k + 1 and so intersects S nontrivially. Therefore T = [U,U⊥ ∩ S] is
totally singular of dimension k. By (1), T is equal to exactly one of T1 or T2.
Thus

{dim(S ∩ T1),dim(S ∩ T2)} = {0, 1} ,
giving the claim.

Again by part (1), d(M,N) ≤ k − dim(M ∩ N). In particular the graph
is connected. To prove d(M,N) = k − dim(M ∩ N), we induct on d(M,N).
The result is true by definition for d(M,N) = 0, 1. Suppose d(M,N) = d,
and choose a T ∈ M with T ∼ N and d(T,M) = d − 1. Then by induction
d− 1 = k − dim(M ∩ T ). By the above and the claim d ≤ k − dim(M ∩N) =
(d− 1)± 1 ≤ d, as desired.

It remains to prove I bipartite. Otherwise, there is a minimal cycle C of odd
length, say 2m + 1. But for S ∈ C, the two vertices T1 and T2 at distance m
from S in C are adjacent with dim(S ∩T1)− dim(S ∩T2) = 0, contradicting the
earlier claim.

The graph of Proposition 2.3(2) is the incidence graph I(M) of maximal
singular subspaces. The two parts of its bipartition (uniquely determined by
connectivity) are Mρ and Mλ.

The following is an easy and familiar calculation:

(2.4) Proposition. For any nonsingular a ∈ A, the symmetry sa : x 7→
x− (x|a)

q(a) a has order 2 and is an isometry of the quadratic form q on A (and so

also of (·|·)). That is, for all x ∈ A, we have q(sa(x)) = q(x).
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3. Some basics

Let A be a composition algebra over K with associated nondegenerate quadratic
form q. As A is a K-algebra, we immediately have

(3.1) Lemma. The maps La : x 7→ ax and Ra : x 7→ xa are K-linear transfor-
mations of A.

The composition law, when written

q(Lax) = q(Rax) = q(a)q(x) ,

reveals the maps La and Ra to be similarities for q with respect to the scaling
constant q(a). They are then also similiarities for the associated bilinear form
(·|·); and we find, for all a, x, y ∈ A,

(xa|ya) = (ax|ay) = q(a)(x|y) .

(3.2) Lemma. Every composition algebra is isotopic to one with an identity
element 1.

Proof. See Jacobson [6, 418–419]. Choose f ∈ A with q(f) 6= 0, and set
e = q(f)−1f2 so that q(e) = 1. Therefore Le and Re are orthogonal hence
invertible. Then x · y = ((Re)

−1x)((Le)
−1y) is a K-algebra product on A that

admits composition with respect to q and has identity element e2.

From now on, we assume additionally that A has an identity 1. In this case
q(1) = q(1)2 = 1 since q is nondegenerate.

(3.3) Lemma. If F is an extension field for K, then the algebra F ⊗K A also
admits composition with respect to the induced quadratic form.

Proof. See Chevalley [3, II.2.8, p. 127–128]. The multiplication and forms
on A admit unique extension to F ⊗K A by bilinearity.

We give the full argument for quadratic extensions F of K, the case of
primary interest to us. In that case the extension of q to F ⊗K A is given by

q(x+ αy) = q(x) + α2q(y) + α(x|y) ,

for all x, y ∈ A and α ∈ F . To show that this induced form admits composition,
we must prove the extended law

q(x+ αy)q(w + αz) = q((x+ αy)(w + αz)) ,

for all x, y, w, z ∈ A and α ∈ F . By the composition law and similarity in A we
have

q(x+αy)q(w+αz)−q((x+αy)(w+αz)) = α2((x|y)(w|z)−(xz|yw)−(xw|yz)) .
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Setting α = 1, we find within A the identity

(x|y)(w|z) = (xz|yw) + (xw|yz) (∗)

since A does admit composition. This in turn implies that

q(x+ αy)q(w + αz)− q((x+ αy)(w + αz)) = 0

identically, for all choices of α. In particular, choosing α so that the quadratic
extension F equals K + Kα, we prove that the composition law extends to all
F ⊗K A, as desired.

In general, we must prove

q(
∑
i αixi)q(

∑
i αizi) = q((

∑
i αixi)(

∑
i αizi)) ,

for αi ∈ F (coming from some K basis for F ) and arbitrary xi, zi ∈ A. But this
follows, again using similarity and the identity (∗).

As an immediate corollary of Proposition 2.1 and Lemma 3.3, we have

(3.4) Corollary. If A has dimension at least 2 over K then, by tensoring
with an appropriate quadratric extension F , we get a composition algebra F⊗KA
containing nonzero singular elements.

We define the operation of conjugation on A by x 7→ x̄ = −x+ (x|1)1.

(3.5) Lemma.
(1) ¯̄x = x
(2) q(x) = q(x̄) and (x|y) = (x̄|ȳ)

Proof. x̄ = −s1(x), so this follows from Proposition 2.4.

(3.6) Proposition.
(1) x̄(xy) = q(x)y = (yx)x̄. In particular x̄x = q(x)1 = xx̄.
(2) x̄(yz) + ȳ(xz) = (x|y)z and (zy)x̄+ (zx)ȳ = (x|y)z.
(3) (x|v̄y) = (vx|y) and (x|yv̄) = (xv|y).

Proof. In each case, we only prove the first identity.
We first prove (3):

(x|v̄y) = (x|((1|v)− v)y)
= (x|y)(1|v)− (x|vy)
= (x|y)(q(1 + v)− q(1)− q(v))− (x|vy)
= ((1 + v)x|(1 + v)y)− (x|y)− (vx|vy)− (x|vy) by similarity
= (vx|y) .

Next, for (1):

(x̄(xy)|z) = (xy|xz) by (3)
= q(x)(y|z) by similarity
= (q(x)y|z) ,
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for all z. Therefore by nondegeneracy x̄(xy) = q(x)y, giving (1).
We linearize (1) to get (2):

(x̄+ ȳ)((x+ y)z) = q(x+ y)z by (1)
x̄(xz) + ȳ(yz) + x̄(yz) + ȳ(xz) = q(x)z + q(y)z + (x|y)z

x̄(yz) + ȳ(xz) = (x|y)z .

(3.7) Corollary.
(1) x2 − (x|1)x+ q(x) = 0.
(2) xy = ȳx̄.

Proof. By definition x̄x = (−x + (x|1)1)x = −x2 + (x|1)x, so (1) follows
directly from Proposition 3.6(1).

For (2), we follow [2, Prop. 14.2.4] and use Proposition 3.6(3) many times:

(xy|z) = (1|(xy)z) = (z̄|xy)
= (z̄ȳ|x) = (ȳ|zx)
= (ȳx̄|z) ,

for all z. Therefore, by nondegeneracy, xy = ȳx̄.

4. Some proofs

We assume throughout that A is a finite dimensional algebra with identity 1 over
K admitting composition with respect to nondegenerate q and that there exist
nonzero singular elements in A. Let S be the set of nonzero singular vectors in
A.

(4.1) Lemma. q is split. Indeed if x, y ∈ S with (x|y) 6= 0, then A =
xA⊕ yA = Ax⊕Ay with each xA and Ax maximal singular.

Proof. First note that q(xA) = 0 = q(Ax), for all x ∈ S.
Let x ∈ S and a /∈ x⊥. Then there is a second singular vector y with

[x, y] = [x, a] and (x|y) = (x̄|ȳ) 6= 0 by Proposition 2.1. Now, by Proposition
3.6(2), for every z ∈ A, we have

(x̄|ȳ)z = x(ȳz) + y(x̄z) ∈ xA+ yA and
(x̄|ȳ)z = (zȳ)x+ (zx̄)y ∈ Ax+Ay .

Thus A = xA+ yA = Ax + Ay as claimed. As q is nondegenerate, xA ∩ yA =
0 and both are maximal singular. By Proposition 2.2, q is split. A similar
argument proves the claims for Ax and Ay. (Here and elsewhere, lefthanded
and righthanded versions of a result can be proven by similar arguments or seen
to be equivalent using Corollary 3.7(2).)

Denote by M the set of all maximal singular subspaces of A. Let k be the
dimension of each member of M (the index of q), so that A has K-dimension
2k.
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(4.2) Lemma.
(1) If x ∈ S, then the image of Lx is xA and its kernel is x̄A.
(2) If x ∈ S, then the image of Rx is Ax and its kernel is Ax̄.
(3) If x is nonsingular, then Lx and Rx are invertible.

Proof. For (1) certainly the image of Lx is xA, and

dim(xA) + dim(x̄A) = k + k = dim(A) .

So here it remains to prove that x̄A is contained in the kernel of Lx, which
comes from Proposition 3.6(1). A similar argument gives (2).

For (3), q(x)−1Lx̄ equals L−1
x by Proposition 3.6(1), and q(x)−1Rx̄ is R−1

x .

(4.3) Lemma. If q has index at least 2 and x, y ∈ S then xA 6= Ay.

Proof. Suppose xA = Ay. Then x̄(Ay) = 0 by Lemma 4.2. By Proposition
3.6(2), for all a ∈ A,

x̄(ay) + ā(xy) = (x|a)y .

Thus ā(xy) = (x|a)y. In particular A(xy) ≤ [y] has dimension at most 1. By
Lemma 4.2, for nonzero w, Rw has rank k or 2k. This forces xy = 0. Then
(x|a) = 0, for all a, contradicting nondegeneracy of q.

(4.4) Lemma. Assume q has index at least 2. If x, y ∈ S with xy = 0, then
xA ∩Ay has codimension 1 in each and is equal to x(y⊥) = (x⊥)y.

Proof. The codimension of x(y⊥) in xA is at most one, so by Lemma 4.3
it is enough to prove x(y⊥) ⊆ Ay (and similarly (x⊥)y ⊆ xA).

Let v ∈ y⊥. Then by Proposition 3.6(2)

(xv)ȳ + (xy)v̄ = (v|y)x .

Thus (xv)ȳ = 0. Therefore xv ∈ ker(Rȳ) = Ay, by Lemma 4.2.

(4.5) Lemma. Assume q has index at least 2.
(1) Let x be singular and U a maximal singular subspace with xA ∩ U of

codimension 1 in each. Then there is a singular y with xy = 0, U = Ay, and
xA ∩ U = xA ∩Ay = x(y⊥) = (x⊥)y.

(2) Let x be singular and U a maximal singular subspace with Ax ∩ U of
codimension 1 in each. Then there is a singular y with yx = 0, U = yA, and
Ax ∩ U = yA ∩Ax = y(x⊥) = (y⊥)x.

Proof. We only prove (1). Let U0 = U ∩ xA, of codimension 1 in each.
Let W be the preimage of U0 under Lx, so that W has codimension 1 in A. By
Lemma 4.2, ker(Lx) = x̄A is contained in W . As W has codimension 1 in A,
there is a y, uniquely determined up to scalar multiple, with W = y⊥, hence
U0 = LxW = xW = x(y⊥). Furthermore, [y] = W⊥ ⊆ (x̄A)⊥ = x̄A, hence
y ∈ S. Also 0 = xy ∈ x(x̄A), by Proposition 3.6 or Lemma 4.2.

By the previous paragraph and Lemma 4.4, we have

xA ∩Ay = x(y⊥) = U0 = xA ∩ U .

Therefore Ay = U by Proposition 2.3(1).
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(4.6) Corollary. Assume q has index at least 2. For every maximal singular
subspace U , there is a singular x with U equal to xA or Ax. The two parts of
the incidence graph I(M) on the set M of maximal singular subspaces are
Mρ = {Ax |x ∈ S} and Mλ = {xA |x ∈ S}.

Proof. Consider the two sets of maximal singular subspaces {Ax |x ∈ S}
and {xA |x ∈ S}. They are disjoint by Lemma 4.3. By Lemma 4.5 every edge
on yA in the incidence graph I(M) goes to {Ax |x ∈ S}, and every edge of
I(M) on Ay goes to {xA |x ∈ S}. By Proposition 2.3(2) I(M) is bipartite and
connected, so these sets are the two parts of the bipartition.

(4.7) Lemma. Assume q has index at least 3. Let x, y ∈ S be with [x] 6= [y].
(1) If (x|y) = 0 then xA ∩ yA has codimension 2 in each and Ax ∩ Ay has

codimension 2 in each.
(2) xA 6= yA and Ax 6= Ay.

Proof. Let U0 be singular of dimension k − 1 (≥ 2) and containing [x, y].
By Lemma 4.5 and Corollary 4.6, there are w, z ∈ S with U0 = wA ∩ Az. As
[x, y] ⊆ Az, we have xz̄ = yz̄ = 0 by Lemma 4.2. Therefore xA ∩ Az̄ and
yA ∩Az̄ both have dimension k − 1 by Lemma 4.4. This implies that xA ∩ yA
has dimension at least k − 2. The dimension of xA ∩ yA can not be k − 1 by
Lemmas 4.3 and 4.5, so (1) will follow from (2).

If xA = yA, then (x|y) = 0; so in proving (2) we can make use of the previous
paragraph. By Lemma 4.4 again xA ∩ Az̄ = yA ∩ Az̄ equals the k − 1 space
(x⊥)z̄ = (y⊥)z̄. Its preimage under Rz̄ is then x⊥ = y⊥. This forces [x] = [y],
which is not the case.

Starting again with w̄x = w̄y = 0, we find the rest of the lemma.

(4.8) Theorem. A has dimension 2, 4, or 8.

Proof. We must prove that k is 1, 2, or 4. In doing this, clearly we can
assume that k ≥ 3. Consider the part Mλ = {xA |x ∈ S} of the graph I(M)
and distances within it.

By Proposition 2.3 and Corollary 4.6, the distance from xA to yA in I(M)
is even and equal to the codimension of xA∩ yA in each. Every even number in
the range 0 to k must be realized, since I(M) is connected of diameter k. But
by Lemmas 4.1 and 4.7, the only distances realized within Mλ = {xA |x ∈ S}
are 0 (when [x] = [y]), 2 (when (x|y) = 0 but [x] 6= [y]), and k (when (x|y) 6= 0).
This forces k to be even and 2 ≥ k − 2 (≥ 1). That is, k = 4.

5. Some properties

We discuss some properties of composition algebras with identity for arbitrary
K in dimensions 1, 2, 4, and 8.

In dimension 1 there is really nothing to say. The algebra is unique. The
form q is just squaring and clearly admits composition. In the other dimensions,
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there are often many examples; but if we restrict our attention to split algebras,
then they are essentially unique (a further consequence of the doubling approach
[6] and Section 6.4).

Let A now be, as in the previous section, a finite dimensional split compo-
sition algebra with identity and nondegenerate form q. Let k = dimK(A)/2 be
the index of q. We collect together many properties of A coming from our work
of the previous two sections. In the case of index k = 1, the algebra A is a
hyperbolic 2-space, and most of the statements in the next theorem are either
vacuous or trivial.

Compare Theorem 14.3.1 of Buekenhout and Cohen [2].

(5.1) Theorem. Let A be split of index k equal to 2 or 4. Throughout
x, y ∈ S, the set of nonzero singular vectors.

(1) { zA | z ∈ S} and {Az | z ∈ S} are the two classes of maximal singular
subspaces of A.

(2) a ∈ xA if and only if x̄a = 0 if and only if āx = 0. a ∈ Ax if and only
if ax̄ = 0 if and only if xā = 0.

(3) Always xA 6= Ay. For k = 2, xA = yA if and only if y ∈ xA and
Ax = Ay if and only if y ∈ Ax. For k = 4, xA = yA if and only if Ax = Ay if
and only if [x] = [y].

(4) Assume (x|y) 6= 0. Then A = xA⊕ yA = Ax⊕Ay.
(5) Assume k = 2, (x|y) = 0, and [x] 6= [y]. Then either xA = yA and

Ax ∩Ay = 0 or Ax = Ay and xA ∩ yA = 0.
(6) Assume k = 4, (x|y) = 0, and [x] 6= [y]. Then xA ∩ yA and Ax ∩ Ay

both have dimension 2, with xA∩yA = x(ȳA) = y(x̄A) and Ax∩Ay = (Aȳ)x =
(Ax̄)y.

(7) Assume xy = 0. Then xA ∩ Ay = x(y⊥) = (x⊥)y of codimension 1 in
both xA and Ay.

(8) Assume xy 6= 0. Then xA ∩Ay = [xy] of dimension 1.

Proof. (1) follows from Corollary 4.6.
(2) comes from Corollary 3.7 and Lemma 4.2.
(3) By (1) or Lemma 4.3, xA 6= Ay. For k = 4, the rest is Lemma 4.7(2).

For k = 2, xA ∩ yA is nonzero if and only if xA = yA by (1). That is, y ∈ xA
if and only if xA = yA.

(4) is contained in Lemma 4.1.
(5) As in (3), again xA∩yA is either 0 or xA = yA and similarly for Ax∩Ay.

Here [x, y] is itself maximal singular. Therefore either [x, y] = xA = yA, in
which case Ax∩Ay must be zero by (1), or [x, y] = Ax = Ay and xA∩ yA = 0.

(6) The dimensions are correct by Lemma 4.7(1). For the rest of (6), we prove
xA ∩ yA ⊇ x(ȳA) = y(x̄A) of dimension 2. Since (x|y) = 0, Proposition 3.6(2)
gives x(ȳA) = y(x̄A), clearly contained in xA∩yA. The space x(ȳA) is the image
of ȳA under Lx, and so has dimension equal to dim(ȳA)−dim(ker(Lx)∩ ȳA) =
dim(ȳA)− dim(x̄A ∩ ȳA) = 4− 2 = 2, as desired.

(7) is Lemma 4.4.

9



(8) By (1) the dimension of xA ∩ Ay is odd and at most k, and xA ∩ Ay
visibly contains xy. This gives the k = 2 case. For k = 4, the only other
possibility is for xA ∩Ay to have dimension 3. Then by Lemma 4.5(1) there is
a second y′ with Ay = Ay′ and xy′ = 0, which contradicts (3).

6. Some examples

As mentioned previously, a composition algebra with identity and having dimen-
sion 1 over K must be K with associated form q(x) = x2 (and the characteristic
of K cannot be 2). In particular, it is unique up to isomorphism.

We now investigate split composition K-algebras A with identity. Thus A
has dimension 2k and index k, for k = 1, 2, 4.

6.1. Index 1

Suppose dimK(A) = 2, hence k = 1. Then A is hyperbolic. Choose z ∈ A
with q(z) = 0 and (z|1) = 1. Then z̄ is also singular and z + z̄ = 1. We have
A = {αz + δz̄ |α, δ ∈ K}. By Corollary 3.7(1), z2 = (z|1)z − q(z) = z and,
similarly, z̄2 = z̄. Also zz̄ = z̄z = q(z) = 0 by Proposition 3.6(1). Therefore z
and z̄ are a spanning pair of orthogonal idempotents in A, and multiplication
in A is completely determined. Furthermore

q(αz + δz̄) = α2q(z) + δ2q(z̄) + αδ(z|z̄) = αδ .

Therefore A is uniquely determined up to isomorphism.

6.2. Index 2

Split composition K-algebras with identity and of index 2 and 4 are also unique
up to isomorphism (a consequence of uniqueness for index 1 and the doubling
Proposition 6.1 below.)

A composition algebra of dimension 4 is usually called a quaternion algebra.
There is a canonical example of a split composition K-algebra of index 2

and dimension 4, namely the algebra of all 2×2 matrices over K with the usual
multiplication and with q(x) = det(x):

det

[
α β
γ δ

]
= αδ − βγ .

Notice that the subalgebra of diagonal matrices is isomorphic to the index
1 example given above with

z =

[
1 0
0 0

]
and z̄ =

[
0 0
0 1

]
.
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6.3. Index 4

A composition algebra of dimension 8 is usually called an octonion or Cayley
algebra.

Again by the doubling Proposition 6.1, a split Cayley algebra (index 4 and
dimension 8) over K is unique up to isomorphism. Buekenhout and Cohen [2]
give Zorn’s construction:[

x1 x234

x567 x8

] [
y1 y234

y567 y8

]
=

[
x1y1 − x234 · y567 x1y234 + x234y8 + x567 × y567

x567y1 + x8y567 + x234 × y234 x8y8 − x567 · y234

]
,

where x1, x8, y1, y8 ∈ K and x234, x567, y234, y567 ∈ K3. Here, in addition to
scalar multiplication (from both sides), the two products · and × are, respec-
tively, the usual dot product

(a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3

and cross product (vector product)

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a1b3 − a3b1, a2b1 − a1b2) .

The associated quadratic form is

x1x8 + x234 · x567 .

I prefer the version got by replacing the 567 entry with its negative:[
x1 x234

x567 x8

] [
y1 y234

y567 y8

]
=

[
x1y1 + x234 · y567 x1y234 + x234y8 + x567 × y567

x567y1 + x8y567 − x234 × y234 x8y8 + x567 · y234

]
=[

x1y1 + x234 · y567 x1y234 + x234y8

x567y1 + x8y567 x8y8 + x567 · y234

]
+

[
0 x567 × y567

−x234 × y234 0

]
,

with associated quadratic form

x1x8 − x234 · x567 .

This demonstrates a connection with the usual matrix multiplication and deter-
minant. One easily sees three 4-dimensional subalgebras represented as matrix
algebras, as in the previous subsection:{[

x1 x234

x567 x8

] ∣∣∣x234, x567 ∈ E
}
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where the 1-space E is one of [(1, 0, 0)], [(0, 1, 0)], or [(0, 0, 1)]. Indeed, for any
1-space E = [e] with e · e = µ 6= 0, this is a 4-dimensional matrix subalgebra.
(Set x1 = α, x8 = δ, x234 = βe and x567 = (γ/µ)e .)

(For e · e = 0, we have{[
α 0
0 δ

]}
⊥
{[

0 βe
γe 0

]}
,

for α, β, γ, δ ∈ K, where the first factor is nondegenerate of dimension 2, as
before, and the second factor is a 0-subalgebra of dimension 2.)

6.4. Doubling

See Jacobson [6, 423–425]. The fundamental result is

(6.1) Proposition. Let B be a nondegenerate subalgebra of a composition
algebra (not necessarily split) with B containing the identity (and so invariant
under the conjugation map b 7→ b̄). Choose t ∈ B⊥ with q(t) = −γ 6= 0. Then
A = B +Bt = B ⊕Bt is a nondegenerate subalgebra of dimension twice that of
B with multiplication given by

(u+ vt)(x+ yt) = (ux+ γȳv) + (yu+ vx̄)t ,

for u, v, x, y ∈ B.

Proof. For a, b ∈ B, we have by Proposition 3.6(3), (a|bt) = (b̄a|t) = 0.
Therefore A = B +Bt is the perpendicular direct sum of nondegenerate B and
Bt. As γ 6= 0, Bt has dimension equal to that of B (by Lemma 4.2) and is itself
nondegenerate by similarity. Therefore A is nondegenerate.

It remains to prove that A satisfies the stated multiplication rule. For a, b ∈
B and r, s ∈ Bt, we have the fundamental identities:

(i) r = −r̄ ;
(ii) br = rb̄ ;
(iii) (ab)r = b(ar) ;
(iv) (ar)s = (rs)a .

The first is clear, since (r|1) = 0. For the second, we start with Proposition
3.6(2):

(ab)r + (ar̄)b̄ = (r̄|b)a = 0

hence (ab)r = −(ar̄)b̄ = (ar)b̄ by (i). Specializing to a = 1 gives (ii). We then
in turn have (ab)r = (ar)b̄ = b(ar) by (ii), and this is (iii).

For (iv), we again use Proposition 3.6(2):

(rs)a+ (rā)s̄ = (ā|s)r = 0

Hence (rs)a = −(rā)s̄ = (rā)s = (ar)s by (i) and (ii).

12



Therefore

(u+ vt)(x+ yt) = ux+ u(yt) + (vt)x+ (vt)(yt) ;
= ux+ (yu)t+ x̄(vt) + (t(yt))v by (iii), (ii), (iv) ;
= ux+ (yu)t+ (vx̄)t− (t̄(tȳ))v by (iii), (i), (ii) ;
= ux+ (yu)t+ (vx̄)t− (q(t)ȳ)v by (3.6)(1) ;
= (ux+ γȳv) + (yu+ vx̄)t ;

as desired.

In particular we get the infinite dimensional analogue of Hurwitz’ theorem.

(6.2) Corollary. There are no composition algebras of infinite dimension.

Proof. If there were such an algebra, then within it we could construct
nondegenerate composition subalgebras of dimension 16, contradicting Hurwitz’
Theorem 1.1.

The theorem has an important converse, the “doubling construction.” If B
is an arbitrary K-algebra with identity and admitting composition with respect
to the form qB , and if γ is a arbitrary nonzero element of K, then this formula
turns A = B ⊕ Bt into a K-algebra with identity that may admit composition
with respect to the quadratic form qA(x + yt) = qB(x) − γqB(y). Conjugation
is given by x+ yt = x̄− yt.

For a split composition algebra, every possible value −γ is attained by q on
each nondegenerate split subspace. Thus we usually fix −γ = 1.

The standard uniqueness, existence, nonexistence proof for split composition
algebras uses this construction:

1. start from K = A1 itself, commutative and associative with the conjuga-
tion map trivial (in characteristic 2, must start with A2);

2. the double of A1 is A2, a uniquely determined composition algebra of di-
mension 2, which is commutative and associative but has nontrivial con-
jugation;

3. A2 has unique double A4, a composition algebra of dimension 4, associative
but no longer commutative;

4. A4 doubles to a unique algebra A8 of dimension 8, which still admits
composition but is now neither commutative nor associative;

5. finally, from A8 the double A16 of dimension 16 no longer admits compo-
sition.

We have all that is needed for a formal proof, but see Jacobson [6] for the details.
The doubling construction can be expressed nicely in 2× 2 matrix form:[

u v
γv̄ ū

] [
x y
γȳ x̄

]
=

[
ux+ γȳv yu+ vx̄
γxv̄ + γūȳ γv̄y + x̄ū

]
.
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The selection γ = −1 then gives the usual matrix construction of the complex
numbers from the reals and the quaternions from the complexes.

When the algebra B is commutative and conjugation is trivial, the resulting
A is commutative. As long as B is commutative, the product on A is just the
regular matrix product and so is associative. For associative B admitting com-
position, the algebra A admits composition with respect to the “determinant”
form xx̄− γȳy.

7. Some triality

We give a version of triality for D4 geometries based upon the treatment of
Buekenhout and Cohen [2].

Let A be be a vector space K8 equipped with a nondegenerate split (hy-
perbolic) quadratic form q. The associated D4 geometry A is a 4-partite graph
E0∪̇E1∪̇E2∪̇E3. The singular (projective) points E0 are the singular 1-spaces of A
with respect to q. The singular (projective) lines E1 are the associated singular
2-spaces. E2 and E3 are the two classes of maximal singular 4-spaces given by
Proposition 2.3. Incidence between a point and a line or 4-space is given by con-
tainment. Similarly a line is incident to those 4-spaces that contain it. Finally
U2 ∈ E2 and U3 ∈ E3 are incident if and only if they intersect in a 3-space (so
the subgraph induced on E2∪̇E3 is exactly the incidence graph I(M) discussed
earlier).

We denote adjacency in E by ∼ .

(7.1) Lemma. Let E = E0∪̇E2∪̇E3 be the tripartite subgraph induced on the
set of singular points and 4-spaces. For each singular line ` ∈ E1, let E` be the
subgraph of E of those singular points and 4-spaces incident to `.

(1) E` is a complete tripartite subgraph of E, with each part of cardinality
|K|+ 1 (a projective line).

(2) If T is a complete tripartite subgraph of E meeting at least two parts of E
in at least two vertices, then there is a unique singular line ` ∈ E1 with T ⊆ E`.

Proof. The points incident to ` are certainly incident to any singular
subspace containing it. Now let M ∈ E` ∩ E2 and N ∈ E` ∩ E3. M ∩N has odd
codimension in each (see Proposition 2.3(2)) and dimension at least 2. Thus
dim(M ∩N) = 3, and M and N are incident in E . This proves E` to be complete
tripartite. To prove (1) it remains to show that each E` ∩ Ei (for i = 0, 2, 3) has
the structure of a projective line over K. This is clear for i = 0. Consider a
singular 3-space H containing `. This represents an arbitrary singular 1-space
in the quotient orthogonal geometry `⊥/`, split of dimension 4. By Proposition
2.3(1), this is contained in exactly two maximal 4-spaces, one in E2 and the other
in E3. Thus each E`∩Ei, for i = 2, 3, induces a partition of the singular projective
points of the geometry `⊥/` into singular projective lines. As M/` runs through
the projective lines of (E` ∩ E2)/`, the projective line N/` ∈ (E` ∩ E3)/` meets
each in exactly one projective point. This completes (1). (We have the two
rulings of the associated quadric, transverse to each other.)
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For (2), first suppose distinct [x], [y] ∈ T ∩ E0 and distinct M,M ′ ∈ T ∩ E2.
Then [x], [y] are contained in M ; so they span a singular line `, which in turn
is incident to any 4-space incident to both [x] and [y], including all those of T .
By the previous paragraph M ∩M ′ = `; so any point of T , being incident to
both M and M ′, must also belong to `. Thus T ⊆ E`, as desired. The case in
which T is known to meet both E2 and E3 in sets of size at least 2 is similar. (In
fact, we only need the result when T meets each part of E in at least 2 points.)
This completes (2).

We now assume additionally that A is an algebra with identity that admits
composition with respect to q. By Corollary 4.6 or Theorem 5.1(1) we may set

E2 = { zA | [z] ∈ E0 } and E3 = {Az | [z] ∈ E0 } .

(7.2) Lemma. For [x], [y] ∈ E0, the following are equivalent:
(1) xy = 0;
(2) [y] ∼ x̄A;
(3) [x] ∼ Aȳ;
(4) [ȳ] ∼ Ax;
(5) [x̄] ∼ yA;
(6) xA ∼ Ay;
(7) ȳA ∼ Ax̄.

Proof. By Lemma 4.2, x̄A is the kernel of Lx, so y ∈ x̄A if and only if
xy = 0. Similarly [x] ∈ Aȳ = ker(Ry) if and only if xy = 0. Also [ȳ] ∈ Ax if
and only if ȳx̄ = 0 if and only if xy = 0 by Corollary 3.7(2), and similarly for
[x̄] ∈ yA.

By Theorem 5.1 xA ∩ Ay has codimension 1 in each if and only if xy = 0,
and similarly ȳA ∩Ax̄ has codimension 1 in each if and only if ȳx̄ = 0.

Define on E the map τ , for all [x] ∈ E0:

[x]
τ−→ x̄A

τ−→ Ax̄
τ−→ [x] ,

so that τ has order 3 and permutes the three parts of E = E0∪̇E2∪̇E3 cyclically.

(7.3) Theorem. The map τ is an automorphism of E and extends uniquely
to an order 3 automorphism of the associated D4 geometry A, which we also
denote τ , a triality automorphism of A.

Proof. We have τ acting on pairs:

([y], x̄A)
τ−→ (ȳA,Ax̄)

τ−→ (Aȳ, [x])
τ−→ ([y], x̄A) .

By the proposition, any one of these is an edge of E if and only if xy = 0, in
which case they are all edges. Therefore τ is an automorphism of the graph E .

By Lemma 7.1(2), the subgraphs E` of E are the maximal complete tripartite
subgraphs having each part of size greater than 1. Any automorphism of E
must act on the set of such subgraphs and so on E1, that is, it extends to an
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automorphism of the full D4 geometry A. This extension must be unique, since
again by Lemma 7.1(2) any automorphism of A that is trivial on E is trivial on
A.

Let κ be the permutation of the D4 geometry A determined by the conju-
gation map in A:

κ([x]) = [x̄] ∈ E0; κ([x, y]) = [x̄, ȳ] ∈ E2; κ(xA) = Ax̄; κ(Ax) = x̄A .

(7.4) Proposition. κ is an automorphism of the D4 geometry A of order 2
that inverts the triality automorphism τ .

Proof. As before, we only need check this on the edges of E . We have on
pairs

([y], x̄A)
κ←→ ([ȳ], Ax) and (ȳA,Ax̄)

κ←→ (Ay, xA) .

Again by Lemma 7.2, any of these pairs is an edge if and only if xy = 0, in
which case all are edges. Futhermore

[x]
κ−→ [x̄]

τ−→ xA
κ−→ Ax̄ ,

and so forth, leading to

[x]
κτκ−→ Ax̄

κτκ−→ x̄A
κτκ−→ [x] .

Therefore κτκ = τ−1, as claimed.

Of course, it should be no surprise that κ is an automorphism of A. From
Proposition 2.4, we see that κ is induced by the negative of the orthogonal
symmetry s1 on A.

An element of the D4 geometry A is absolute for τ if it is incident with its
image under τ . (For a singular line ` ∈ E1, this means `τ = `.)

(7.5) Lemma. For [x] ∈ E0, the following are equivalent:
(1) [x] is absolute for τ ;
(2) xA is absolute for τ ;
(3) Ax is absolute for τ ;
(4) x2 = 0;
(5) (x|1) = 0;
(6) x̄ = −x.

Proof. By Lemma 7.2 we have any one of (1) [x] ∼ τ([x]) = x̄A, (2)
xA ∼ τ(xA) = Ax, and (3) Ax ∼ τ(Ax) = [x̄], if and only if xx = x2 = 0, in
which case we have all three.

By Corollary 3.7(1), x2 − (x|1)x + q(x) = 0. For [x] ∈ E0, we thus have
x2 = 0 if and only if (x|1) = 0, which, by the definition of conjugation, holds if
and only if x̄ = −x.
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(7.6) Lemma. For [x], [y] ∈ E0, set ` = [x, y]. The following are equivalent:
(1) ` ∈ E1 is absolute for τ ;
(2) the algebra product in A is identically 0 on `;
(3) x2 = y2 = xy = 0;
(4) x2 = xy = yx = 0.

Proof. As multiplication is bilinear, the algebra product on ` being trivial
is equivalent to x2 = y2 = yx = xy = 0. Suppose this is the case, as in (2).
Then x and y are absolute, x ∈ ker(Ry) ∩ ker(Ly) = ȳA ∩ Aȳ, and similarly
y ∈ x̄A ∩ Ax̄. Therefore T = {[x], [y], x̄A, ȳA,Ax̄, Aȳ} is a complete tripartite
subgraph of E , which is visibly left invariant by τ . By Lemma 7.1(2), this
subgraph T is contained in E`′ , for some line `′ ∈ E1. As x, y ∈ T , we must
have `′ = [x, y] = `. Furthermore, T is in the intersection of E` and Eτ` . Again
using Lemma 7.1(2), we find that E` = Eτ` , hence ` = `τ is absolute. That is,
(2) implies (1).

Conversely, ` is absolute for τ if and only if Eτ` = E`. In this case T is a
complete tripartite subgraph of E`. In particular, [x] and [y] are themselves
absolute with x ∈ τ([y]) = ȳA and y ∈ τ([x]) = x̄A. That is, x2 = y2 = yx =
xy = 0; so (1) implies (2).

It remains to prove that the relations x2 = y2 = yx = xy = 0 are equivalent
to their subsets (3) and (4). Starting with (3), we have x̄ = −x and ȳ = −y
since x2 = y2 = 0 (by Lemma 7.5). Then 0 = xy = xy = ȳx̄ = (−y)(−x) = yx.

Now assume x2 = xy = yx = 0, as in (4). Then

(x|y)1 = yx̄+ xȳ by (3.6)(2)
= −yx+ xȳ as x2 = 0
= xȳ
= x(−y + (y|1)1)
= −xy + (y|1)x
= (y|1)x .

As [1] 6= [x], we have (x|y) = (y|1) = 0. So y2 = 0 by Lemma 7.5.

8. Some hexagons

With the material of the previous section we can easily describe the G2 and 3D4

hexagons, again following Buekenhout and Cohen [2]. These hexagons and their
duals provide the only known examples of thick, finite generalized hexagons.

For our purposes, a thick generalized hexagon is a partial linear space H =
(P,L) whose incidence graph I(H) is connected of diameter 6 with girth 12 and
having every vertex of degree at least 3. Note that the dual of a generalized
hexagon is also a generalized hexagon. It can be proven that I(H) is biregular,
but we shall show this directly in the cases of interest to us. By convention, in
I(H) the point valency is 1 + t and the line valency is 1 + s. That is, there are
1 + s points per line and 1 + t lines per point. In this case, we say that H has
order (s, t).
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Let A be the 8-dimensional composition K-algebra with identity of the pre-
vious section. Let the point set P consist of those 1-spaces (projective points)
of A with trivial algebra product, and let the line set L consist of those 2-spaces
(projective lines) with trivial algebra product. Thus the points and lines are
exactly those absolute for the triality automorphism τ of the associated D4

geometry. We may identify a line with the set of points contained in it.

(8.1) Theorem. H = (P,L) is a thick generalized hexagon.

(8.2) Corollary. If K is finite of order q, then H = (P,L) is a thick
generalized hexagon of order (q, q).

We shall learn that, in the collinearity graph C(H), the points at distance 1
from [x] are those of xA∩Ax, those points at distance 2 are those of x⊥\{xA∩
Ax}, and at distance 3 are those of A\x⊥.

(8.3) Lemma. For x, y ∈ A, the following are equivalent:
(1) [x, y] ∈ L;
(2) x2 = y2 = xy = 0;
(3) x2 = xy = yx = 0.

Thus lines of L are full projective lines, containing 1 + |K| points of P (hence
s = |K|). In particular, the incidence graph I(H) contains no 4-cycles.

Proof. This is immediate from the definitions and Lemma 7.6.

(8.4) Proposition. (1) The lines of L on the point [x] ∈ P are all within
the projective plane xA ∩ Ax. These are the only lines of L within xA or Ax.
In particular, I(H) contains no 6-cycles.

(2) Every projective line within the plane xA∩Ax and containing [x] belongs
to L. In particular, each point is on exactly 1 + |K| lines of L (so that t = |K|).

Proof. Suppose that [y] is collinear with [x]. Then xy = yx = 0, so
y ∈ ker(Lx) ∩ ker(Rx) = x̄A ∩ Ax̄ = xA ∩ Ax, a 3-space by Theorem 5.1(7).
Now suppose that the line [y, z] is in xA or Ax, say xA. We may assume that
[x] 6= [y]. Then xz = yz = 0, and x, y, z ∈ kerLx ∩ kerLy = xA∩ yA = [x, y] by
Theorem 5.1(6). That is, [y, z] = [x, y] contains the point [x], completing (1).

If y (/∈ [x]) belongs to xA ∩ Ax, then x2 = xy = yx = 0; so by Lemma 8.3
we have [y] ∈ P and [x, y] ∈ L, giving (2).

It is a consequence of Proposition 8.4(1) that, when [y] and [z] are collinear
in H with [x] but not each other, we must have xy 6= 0 but (x|y) = 0. The
converse is also valid.

(8.5) Proposition. Let [x], [y] ∈ P with (x|y) = 0 but z = xy 6= 0. Then
[z] belongs to P and is the unique point for which zA ∩ Az contains [x, y]. In
particular, I(H) contains no 8-cycles.
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Proof. By Theorem 5.1(8),

(xA ∩Ax) ∩ (yA ∩Ay) ⊆ xA ∩Ay = [xy] .

Therefore, there is at most one point collinear with both [x] and [y], that being
[z]. (So I(H) has no 8-cycles.) On the other hand, if [z] is a point of P, then
x2 = y2 = z2 = xz = zy = 0; and [z] is indeed collinear with both [x] and [y]
by Lemma 8.3.

It remains to demonstrate that 0 = z2 = (xy)2. We have q(xy) = q(x)q(y) =
0, so that xy is singular. If we can prove x, y ∈ (xy)A ∩ A(xy), then the result
will follow from Theorem 5.1(7),(8). By Theorem 5.1(2), we must show that
each of x̄(xy), ȳ(xy), (xy)x̄, and (xy)ȳ is equal to 0. For the first and last, this
is a direct consequence of Proposition 3.6(1). For the other two, we have

ȳ(xy) = −x̄(yy) + (x|y)y = 0 and
(xy)x̄ = −(xx)ȳ + (x|y)x = 0

by Proposition 3.6(2).

(8.6) Lemma. I(H) contains no 10-cycles.

Proof. Let the points of a 10-cycle be [x0], [x1], [x2], [x3], [x4] so that [xi]
is collinear with [xi−1] and [xi+1] (indices read modulo 5). Then (xi−1|xi) =
(xi|xi+1) = 0 is verified within xiA ∩ Axi, and (xi−2|xi) = (xi|xi+2) = 0
within xi−1A ∩ Axi−1 and xi+1A ∩ Axi+1. Therefore W = [x0, x1, x2, x3, x4] is
singular. Furthermore it contains the 3-space [xi−1, xi, xi+1] = xiA ∩ Axi, for
each i = 0, . . . , 4. By Proposition 2.3(1) at least one of x0A or Ax0 is equal to
at least one of x1A or Ax1. This contradicts Theorem 5.1(3).

(8.7) Lemma. (1) I(H) has diameter 6 and contains 12-cycles.
(2) If [x], [y] ∈ P with (x|y) 6= 0, then the number of paths of length 6 in

I(H) connecting [x] and [y] is equal to the number of lines of H on [x].

Proof. Let [x] ∈ P and ` ∈ L. Then x⊥ ∩ ` contains at least one point
[y] ∈ P, and the distance in I(H) from [x] to [y] is at most 4 by Propositions
8.4 and 8.5. Therefore [x] and ` are at distance at most 5 in I(H). Since every
line contains points and every point is on a line, I(H) has diameter at most 6.

By Proposition 8.4(1), the point set P can not span a singular subspace; so
pairs [x], [y] ∈ P with (x|y) 6= 0 certainly exist. Such a pair of points must be
at distance exactly 6, again by Propositions 8.4 and 8.5. Let ` be a line on [x].
By the previous paragraph, there is a path of length 6 connecting [x] and [y]
via `. This path must be unique since two different 5-paths from [y] to ` would
give rise to a shorter cycle in I(H). This gives (2). Since there is more than
one choice for ` on [x], we have 12-cycles, completing (1).

Results 8.3 through 8.7 prove Theorem 8.1 and its corollary.

(8.8) Proposition. The K-space 1⊥ of dimension 7 is the K-span of the
point set P of H.
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Proof. By Lemma 7.5 the set P consists of those singular 1-spaces within
1⊥. Let [x] 6= [y] with x, y ∈M\1⊥, a hyperplane complement in some maximal
singular space M of A. Then the identity element 1 is in both the hyperbolic
2-spaces X = [x, x̄] and Y = [y, ȳ] with X 6= Y . Therefore the 6-spaces X⊥ and
Y ⊥ are contained in 1⊥ and, indeed, in [P], since both are split. As X 6= Y ,
also X⊥ 6= Y ⊥; so [P] ⊇ [X⊥, Y ⊥] = 1⊥, as desired.

Next we describe the generalized hexagon of type 3D4. Let F be a cubic
extension of K with the Galois group of F over K generated by the element σ
of order 3.

The F -space FA = F ⊗ A = F 8 can be given the structure of a split com-
position F -algebra with identity in such a way that, when σ is extended to a
semi-linear transformation (also denoted σ) of the vector space FA, the fixed
vectors under σ are exactly those of KA = A = K8, the composition K-algebra
under discussion previously. We use q to denote the quadratic form on FA as
well as its restriction to KA. (The construction can be thought of formally as a
tensor product as in Lemma 3.3 above or more specifically through the location
of some common basis for FA and KA. The doubling construction does this
easily. Also the Zorn construction makes the containment clear.)

The transformation σ is a semi-isometry of q, in that q(xσ) = q(x)σ (and so
σ is also a semi-isometry for the associated bilinear form (·|·)). Furthermore, it
is an automorphism of FA as K-algebra (but not as F -algebra) and commutes
with conjugation since 1 ∈ A.

We define a new product on FA:

x ◦ y = x̄σ ȳσ
2

.

This gives FA a new algebra structure, which we denote Aσ.
Notice that Aσ is a K-algebra but not an F -algebra:

(8.9) Lemma. For α, β ∈ F and x, y ∈ Aσ, we have

(αx+ βy) ◦ (γx+ δy) = ασγσ
2

x ◦ x+ ασδσ
2

x ◦ y + βσγσ
2

y ◦ x+ βσδσ
2

y ◦ y .

Aσ admits the “twisted” composition law:

q(αx ◦ βy) = ασβσ
2

q(x)q(y) .

Again the semi-linear transformation σ is a K-algebra automorphism.
Following the lead of our construction of the generalized hexagon H, we

consider a new incidence system Hσ with point set Pσ, consisting of those [x]
with x ∈ Aσ and x ◦ x = 0, and line set Lσ, consisting of those F -spaces of
dimension 2 on which the ◦-multiplication is identically 0. By Lemma 8.9 the
transformation σ induces an automorphism of Hσ.

The basic result is then

(8.10) Theorem. Hσ = (Pσ,Lσ) is a thick generalized hexagon.
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(8.11) Corollary. If K is finite of order q, then H = (P,L) is a thick
generalized hexagon of order (q3, q).

As before, in the collinearity graph C(Hσ), the points of Pσ at distance 1
from [x] are those of x ◦ Aσ ∩ Aσ ◦ x, those points at distance 2 are those of
x⊥\{x ◦Aσ ∩Aσ ◦ x}, and at distance 3 are those of Aσ\x⊥.

On the K-subalgebra KA the ◦-multiplication is particularly simple since
each vector of KA is fixed by σ. Indeed if x, y ∈ KA, then x ◦ y = x̄ȳ. In
particular, if x2 = 0 in KA, then x◦x = x̄x̄ = 0. That is, each point K [x] = Kx
of H can be identified with a point F [x] = Fx of Hσ. Similarly, if Kx+Ky =

K [x, y] is a line of H, then x2 = y2 = xy = yx = 0, hence Fx + Fy = F [x, y]
satisfies x ◦ x = y ◦ y = x ◦ y = y ◦ x = 0 and so is a line of Hσ (by Lemma 8.9).

Therefore we may think of the G2 hexagon over K as being embedded in
the 3D4 hexagon over F as a fixed point subgeometry for the automorphism
induced by σ. More precisely (but less elegantly), we have

(8.12) Proposition. The map Φ: P∪L −→ Pσ∪Lσ given by Φ: K [x] 7→ F [x]
and Φ: K [x, y] 7→ F [x, y] is an isomorphism of the incidence graph I(H) with
an induced subgraph of I(Hσ). We write Φ(I(H)) = KI, Φ(P) = KP, and
Φ(L) = KL.

The proof of Theorem 8.10 is very similar to that of Theorem 8.1. We begin
with an abbreviated version of Theorem 5.1. More is true, but we only give those
results of specific help in proving Theorem 8.10. Since most of these results are
translations of the earlier results into the present language, we maintain parallel
numbering.

(8.13) Theorem. Throughout x, y ∈ S, the set of nonzero singular vectors.
(1) { z ◦ Aσ | z ∈ S} and {Aσ ◦ z | z ∈ S} are the two classes of maximal

singular subspaces of Aσ.
(2) a ∈ x◦Aσ if and only if a◦x = 0, and a ∈ Aσ ◦x if and only if x◦a = 0.
(3) Always x◦Aσ 6= Aσ ◦y. Also x◦Aσ = y◦Aσ if and only if Aσ ◦x = Aσ ◦y

if and only if [x] = [y].
(6) Assume (x|y) = 0, and [x] 6= [y]. Then x◦Aσ∩y ◦Aσ and Aσ ◦x∩Aσ ◦y

both have dimension 2.
(7) Assume x ◦ y = 0. Then x ◦Aσ ∩Aσ ◦ y has dimension 3.
(8) Assume x ◦ y 6= 0. Then x ◦Aσ ∩Aσ ◦ y = [x ◦ y] of dimension 1.

Proof. We have z ◦ Aσ = z̄σAσ and Aσ ◦ z = Aσ z̄
σ2

, so (1) is just a
translation of Theorem 5.1(1). (It might be better to write z ◦Aσ = z̄σFA and
so forth.)

For (2) we have a ∈ x ◦ Aσ if and only if a ∈ x̄σAσ if and only if x̄σa = 0.

This can be rewritten as 0 = xσa = āx̄σ = āσx̄σ
2

= a ◦ x.
Parts (3), (6), (7), and (8) are also direct consequences of the corresponding

parts of Theorem 5.1. For instance x◦Aσ∩Aσ◦y = x̄σAσ∩Aσ ȳσ
2

has dimension
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3 or 1, depending upon whether x̄σ ȳσ
2

= x ◦ y is 0 or not. In the second case,
the intersection 1-space is exactly [x̄σ ȳσ

2

] = [x ◦ y]. This proves (7) and (8).

The next few results, (8.14) through (8.18), are the present counterparts to
the earlier (8.3) through (8.7). We do not give certain of the arguments where
all that is needed is direct translation of the earlier proofs into the present
language (but keep in mind that between Theorem 5.1(2) and Theorem 8.13(2)
and elsewhere there are certain left-right distinctions).

(8.14) Lemma. For x, y ∈ Aσ, the following are equivalent:
(1) [x, y] ∈ Lσ;
(2) x ◦ x = y ◦ y = x ◦ y = 0.

Thus lines of Lσ are full projective lines, containing 1 + |F | points of Pσ (hence
s = |F |). In particular, the incidence graph I(Hσ) contains no 4-cycles.

Proof. By Lemma 8.9, (1) is equivalent to 0 = x ◦x = y ◦ y = x ◦ y = y ◦x.
It remains to prove that the first three identities imply the last. If x◦x = y◦y =
x ◦ y = 0, then [x, y] ∈ y ◦ Aσ ∩ A ◦ x by Theorem 8.13(2). But then Theorem
8.13(8) forces y ◦ x = 0.

(8.15) Proposition. The lines of Lσ on the point [x] ∈ Pσ are all within the
projective plane x ◦ Aσ ∩ Aσ ◦ x. These are the only lines of Lσ within x ◦ Aσ
or Aσ ◦ x. In particular, I(Hσ) contains no 6-cycles.

As before, when [y] and [z] from Pσ are collinear in Hσ with [x] but not each
other, we have x ◦ y 6= 0 and (x|y) = 0. One important distinction here is that
Lemma 8.3(3) and so Proposition 8.4(2) have no counterparts in Lemma 8.14
and Proposition 8.15. Indeed we will see, in Proposition 8.19 below, that there
are points in the plane x ◦ Aσ ∩ Aσ ◦ x not in Pσ and lines in this plane on [x]
but not in Lσ.

(8.16) Proposition. Let [x], [y] ∈ Pσ with (x|y) = 0 but z = x◦y 6= 0. Then
[z] belongs to Pσ and is the unique point for which z ◦Aσ∩Aσ ◦z contains [x, y].
In particular, I(Hσ) contains no 8-cycles.

(8.17) Lemma. I(Hσ) contains no 10-cycles.

(8.18) Lemma. (1) I(Hσ) has diameter 6 and contains 12-cycles.
(2) If [x], [y] ∈ Pσ with (x|y) 6= 0, then the number of paths of length 6 in

I(Hσ) connecting [x] and [y] is equal to the number of lines of Hσ on [x].

Proof. By Propositions 8.12, I(Hσ) has the subgraph KI, which contains
12-cycles by Lemma 8.7. Furthermore, [Pσ] ⊇ [KP] of dimension 7 by Propo-
sition 8.8 and so not singular. Therefore the proof of Lemma 8.7 goes over to
prove the present lemma, provided we are sure that every point [x] of Pσ is on
a line of Lσ (as yet unclear).

Let ` be any line of Lσ (lines exist, for instance in KL). Then [x]⊥ ∩ `
contains at least one point [y] ∈ Pσ. By Propositions 8.15 and 8.16, either
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x ◦ y = 0 and [x] and [y] are collinear (perhaps even on `) or x ◦ y 6= 0, in which
case [x, x ◦ y] is a line. In both cases there is at least one line on [x], which is
all that was need to complete the proof of the lemma.

As before, results 8.14 through 8.18 will prove Theorem 8.10 and its corollary
when combined with the final

(8.19) Proposition. Each point of Pσ is on exactly 1+ |K| lines of Lσ (that
is, t = |K|).

Proof. By Lemma 8.18, if points [x] and [y] of Pσ have (x|y) 6= 0, then
they are at distance 6 in I(Hσ) and the number of lines of Lσ on [x] is equal to
the number of lines on [y]. To prove the proposition, we show:

(i) For every point [x] there is a [y] in the point set KP of the
subhexagon KI with (x|y) 6= 0;

(ii) Every point [y] of KP is on exactly 1 + |K| lines of Lσ.

For (i), note that [KP] = 1⊥, of dimension 7 by Proposition 8.8. Thus x⊥

can not contain [KP] or its generating set KP. That is, there is a [y] in KP\x⊥;
and (x|y) 6= 0, as needed for (i).

For (ii), we at least know that there are 1 + |K| lines of the subhexagon KI
on [y]. Choose u, v ∈ KA so that [y, u] and [y, v] are two different lines of Lσ
(indeed of KL) on [y]. Let ` = [u, v] be the projective line (over F ) generated
by [u] and [v]. (This is not a line of Lσ by Propostion 8.15.)

By Proposition 8.15 every line of Lσ containing [y] intersects ` in a unique
point [z] ∈ Pσ. Conversely by Lemma 8.14 and Proposition 8.15, for [z] ∈ `, the
line [y, z] is in Lσ if and only if z ∈ Pσ. It remains to count the points [z] of `
with z ◦ z = 0.

Every point [z] ∈ ` either equals [u] or is [αu + v], for some α ∈ F . Those
[αu+ v] belonging to KP are then exactly those with α ∈ K. By Lemma 8.9

(αu+ v) ◦ (αu+ v) = (ασ)2 u ◦ u+ ασu ◦ v + ασ
2

v ◦ u+ v ◦ v
= ασ u ◦ v + ασ

2

v ◦ u .

Setting α = 1, we find (u + v) ◦ (u + v) = u ◦ v + v ◦ u. But u, v ∈ KA with
[u+ v] ∈ KP, so equally well (u+ v) ◦ (u+ v) = (u+ v) (u+ v) = 0. Therefore
0 = u ◦ v + v ◦ u and −u ◦ v = v ◦ u. This in turn gives

(αu+ v) ◦ (αu+ v) = (ασ − ασ
2

)u ◦ v .

Now u ◦ v = ūv̄ 6= 0 by Proposition 8.4. Therefore, those α for which (αu+ v) ◦
(αu + v) = 0 are exactly those with 0 = ασ − ασ2

hence 0 = α − ασ. As K is
the fixed field for σ in F , we conclude that (αu+ v) ◦ (αu+ v) = 0 if and only
if α ∈ K. Thus with [u] included, exactly 1 + |K| of the points [z] on ` have
z ◦ z = 0. This completes the proposition (and so the theorem and corollary).
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9. Some other stuff of interest

1. Constructions. It would be instructive to write down the relationship
between the doubling construction and the other constructions, particularly
Zorn’s construction of the split octonions.

More detailed structure results, particularly for the octonions, would be nice.

2. Automorphisms. Both the Zorn and doubling constructions make certain
automorphisms of the octonions and the associated G2 hexagon quite apparent.
For the Zorn construction, this is handled extensively in [2]. Buekenhout and
Cohen give detailed remarks on the BN -properties of the automorphism groups
of both the G2 and 3D4 hexagons.

The uniqueness properties of doubling lead to various algebra automor-
phisms, via the follow corollary to Proposition 6.1.

(9.1) Corollary. Let A, B, t, and γ be as in Proposition 6.1. For any
algebra automorphism gB of B and any t′ ∈ B⊥ with q(t′) = −γ, there is an
isomorphism g of the subalgebras A = B +Bt and A′ = B +Bt′ with g|B = gB
and g(t) = t′.

For instance, there is an isomorphism that is trivial on B and takes t to any
suitable t′. A consequence is transitivity of the automorphism group of A on
the elements of 1⊥ with any fixed nonzero q value.

We have shown that the automorphism group of a D4 geometry has a normal
subgroup with quotient the symmetric group of degree three, acting naturally on
the D4 diagram. Clearly the kernel of this homomorphism contains PO+

8 (K)′

acting naturally, but we have not proved that this is the full kernel nor have we
shown the action of the triality automorphism on the kernel. This is discussed
well in Van der Blij and Springer [1], parts of which are presented in [2].

3. Identities. Our presentation is missing a proof of the alternative law
(xy)y = x(y2) and the Moufang identity (xy)(zx) = (x(yz))x. The alternative
law can be derived easily from Proposition 3.6 and Corollary 3.7. The Moufang
identity then follows but is difficult; see [2].

The Moufang identity is important for a thorough study of the topics men-
tioned here. For instance it is intimately connected with automorphisms of D4

geometries [1]. It is surprising that the Moufang identity does not play a role
in our other discussions. Perhaps that means we are missing some easy and
enlightening arguments.
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