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Abstract

In 1925 Élie Cartan introduced the principal of triality specifically for the
Lie groups of type D4, and in 1935 Ruth Moufang initiated the study of Moufang
loops. The observation of the title was made by Stephen Doro in 1978 who was
in turn motivated by work of George Glauberman from 1968. Here we make the
statement precise in a categorical context. In fact the most obvious categories of
Moufang loops and groups with triality are not equivalent, hence the need for the
word “essentially.”
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Introduction

In 1935 Ruth Moufang [Mou35] initiated the study of Moufang loops, moti-
vated by her work on highly transitive projective planes and their coordinatizing
alternative algebras. A Moufang loop is a set equipped with a binary product
having an identity element and cancellation that satisfies the identical relation

(xa)(bx) = (x(ab))x .

As this relation is an immediate consequence of associativity, groups provide a
large class of Moufang loops. But, as Moufang noted, the unit loops of alternative
algebras give infinitely many nonassociative examples.

In 1925 Élie Cartan [Car25] introduced the principal of triality to discuss outer
automorphisms of Lie groups of type D4. The usual duality of a vector space of
dimension at least 3 over a field gives rise to an order 2 outer automorphism of its
linear group, and Cartan observed that a similar “triality” of 8-dimensional orthog-
onal space can be used to explain the unexpected order 3 outer automorphisms of
groups of type D4. Cartan also noted a connection with the octonions.

The observation of the title is due to Stephen Doro [Dor78] who, in 1978,
defined and studied abstract triality for groups—Cartan’s triality groups providing
nontrivial examples. Doro was motivated by the 1968 work of George Glauberman
[Gla68] on finite Moufang loops and the 1956 work of Lowell Paige [Pai56] on
simple Moufang loops. Our title is well accepted and can be found in various
forms throughout the literature, for instance [GrZ06, HaN01, NVo03, Tit58].1

The main purpose of the present monograph is to make this observation precise in
a categorical context. In fact the most obvious categories of Moufang loops and
groups with triality are not equivalent, hence the need for the word “essentially.”

Although we have described the work of Cartan and Moufang primarily in al-
gebraic terms, it was inextricably interwoven with geometric motivation and tech-
niques. That will be the case for us as well.

The equivalence of algebraic identities to the existence of various geometric
automorphisms and the closure of related configurations goes back over a hundred
years. Hilbert [Hil00] observed that a large part of classical geometry can be recov-
ered when the axioms of “congruence” are discarded in favor of taking Desargues’
Theorem as an axiom. Veblen and Young [VeY16] considered automorphisms of

1Indeed it is a quote from [Hal07b].
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projective planes and their relationship to the Desargues configuration. Reider-
meister [Rei29], Thomsen [Tho29], Bol [Bol37], and their collaborators, in a re-
markable series of papers entitled “Topologische Fragen der Differentialgeometrie,”
worked on 3-nets (3-webs) of parallel classes of lines in the Euclidean plane. Tits
[Tit58] studied automorphisms of webs and their connection to groups with triality
specifically in the context of the octonions and Cartan’s triality groups. See also
Bruck [Bru58] and Pickert [Pic55].

The geometric study was revived in the paper of Funk and P. Nagy [FuN93],
which describes in detail the relationships between Bol reflections on a 3-net and
coordinatizing Bol loops. The approach we take here is closer to that of Hall and
G.P. Nagy [HaN01, Hal07a] and that of G.P. Nagy and Vojtěchovský [NVo03],
which discusses the case of simple Moufang loops extensively.

Since the early work in this area dealt with the study of line sets in Euclidean
planes, it was naturally phrased in terms of 3-nets. We prefer the equivalent but
dual world of Latin square designs and will largely stay there.

The monograph has four parts. In the first part we present the needed cate-
gory theory and introduce the three main topics of discussion—loops, Latin square
designs, and groups with triality. The second part contains the equivalence and
nonequivalence results connecting the corresponding categories. The third part
presents related issues, and the final part deals with Study’s and Cartan’s original
triality associated with orthogonal geometry and groups in dimension 8 and with
the related composition algebras, octonions, and Paige loops.

In Part 1 on Basics, we begin in Chapter 1 with category theory. This chapter
contains much standard material, such as an introduction to category equivalence,
but it also covers several less standard topics of importance here—pointed cate-
gories, rank 1 objects, and simplicity. Chapter 2 gives the basics of quasigroup and
loop theory, including varieties of loops. Here the most important of these is the va-
riety of Moufang loops mentioned above. Chapter 3 presents Latin square designs.
These are the combinatorial/geometric objects that provide the skeleton for all
our arguments and constructions. The connection between loops and Latin square
designs, even at the categorical level, is given here. A short section provides the
deeper link, originally due to Bol [Bol37], between the subcategories of Moufang
loops and central Latin square designs—those Latin square designs possessing a
suitably rich automorphism group. An abstract setting for these automorphisms,
motivated by work of Doro [Dor78] and Glauberman [Gla68], provides the setting
for Chapter 4 on abstract groups with triality.

Part 2 gives the arguments regarding Equivalence of the categories introduced
in Chapters 2 through 4. This is not straightforward, and Chapters 5 through 7
provide the additional machinery and definitions needed for the precise equivalence
and nonequivalence results of Chapters 8 and 9.

Part 3 contains Related material. Various of the functors guaranteed in the
previous part are given concrete constructions. In particular, Chapter 11 gives an
elegant map that associates to each Moufang loop a universal group with triality.
This allows deeper investigation of the interplay between the loops and associated
groups.

Chapter 12 contains discussion of the multiplication groups and autotopisms
of general loops. This material could easily have been presented earlier, but we
begin its use is in the following Chapter 13. This is relatively long and gives the
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correspondence between groups with triality, as defined here, and Doro’s original
formulation [Dor78]. Doro’s definition, while on the surface different, is seen to be
equivalent to one version of that used here.

The material of Chapter 14 was the initial motivation for this work. Doro
[Dor78] was particularly interested in simple Moufang loops. He was able success-
fully to move this study to that of simple groups admitting triality automorphisms.
With this in hand, Liebeck [Lie87] proved that the only nonassociative finite sim-
ple Moufang loops are those loops derived by Paige [Pai56] from octonion algebras
over finite fields. This chapter makes precise and canonical Doro’s correspondence
between simple Moufang loops and simple groups. It also discusses the relationships
between normal subloops of Moufang loops and normal subgroups of the associated
groups with triality. In particular we prove that a finite Moufang loop is solvable
if and only if its multiplication group is solvable, the converse part of this being a
result due to Vesanen [Ves96] whose result is valid for all finite loops.

Chapter 15 discusses various other categories and concepts that are adjacent
to those discussed here. For instance the 3-nets of Bol and others are seen to be
appropriately isomorphic.

Part 4 is devoted to classical or concrete triality. Chapter 16 gives a brief
introduction to its three main parts—Study’s geometric triality, Cartan’s group
theoretic triality, and the octonions. Chapter 17 presents the requisite results on
orthogonal geometry and groups. Chapter 18 then gives Study’s geometric triality
and Cartan’s group theoretic triality—both in the context of hyperbolic orthogonal
8-space. Chapter 19 discusses composition algebras and their basic classification
and structure, including algebraic results that bridge the two classical trialities. It
also includes a proof of Hurwitz’ theorem on the dimensions of composition algebras.
Chapter 20 details Freudenthal’s direct connection between octonion algebra and
orthogonal triality. The final Chapter 21 then focuses on the Moufang loops that
arise from the multiplicative loops of octonion algebras, finishing with a return to
Paige’s simple Moufang loops.

We close this introduction by discussing the subtleties occasioning the word
“essentially” of the title. As already mentioned, loops and Latin square designs
are elementary concepts, already seen to be equivalent in Chapter 3. Moufang
loops and central Latin square designs are introduced as particularly nice loops
and designs, equivalent by Bol’s result. There is no correspondingly useful universe
containing groups with triality as a subclass. (The category of groups is too big.)
Instead the definition for groups with triality is motivated by properties of central
Latin square designs and so of Moufang loops. The transition is not completely
natural or smooth.

Specifically, two groups with triality that are different, but the same modulo
central subgroups, correspond to the same central Latin square design and Moufang
loop. Our remedy for this is to define, in Chapter 7, two subcategories of the
triality group category—one consisting of groups with trivial center (“adjoint”)
and the second consisting of groups with center as large as possible (“universal”).
The most natural passage from Moufang loops and central Latin square designs to
groups with triality—indeed the one that motivates the original definition—is via a
map A with the adjoint subcategory as its image. In Chapter 5 we define a second
map B whose image is the universal subcategory.
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The map A, while obvious and elementary, is not categorical; it is not a func-
tor. On the other hand the map B is a functor that ultimately gives the desired
equivalence, but it would be hard to describe it as either obvious or elementary.
We have the basic bind: the full class of groups with triality is too big; the most
accessible subclass is mathematically lacking; and the mathematically satisfactory
subclass is obscure. The distinctions are subtle. The issue was already appreciated
by Doro and has, through the years, been a source of frequent fuzziness (and oc-
casional inaccuracy). While this monograph does not remove the difficulty, one of
the goals is to put it into sharp focus.

I thank the various people whose comments have contributed to and improved
this monograph. These include but are not restricted to: Ulrich Meierfrankenfeld,
Gabor Nagy, Jonathan D.H. Smith, Petr Vojtěchovský, Richard Weiss, and the late
Ernie Shult. I especially thank the editor, Robert Guralnick, and the referee, both
of whom were very patient and helpful.

Jonathan I. Hall
East Lansing, Michigan

25 October 2016



Part 1

Basics





Chapter 1
Category Theory

1.1. Basics

We give a brief summary of the category theory and related notation of impor-
tance here.

We assume familiarity with the most basic concepts and definitions of category
theory, as for instance found in Jacobson [Jac89, § 1.1]. We largely follow Jacobson
and also Pareigis [Par70] although we act on the right:

for categories C, D, f ∈ HomC(A,B), g ∈ HomC(B,C), and
functor F : C −→ D we have fg ∈ HomC(A,C), (fg)F = fFgF,
and 1AF = 1AF.

Many of the categories we consider are concrete, which is to say that the objects
are sets furnished with decoration (say, a multiplication) and the morphisms are
set maps that respect the decoration appropriately. In this situation we may abuse
terminology by referring to morphisms as maps. Also for clarity we may then write
the identity permutation IdA in place of the identity morphism 1A, since many of
our objects (loops and groups) have a multiplicative identity element, frequently
also denoted 1A.

The morphism f ∈ HomC(A,B) is called monic if it is right cancellable:

for all Z and g1, g2 ∈ HomC(Z,A), g1f = g2f implies g1 = g2.

Monic morphisms are the categorical replacements for injective maps.1 For instance,
if ab is monic, then a is monic. (Exercise!) Similarly f is epic if it is left cancellable:

for all C and g1, g2 ∈ HomC(B,C), fg1 = fg2 implies g1 = g2.

The morphism f is an isomorphism if there is a morphism g ∈ HomC(B,A) with
fg = 1A and gf = 1B in which case we write g = f−1. Isomorphisms are both
monic and epic. The set EndC(A) = HomC(A,A) of endomorphisms of A in C is
a monoid under composition. An invertible element of EndC(A) is then an auto-
morphism in C (a C-automorphism), and the set of C-automorphisms forms the
automorphism group of A in C, AutC(A). Functors take isomorphisms to isomor-
phisms and automorphisms to automorphisms.

1Again: we are acting on the right.
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4 1. CATEGORY THEORY

Every category C admits the identity functor 1C taking each object and mor-
phism to itself. This is the special case C = D of the inclusion functor ι : C −→ D
for any subcategory C of D.

A functor F : C −→ D is faithful if the corresponding map HomC(A,B) −→
HomD(AF, BF) is always injective and full if the same map is always surjective.
We call the functor F dense if for every B ∈ ObjD there is an A ∈ ObjC with AF
isomorphic to B in D. (This is not a standard term.) In particular 1C is faithful,
full, and dense. The inclusion of a subcategory into a category is always faithful,
and we call the subcategory full if the inclusion is additionally full and dense if the
inclusion is dense.

1.2. Category equivalence

Two categories C and D are isomorphic if there are functors F : C −→ D and
G : D −→ C with

FG = 1C and GF = 1D .

Similarly the categories C and D are equivalent if there are functors F : C −→ D
and G : D −→ C with the weaker

FG ∼= 1C and GF ∼= 1D ,

where ∼= indicates natural isomorphism of functors. Here the functor X : E −→ E
is naturally isomorphic2 to the identity functor 1E if:

for every A ∈ ObjE there is an isomorphism χA ∈ HomE(A,AX)
such that: for all B,C ∈ ObjE and each f ∈ HomE(B,C), we
have fX = χ−1

B fχC :

B C

BX CX

χB

f

χC

fX

In this case we say that (F,G) is a category equivalence (or just equivalence) of
C and D and that F gives an equivalence of C and D. (The functor F need not
determine G uniquely.)

There are useful reformulations of equivalence.

(1.1). Proposition. Let F be a functor from C to D. The following are
equivalent:

(1) There is a functor G : D −→ C with (F,G) a category equivalence.
(2) There is a functor G : D −→ C with FG : C −→ C and GF : D −→ D both

faithful, full, and dense functors.
(3) F is faithful, full, and dense.

Proof. Part (2) requires less of G than (1) does (and indeed for G as in (2)
the pair (F,G) may not be an equivalence). Part (2) implies (3) by elementary
arguments, and (3) implies (1) by [Jac89, Prop.1.3]. 2

The following alternative view of category equivalence follows easily.

2See [Jac89, p.23] for the definition of natural isomorphism of arbitrary functors.
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(1.2). Corollary. Two categories are equivalent provided they have iso-
morphic full, dense subcategories. In particular a category is equivalent to any
subcategory that is full and dense. 2

Loosely, two categories are isomorphic if their objects and morphisms are the
same up to the changing of names, whereas two categories are equivalent if the
isomorphism classes of their objects and morphisms are the same up to the changing
of names. For instance, the category of finite sets is equivalent to the category of
all finite subsets of the integers (and even to the category of all finite ordinals).

As is always true, isomorphisms respect basic properties. Equivalences usually
do too. For instance, the following is an easy exercise.

(1.3). Proposition. Let F : C −→ D give an equivalence of the categories C
and D. If f ∈ HomC(A,B) is monic or epic, then fF is (respectively) monic or
epic. 2

1.3. Terminal objects and kernel morphisms

An object A is terminal in C when each HomC(X,A) contains a unique mor-
phism. Similarly A is initial in C when each HomC(A,X) contains a unique mor-
phism. Terminal (or initial) objects need not exist in C, but if they do then there
is a unique isomorphism class of such objects. An object that is both initial and
terminal is a zero object. For instance, a trivial group is a zero object in the cate-
gory of groups and a 0 module is a zero object in a module category. Essentially
all the categories we shall encounter have terminal objects, although some do not
have zero objects.

(1.4). Proposition. Let F : C −→ D give an equivalence of the categories
C and D. If A is a terminal, initial, or zero object of C then AF is (respectively)
terminal, initial, or zero in D. 2

In a category C with terminal objects, a trivial morphism is one that factors
through a terminal object.

(1.5). Lemma. If the category C has zero objects, then for each pair of objects
L,M ∈ ObjC there is a unique trivial C-morphism from L to M . 2

The morphism of the lemma is often denoted 0L,M , but we shall use this nota-
tion sparingly.

Assume that the category C has zero objects. If δ ∈ HomC(Q,M) then a
kernel morphism for δ is a morphism α ∈ HomC(N,Q) with αδ trivial and having
the property that for any λ ∈ HomC(L,Q) with λδ trivial there is a unique λα ∈
HomC(L,N) with λ = λαα :

L

N Q M

λ
!λα

α δ

Clearly if α and λ are two kernel morphisms of δ, then there is a unique isomorphism
λα with λ = λαα; that is, kernel morphism are essentially unique.

Kernel morphisms are, of course, categorical substitutes for kernels of homo-
morphisms in typical situations; see Lemma (2.10) below for a demonstration.
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1.4. Pointed categories

There is a uniform technique for promoting a terminal object in a category to
zero object status in a related category.

Let C be a category with terminal object O. For A an object of C, any mor-
phism a ∈ HomC(O,A) is an anchor of A (an O-anchor). We then define a new
category C?O, a pointed category. Its objects are the pairs (A, a) with A an ob-
ject of C and a an O-anchor of A. For (A, a) and (B, b) in ObjC?O, the morphism
set HomC?O

((A, a), (B, b)) consists of those f ∈ HomC(A,B) that additionally have
af = b. We easily find:

(1.6). Lemma. C?O is a category in which (O, 1O) is a zero object. If T is a
terminal object in C, then C?O and C?T are isomorphic. 2

We have the forgetful functor from C?O to C, taking (A, a) to A and viewing
g ∈ HomC?O

((A, a), (B, b)) as an element of HomC(A,B). If O is actually a zero
object, then each object of C has a unique anchor, and the forgetful functor gives
an isomorphism of C with C?O.

For each anchor a of A and morphism f ∈ HomC(A,B), the morphism af is
the unique anchor b of B for which f induces an element of HomC?O

((A, a), (B, b)).
Thus, for a fixed anchor a of A, the set of morphisms HomC(A,B) is the disjoint
union of the various HomC?O

((A, a), (B, b)) as b runs through the anchors of B. In
particular, calculations for one of C and C?O can often be applied to the other.

(1.7). Lemma. Let F be a functor from C to D that takes the terminal object
O of C to the terminal object OF of D. Then (A, a)F? = (AF, aF) and fF? = fF
describe a functor F? from C?O to D?OF.

Proof. As OF is a terminal object in D, aF is an OF-anchor of AF and
(AF, aF) an object of D?OF. If f ∈ HomC(A,B) with af = b, then

aF?fF? = aFfF = (af)F = bF = bF? . 2

(1.8). Corollary. If the full subcategory C of D contains the terminal object
O of D, then the pointed version ι? of the inclusion functor ι of C into D is the
inclusion functor of C?O into D?O. 2

(1.9). Lemma. Let F be a functor from C to D that takes the terminal object
O of C to the terminal object OF of D.

(a) If F is faithful, then F? is faithful.
(b) If F is full, then F? is full.
(c) If F is full and dense, then F? is full and dense.

Proof. As discussed above, for a fixed object (A, a) of C?O we have the disjoint
unions:

HomC(A,B) =
⊎
b

HomC?O
((A, a), (B, b))

and

HomD(AF, BF) =
⊎
d

HomD?OF
((AF, aF), (BF, d))

=
⊎
d

HomD?OF
(((A, a)F?, (BF, d)) ,



1.5. RANK 1 OBJECTS 7

where not all OF-anchors d of BF need be of the form bF for some O-anchor b of
B.

The first two parts of the lemma are now immediate.
For part (c), assume F is full and dense. By the previous part F? is full.

Let (X,x) be an object of D?
OF. As F is dense, there are an A and isomorphism

i ∈ HomD(X,AF), so that xi ∈ HomD(OF, AF) is a OF-anchor of AF. But F is
also full, so there is a O-anchor a of A with xi = aF. Now (AF, xi) = (AF, aF) =
(A, a)F? is isomorphic to (X,x) in D?

OF, and F? is dense. 2

(1.10). Theorem. Let C be a category containing the terminal object O. If
F gives an equivalence of C and D, then F? gives an equivalence of C?O and D?OF.

Proof. By Proposition (1.4) the equivalence F takes terminal objects to ter-
minal objects. Also it is faithful, full, and dense by Proposition (1.1). Therefore
by the lemma, F? is faithful, full, and dense. Now a second appeal to Proposition
(1.1) proves that F? is an equivalence. 2

1.5. Rank 1 objects

In a category, monic morphisms correspond to injective maps and epic mor-
phisms to surjective maps. A careful analysis of monics will be presented in Chapter
6.

Epics turn out to be more difficult to handle, so we take a different (and more
ad hoc) approach to surjectivity. The basic idea is that elements of an object X
in the category C correspond to the morphisms of HomC(A,X) where A is “free of
rank 1” (interpreted appropriately).

Let A be an object in C. We say that the morphism f ∈ HomC(X,Y ) is A-
surjective if, for every a ∈ HomC(A, Y ), there is a b ∈ HomC(A,X) with a = bf .
If F : C −→ D gives an equivalence, then f is A-surjective if and only if fF is
AF-surjective.

A related concept is the A-order of the object X of C, which we define to be
|HomC(A,X)|. If F : C −→ D gives an equivalence, then the A-order of X equals
the AF-order of XF.

The categories we consider have terminal objects. There we define the terminal-
order of an object X to be its O-order for O terminal. Similarly a terminal-
surjective morphism is one that is O-surjective. By Proposition (1.4), category
equivalences respect terminal-order and terminal-surjectivity.

If a category has zero objects then all morphisms are terminal-surjective and
all objects have terminal-order 1, so we need a more subtle concept.

The nonzero object Z of the category C with zero objects will be called a
Z-object provided:

(i) for all nonzero A there are nonzero f ∈ HomC(Z,A);
(ii) if HomC(A,Z) contains nonzero morphisms, then there are

morphisms f ∈ HomC(A,Z) and g ∈ HomC(Z,A) with gf =
1Z ;

(iii) a nonzero idempotent in EndC(Z) must be 1Z .

Here a zero morphism is one that factors through a zero object; that is, a trivial
morphism. By Lemma (1.5) every object A in a category with zero has a unique
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zero endomorphism 0A. It is idempotent, and A is a nonzero object if and only if
0A 6= 1A.

Condition (ii) says that in some sense Z is free (extensions by Z split). Then
(iii) corresponds to Z having rank at most 1 and (i) to Z not having rank 0.

(1.11). Lemma. In the category C let Z1 be a Z-object. Then the object Z2 is
a Z-object if and only if it is isomorphic to Z1.

Proof. Clearly any object isomorphic to a Z-object is itself a Z-object.
Let Z1 and Z2 be Z-objects. As Z1 is a Z-object and Z2 is nonzero, the set

HomC(Z1, Z2) contains nonzero morphisms by (i). As Z2 is a Z-object, by (ii)
there are f ∈ HomC(Z1, Z2) and g ∈ HomC(Z2, Z1) with gf = 1Z2

. Therefore
(fg)(fg) = f(gf)g = f(1Z2

)g = fg is an idempotent in EndC(Z1). By (iii) we have
fg = 0Z1 or fg = 1Z1 . If fg = 0Z1 then

1Z2
= gf = (gf)(gf) = g(fg)f = g(0Z1

)f = 0Z2
,

contrary to Z2 being nonzero. Therefore fg = 1Z1
, and f is an isomorphism of Z1

with Z2. 2

1.6. Simplicity

There seems to be no accepted definition for simplicity of an object in a general
category. In an abelian category, a simple object [Par70, p.174] is a nonzero object
with no nonzero proper subobjects; this is a suitable model for irreducible modules
but is not generally appropriate.

All the categories we study possess terminal objects. In such a category, a
nonterminal object is simple if every morphism from it is either monic or trivial.3

(1.12). Proposition. Let F : C −→ D give an equivalence of the categories
C and D with terminal objects. If A is a simple object in C then AF is a simple
object in D.

Proof. Let A be a simple object in C with f arbitrary in HomD(AF, X).
By category equivalence there is a B ∈ C with X isomorphic to BF in D, say by
i ∈ HomD(X,BF). Then fi ∈ HomD(AF, BF), so there is a g ∈ HomC(A,B) with
gF = fi. As A is simple, either g is monic or it factors through a terminal object
in C.

If g is monic then so is fi = gF by Proposition (1.3). As i is an isomorphism
f = gF.i−1 is then monic itself, and we are done. Therefore we may assume
that g factors through a terminal object, say g = ab with a ∈ HomC(A,O) and
b ∈ HomC(O,B) for O a terminal object in C. Then fi = gF = aFbF, and
f = aF(bF.i−1) with aF ∈ HomD(AF, OF) and bF.i−1 ∈ HomD(OF, X), for OF a
terminal object in D again by Proposition (1.4). 2

3For abelian categories this definition of simplicity is equivalent to that of [Par70, p.174].



Chapter 2
Quasigroups and Loops

2.1. Basics

A quasigroup (Q, ·) is a nonempty1 set Q equipped with a binary multiplication
· : Q×Q −→ Q and such that, for each a ∈ Q, the right and left translation maps
R(a) : Q −→ Q and L(a) : Q −→ Q given by

qR(a) = q · a and qL(a) = a · q

are permutations of Q. If there is a two-sided identity element 1Q = 1(Q,·) then Q
is a loop. (We often write Q in place of (Q, ·) when the multiplication is clear and
also often denote multiplication by juxtaposition.)

The opposite of the quasigroup (Q, ·) is the quasigroup (Q, ·′) with multiplica-
tion given by x ·′ y = y · x. The opposite of a loop is a loop with the same identity
element.

A homotopism from the quasigroup (Q, ·) to the quasigroup (R, ◦) is a triple
(α, β, γ) of maps from Q to R with the property that

xα ◦ yβ = (x · y)γ

for all x, y ∈ Q. A homotopism is an isotopism if each of its three maps is a
bijection. We have a principal homotopism or principal isotopism if Q and R are
equal as sets and γ = IdQ, the identity permutation of Q.

We let Qgp be the category whose object class consists of all quasigroups, the
set HomQgp(A,B) being that of all homotopisms from the quasigroup A to the
quasigroup B. This is clearly a category. The isomorphisms in the category Qgp
are precisely the isotopisms, the inverse of (α, β, γ) being (α−1, β−1, γ−1). We let
Loop be the full subcategory of Qgp whose object class is that of all loops.

(2.1). Lemma. Let (Q, ·) be a quasigroup. Then (α, β, γ) is a principal
isotopism of (Q, ·) with a loop (Q, ◦) if and only if there are a, b ∈ Q with (α, β, γ) =
(R(b),L(a), IdQ). In that case, the loop identity element is a · b.

1As has been pointed out by J.D.H. Smith, there are virtues to admitting the empty set as

a quasigroup. For instance, this guarantees that the intersection of subquasigroups is always a
subquasigroup—particularly desirable in the varietal setting. But including the empty set renders

Corollary (2.2) false, as also pointed out by Professor Smith. We thank him for his observations.

9
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Proof. (=⇒) Certainly γ = IdQ. Let 1 = 1(Q,◦) be the identity element of

the loop (Q, ◦), and set a = 1α
−1

and b = 1β
−1

. Then

xα
−1

· yβ
−1

= z ⇐⇒ x ◦ y = z .

In particular

1α
−1

· zβ
−1

= z ⇐⇒ 1 ◦ z = z . and zα
−1

· 1β
−1

= z ⇐⇒ z ◦ 1 = z .

Therefore β = L(a), α = R(b), and a · b = 1.
(⇐=) (See [Bru58, p. 56].) For all q ∈ Q

(a · b) ◦ q = aR(b) ◦ q = aR(b) ◦ (qL(a)−1

)L(a) = (a · qL(a)−1

)IdQ = q ,

so a · b is a left identity in quasigroup principal isotope (Q, ◦). Similarly it is a right
identity. 2

(2.2). Corollary. The inclusion functor gives an equivalence of the cate-
gories Loop and Qgp.

Proof. The inclusion functor ι : Loop −→ Qgp is faithful and full. By the
lemma each quasigroup (Q, ·) is isomorphic to a loop (Q, ◦) in Qgp, so inclusion is
dense and the result follows from Corollary (1.2). 2

In particular we may focus our attention on Loop rather than Qgp without
great loss.

A Latin square based upon the set Q is a |Q|× |Q| array in which each element
of Q occurs exactly once in each row and exactly once in each column. A particular
example is the Cayley table (multiplication table) of the quasigroup (Q, ·)—the cell
in the table at the intersection of row a and column b has entry a · b. Indeed every
Latin square based upon Q can be viewed as the Cayley table of many quasigroups
Q, all isotopic. From this point of view, Lemma (2.1) can be easily illustrated:

(2.3). Remark. To find one of the |Q|2 principal isotope loops of the given
quasigroup (Q, ·), select row a and column b of its Cayley table. Use the entries of
this row to relabel the columns of the table and the entries of this column to relabel
the rows of the table. The new Cayley table is that of a loop principal isotope with
identity element a · b, the entry at the intersection of the original row a and the
original column b.

2.2. Autotopisms and anti-autotopisms

The Qgp-automorphisms of the quasigroup Q are the autotopisms of Q. These
are the triples g = (g+, g−, g0) = (g+, g−, g0)+ of permutations gε of Q with

xg+ · yg− = (xy)g0 for all x, y ∈ Q ,
and they form the group AutQgp(Q) = Atp(Q)—the autotopism group of Q. As the
subcategory Loop is full in Qgp, for any loop Q the autotopism group is still given
by Atp(Q) = AutQgp(Q) = AutLoop(Q).

Similarly an anti-autotopism of Q is a triple h = (h+, h−, h0) = (h+, h−, h0)−
of permutations hε of Q with

xh+ · yh− = (yx)h0 for all x, y ∈ Q .
Elementary calculations then give:
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(2.4). Proposition. The set AAtp(Q) of all autotopisms and anti-autotopisms
of the quasigroup Q form a group, the anti-autotopism group of Q under the mul-
tiplication

(a+, a−, a0)α · (b+, b−, b0)β = (aβb+, a−βb−, a0b0)αβ .

The autotopism group Atp(Q) is normal of index 1 or 2 in AAtp(Q). 2

The calculations are aided by the observation that for all subscript choices we
have (ab)ε = aεβbε.

2.3. Loop homomorphisms and the pointed category Loop?

We define a second category of loops, which we denote Loop?. Its object
class is again all loops (that is, Obj Loop? = Obj Loop), but the morphism set
HomLoop?(A,B) consists of the loop homomorphisms from A into B. A loop homo-
morphism is a map γ : A −→ B from the loop A to the loop B with (xy)γ = xγyγ

for all x, y ∈ A. As the identity is the unique idempotent in a loop, 1γA = 1B .

Loop homotopisms need not respect the identity, but if γ : Q −→ M is a loop
homomorphism then (α, β, γ) = (γ, γ, γ) is a homotopism that additionally has

1αQ = 1βQ = 1γQ = 1M . We have the converse:

(2.5). Lemma. Let (α, β, γ) : (Q, ·) −→ (M, ◦) be a loop homotopism.

(a) If 1αQ = 1βQ = 1M , then 1γQ = 1M and α = β = γ is a loop homomorphism from

(Q, ·) to (M, ◦).
(b) There is a principal isotopism (α0, β0, IdM ) : (M, ◦) −→ (M,×) such that γ is

a loop homomorphism from (Q, ·) to (M,×). Specifically

(γ, γ, γ) = (α, β, γ)(α0, β0, IdM ) = (αα0, ββ0, γ) .

Proof. (a) We have

1γQ = (1Q · 1Q)γ = 1αQ ◦ 1βQ = 1M ◦ 1M = 1M .

Also

xα = xα ◦ 1M = xα ◦ 1βQ = (x · 1Q)γ = xγ .

Therefore α = γ and similarly β = γ.

(b) Set 1αQ = a ∈M and 1βQ = b ∈M so that 1γQ = a ◦ b ∈M . With α0 = R(b)

and β0 = L(a) the principal isotopism (α0, β0, IdM ) takes (M, ◦) to (M,×), a loop
with identity element 1(M,×) = a ◦ b by Lemma (2.1).

Therefore (α, β, γ)(α0, β0, IdM ) = (αα0, ββ0, γ) is a homotopism from (Q, ·) to
(M,×) with each map taking 1Q to 1(M,×). Part (a) thus implies that αα0 = ββ0 =
γ is a loop homomorphism. 2

(2.6). Corollary. Every loop isotopic to a loop is isomorphic to one of its
principal isotopes. 2

For those who now wonder why isotopy never came up in their group theory
courses:

(2.7). Corollary. Every loop that is isotopic to the group G is a group that
is isomorphic to G.
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Proof. By the previous corollary and Lemma (2.1), we need only examine the
image (G, ◦) of G under the principal isotopy (R(b),L(a), Id). Consider the map
ϕ : G −→ (G, ◦) given by ϕ(x) = axb. Then

ϕ(xy) = axyb = (axb)b−1 · a−1(ayb) = ϕ(x)R(b)−1

· ϕ(y)L(a)−1

= ϕ(x) ◦ ϕ(y) . 2

A particular consequence of Lemma (2.5) is that Loop? is isomorphic to the
subcategory of Loop in which all loops remain as objects but we only allow those
homotopisms that respect the loop identity elements. We usually identify Loop?

with the corresponding subcategory of Loop.
The Loop?-automorphism group AutLoop?(Q) is the usual group of loop auto-

morphisms—those permutations γ of Q with xγyγ = (xy)γ for all x, y ∈ Q.

(2.8). Lemma. The loop {1} is a terminal object but is not initial in Loop.
The loop {1} is a zero object in Loop?. In particular the categories Loop and Loop?

are not equivalent.

Proof. Objects are sets, and morphisms are induced by set mappings; so {1}
is certainly terminal. If the loop M contains e 6= 1M , then the homotopism (α, β, γ)
from {1} to M given by (1, 1, 1)(α,β,γ) = (1, e, e) is not the identity map. Therefore
{1} is not initial in Loop.

The loop {1} is a zero object in Loop? by Lemma (2.5). The last sentence then
follows from Proposition (1.4). 2

The observation from the lemma, that a category with terminal but noninitial
objects cannot be equivalent to a category with zero objects, will be made often.

The category Loop? is not completely new to us; it is essentially one of the
pointed categories introduced in Section 1.4.

(2.9). Theorem. The category Loop? is equivalent to the pointed category
Loop?{1}.

Proof. For Q ∈ ObjLoop? = ObjLoop, let QE = (Q, ιQ) ∈ Loop?{1}, where

the morphism ιQ = (ι, ι, ι) ∈ HomLoop({1}, Q) with 1ι = 1Q. For each γ ∈
HomLoop?(Q,M) set γE = (γ, γ, γ), a morphism in HomLoop?{1}

((Q, ιQ), (M, ιM ))

as 1γQ = 1M .

Clearly E is a faithful functor from Loop? to Loop?{1}. We claim that it gives

an equivalence of the two categories. By Proposition (1.1) we must prove that E is
full and dense.

Any (α, β, γ) of HomLoop?{1}
((N, ιN ), (M, ιM )) has α = β = γ, a loop homo-

morphism from HomLoop?(N,M) by Lemma (2.5)(a) (with Q = N). Therefore E
is full.

Let ((M, ◦),m) ∈ Loop?{1} with m = (α, β, γ). By Lemma (2.5)(b) (with Q =

{1}) there is a principal isotopism p = (α0, β0, IdM ) in HomLoop((M, ◦), (M,×))
such that mp = (γ, γ, γ) is a loop homomorphism from {1} to (M,×). Thus 1γ =
1(M,×), mp = ι(M,×), and p is an isomorphism of ((M, ◦),m) and ((M,×), ι(M,×))
in Loop?{1}.

We conclude that E is dense and so gives the desired equivalence. 2

The kernel of the loop homomorphism δ : Q −→M is the subloop

ker δ = { k ∈ Q | kδ = 1M } .
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This is consistent with the concept of kernel morphisms introduced in Section 1.3.

(2.10). Lemma. If δ : Q −→M be a loop homomorphism with kernel N , then
the injection map α : N −→ Q is a kernel morphism for δ in the category Loop?.

Proof. Suppose λ : L −→ Q is a loop homomorphism with λδ trivial. That
is, the image of each l ∈ L under λδ is 1M . Hence each lλ is in ker δ = N , and
the map λα that takes l to lλ is a well-defined morphism from L to N . This is the
unique such morphism making the diagram commute:

L

N Q M

λ
λα

α δ

We conclude that α is a kernel morphism for δ, as claimed. 2

A subloop N of the loop Q is normal if it is the kernel of some loop homo-
morphism. In this case the expected properties hold: N is a normal subloop of the
loop Q precisely when set multiplication gives a well-defined coset multiplication

Nx ·Ny = N(xy) ,

and the quotient loop Q/N is canonically isomorphic to the image of any homo-
morphism with kernel N . (See [Bru58, IV.1 pp.61-2].)

It is sometimes more convenient to think of loop homomorphisms in terms
of congruences. A congruence ∼ on the loop Q is an equivalence relation that
additionally has the property

x1 ∼ x2, y1 ∼ y2 =⇒ x1y1 ∼ x2y2 .

The map that takes every element of Q to its ∼-congruence class is a loop ho-
momorphism from Q onto the loop Q/ ∼ in which, by definition, the product of
the class containing x and the class containing y is the class containing xy. Every
surjective loop homomorphism δ on Q arises in this way; indeed the image of δ is
Q/ ∼ when we define

x ∼ y ⇐⇒ xδ = yδ .

The equivalence classes are, of course, the cosets of the corresponding kernel.

2.4. Moufang loops and other loop varieties

We shall be interested in certain varieties of loops—subclasses that are defined
through the satisfaction of particular identical relations. For instance, the category
of groups arises as the variety of all loops that satisfy identically the associativity
relation

x(yz) = (xy)z .

In loops we must distinguish between right inverses and left inverses,

x(−1x) = 1 and (x−1)x = 1 ,

as they need not be the same. We say that inverses are two-sided if we have any
one of the three equivalent identical relations

−1x = x−1 , (x−1)−1 = x , or −1(−1x) = x .
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A loop is a right inverse property loop if it satisfies the identity

(ax)(−1x) = a

and a left inverse property loop if it satisfies the identity

x−1(xa) = a .

The loop is an inverse property loop if it satisfies both of these identities.
A related property is the antiautomorphic inverse property, which holds when

we have the identical relation

(xy)−1 = y−1x−1 .

(2.11). Lemma.

(a) If a loop satisfies either the right or the left inverse property, then inverses are
two-sided.

(b) An inverse property loop has the antiautomorphic inverse property.

Proof. (a) Assume x−1(xa) = a identically. Then

x−1 = x−1 · 1 = x−1(x · −1x) = −1x .

(b) a−1x−1 = a−1((x−1(xa))(xa)−1) = a−1(a(xa)−1) = (xa)−1. 2

The most important variety of loops for us will be that of Moufang loops—those
loops that satisfy the identical relation

(xa)(bx) = (x(ab))x .

This is the Moufang property or Moufang identity, named after Ruth Moufang, who
first studied such loops [Mou35].

The Moufang property is a consequence of associativity. In particular every
group is a Moufang loop. There are also nonassociative examples (see Section 2.5
below). Moufang loops have many nice properties.

(2.12). Proposition. Let Q be a Moufang loop.

(a) Q is an inverse property loop: (ax)(−1x) = a and x−1(xa) = a for all x, a ∈ Q.
(b) Inverses are two-sided and Q satisfies the antiautomorphic inverse property.
(c) Q has the flexible property: (xb)x = x(bx) for all x, b ∈ Q.
(d) x(a(xb)) = ((xa)x)b, for all x, a, b ∈ Q.
(e) b(x(ax)) = ((bx)a)x, for all x, a, b ∈ Q.

Proof. This is well known; see [Bru58, VII.3.1], [Pfl90, IV.1.4].
If we substitute a = 1 into the Moufang property (xa)(bx) = (x(ab))x, then we

find the flexible property x(bx) = (xb)x. In particular (x(ab))x = x((ab)x), so the
opposite loop of a Moufang loop is again Moufang. As the two inverse properties
are opposites of each other, we need only verify one of them to prove that we have
an inverse property loop. Substitute x = a−1 into the Moufang property to get
ba−1 = (a−1a)(ba−1) = (a−1(ab))a−1, then cancel the factor a−1 on the right to
obtain the left inverse property b = a−1(ab), as desired. Two-sided inverses and
the antiautomorphic inverse property follow by Lemma (2.11).
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The last two identities are opposites, so we need only prove one of them. This
can be done directly. Instead we defer the proof to Corollary (12.9), which illustrates
the use of autotopisms in proving loop identities. 2

The last two identities of the proposition can replace the Moufang property in
the definition of a Moufang loop. In fact Moufang’s original definition [Mou35]
was slightly different but still equivalent; she studied inverse property loops that
satisfy the identical relation

x(a(xb)) = (x(ax))b .

This identity is now called the left Bol property, and a loop satisfying it is a left
Bol loop. The opposite of a left Bol loop is a right Bol loop, characterized by the
opposite identical relation b((xa)x) = ((bx)a)x.

The flexible property together with Proposition (2.12)(d,e) show that a Moufang
loop is both a left and a right Bol loop. Conversely a loop that is both left and right
Bol is Moufang, but individually each identity is strictly weaker than the Moufang
property. That is, there are Bol loops that are not Moufang, the smallest having
order 8.

Part of [Pfl90, IV.1] is misleading—without something additional, such as the
inverse property or the flexible property, the left Bol identity (denoted there (M4))
is strictly weaker than the three equivalent Moufang identities (there (M5), (M6),
and (M7)). See [Bru58, VII.3.1] and [Pfl90, IV.1,IV.6] for proofs and further
discussion.

(2.13). Proposition.

(a) The opposite of a Moufang loop is a Moufang loop.
(b) Every Moufang loop is power associative: each subloop generated by one ele-

ments is a cyclic group.
(c) (Moufang’s Theorem) Any triple of elements that associates in some order

generates a subgroup. Especially each subloop generated by two elements is a
group.

Proof. (a) This is a consequence of the Moufang property and the flexible
property of Proposition (2.12)(b).

(b) See [Pfl90, IV.6.6] or [Hal07a, Cor. 3.10], which gives a proof the spirit of
Section 3.3 below.

(c) This is from Moufang’s original paper [Mou35]. See also [Bru58, p.117]
and [Pfl90, IV.2.10]. 2

We have already used part (a) of the proposition, saying that the opposite of a
Moufang loop is Moufang, in the proof of Proposition (2.12). We will use it again,
often and without reference.

Of course power associativity as in (b) is contained in Moufang’s Theorem, but
that result is much deeper and difficult. We will not actually make direct appeal
to Moufang’s Theorem anywhere, but the result is so important that it must be
mentioned. For a nice proof due to Drápal, see [Dra11].

The category Mouf is the full subcategory of Loop consisting of all Moufang
loops. The category Mouf? is then the full subcategory of Moufang loops in Loop?.
As with general loops, we may identify Mouf? with the corresponding subcategory
of Mouf.
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(2.14). Lemma. The loop {1} is a terminal object but not initial in the
category Mouf and is a zero object in Mouf?. In particular the categories Mouf and
Mouf? are not equivalent.

Proof. The loop {1} is a terminal object in Loop and a zero object in Loop?

by Lemma (2.8), and it remains so in their full subcategories Mouf and Mouf?.
The argument for that lemma also shows that {1} is terminal but not initial in
any full subcategory of Loop that additionally contains a loop with more than
one element. For instance, Mouf contains all nontrivial groups and so has the
terminal but nonzero object {1}, while Mouf? contains a zero object. Thus these
two categories are not equivalent by Proposition (1.4). 2

(2.15). Theorem. The categories Mouf? and Mouf?{1} are equivalent.

Proof. This follows from the lemma, Theorem (2.9), and Corollary (1.8). 2

2.5. Examples

Of course every group is a Moufang loop, but there are other important exam-
ples which are not associative.

2.5.1. Paige loops. Moufang [Mou35] studied alternative algebras, proving
that the Moufang laws are valid in all alternative algebras. Composition algebras
are the particular examples possessing a multiplicative norm δ(mn) = δ(m)δ(n).
In a composition algebra, an element is a unit if and only if δ(m) is nonzero. Thus
the units form a Moufang loop, and those units u with norm δ(u) = 1 give a normal
subloop.

Over the field F a nondegenerate 8-dimensional composition algebra is either
a division algebra or is uniquely determined up to isomorphism as the F -algebra of
split octonions Oct+(F ), whose norm 1 subalgebra is denoted SOct+(F ).

The scalars of SOct+(F ) form a normal subloop {±I} of order at most 2, and
the Paige loop over F is the quotient PSOct+(F ) = SOct+(F )/{±I}. Paige [Pai56]
proved that all Paige loops are simple (see Theorem (21.14) below), and Liebeck
[Lie87] proved the converse for finite loops: a finite simple Moufang loop that is
not a group is isomorphic to a Paige loop PSOct+(Fq).

We shall return to the octonions and to Paige loops in Part 4, particularly in
Chapter 21. See also [NVo03, Pai56, SpV00].

2.5.2. Chein’s generalized dihedral loops. A second construction of a
large number of nonassociative Moufang loops is due to Chein [Che74, Theorem
1]. (See also [Che78] and [Cur07].) See [Hal06, §4] for discussion and for a proof
of

(2.16). Theorem. Let (Q, ◦) be a Moufang loop in which the subloop Q0

generated by all elements of order not 2 is a proper subloop. Then there is a subgroup
H containing Q0 and an element x of order 2 in Q\H such that each element of Q
can be uniquely expressed in the form hxa, where h ∈ H, a = 0, 1; and the product
of elements of Q is given by

(h1x
d) ◦ (h2x

e) = (hn1h
m
2 )nxd+e

where n = (−1)e and m = (−1)d+e.
Conversely, given a group H, the loop (Q, ◦) constructed as above is a Moufang

loop. This loop is a group if and only if the group H is abelian. 2
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Chein’s multiplication is summarized in the following table:

◦ h2 h2x
h1 h1h2 (h2h1)x
h1x (h1h

−1
2 )x h−1

2 h1

We call these generalized dihedral loops, since the element x of order 2 inverts all
the elements of the normal subgroup H: for h ∈ H always x−1hx = xhx = h−1.

We shall also return to the Chein loops; see page 30 and Theorem (10.2) below.





Chapter 3
Latin Square Designs

As we saw in Section 2.1, the multiplication table of the quasigroup Q is a Latin
square—a |Q| × |Q| array in which each element of Q occurs exactly once in each
row and exactly once in each column. Latin square designs furnish a geometric
setting for these combinatorial objects. They form the geometric bridge between
Moufang loops and groups with triality.

3.1. Basics

A partial linear space (P, S) consists of a set P , the point set, and a set S of
subsets of P , the lines, the only axiom being that every pair of points from P occur
together in at most one line of S. The partial linear space is a linear space if every
pair of points is in exactly one line. A subspace of (P, S) is a partial linear space
(P0, S0) with P0 ⊆ P and S0 ⊆ S such that L ∈ S with |L∩P0| ≥ 2 implies L ⊆ P0

and L ∈ S0.
The partial linear spaces of greatest interest here are the Latin square designs.

A Latin square design (P, S) has its point set partitioned as P = PR ∪ PC ∪ PE

with pairwise disjoint and nonempty fibers PR, PC, and PE. The line set S then
satisfies:

(i) every line l ∈ S contains exactly one point from each of PR,
PC, and PE;

(ii) if p, q are two points not in the same fiber, then there is a
unique line l ∈ S with p, q ∈ l.

The superscripts are meant to suggest the rows, columns, and entries of the corre-
sponding Latin square, although the definition makes it clear that the role played
by entries is really the same as that played by rows and by columns. As convenient,
we shall write a line either as a triple (x, y, z) ∈ PR × PC × PE or as a 3-subset
{x, y, z} ⊆ P .

(3.1). Lemma. Let (P, S) be a Latin square design. The lines through a fixed
point of one fiber give a bijection between the other two fibers. In particular, all
have the same cardinality |PR| = |PC| = |PE| = |P |/3 and so |S| = |P |2/9. 2

The number |P |/3 is the order of the Latin square design (P, S).

19



20 3. LATIN SQUARE DESIGNS

We define a category LSD whose object class consists of all Latin square designs.
If (P, S) and (P0, S0) are Latin square designs then a morphism f = (α, β, γ) of
HomLSD((P, S), (P0, S0)) is precisely a triple of maps α : PR −→ PR

0 , β : PC −→ PC
0

and γ : PE −→ PE
0 with the property:

if (x, y, z) is a line of S, then (x, y, z)f = (xα, yβ , zγ) is a line
of S0.

In particular the set (PR)α ∪ (PC)β ∪ (PE)γ carries a Latin square subdesign of
(P0, S0). If any of α, β, or γ are injections then they all are; in this case we say
that f is injective.

(3.2). Lemma. If a morphism in HomLSD((P, S), (P0, S0)) is bijective as a
map from P to P0 then it is an isomorphism.

Proof. By considering PR × PC, a morphism that is bijective on the point
set is also bijective on the line set, and therefore has an inverse. 2

The category LSD? has as objects the triples (P, S, I) where (P, S) is an object
of LSD and I is a fixed line of S. Then HomLSD?((P, S, I), (P0, S0, I0)) consists of
those morphisms of HomLSD((P, S), (P0, S0)) that take I to I0.

Any fixed line I can be thought of as a (degenerate) Latin square design of
order 1. The category LSD? is also not new.

(3.3). Theorem. A Latin square design O of order 1 is a terminal object
in LSD but is not initial. The category LSD? is isomorphic to the pointed category
LSD?O.

Proof. Objects are sets, and morphisms are induced by set mappings, hence
O is terminal. If (P, S) is a Latin square design with I1 and I2 distinct lines of S,
then there are maps ϕi in HomLSD(O, (P, S)) with Oϕi = Ii. Thus O is not initial
in LSD.

If ϕ ∈ HomLSD(O, (P, S)) is an anchor, then ϕ(O) is a line Iϕ of (P, S). The
isomorphism then takes the object (P, S, Iϕ) of LSD? to the object ((P, S), ϕ) of
LSD?O. 2

The theorem allows us to identify the categories LSD? and LSD?O.

Let (Q, ·) be a quasigroup, and let QR, QC, and QE be disjoint copies of
the set Q. The Latin square design (Q, ·)T = (PQT, SQT) has point set PQT =
QR ∪ QC ∪ QE (so that PR

QT = QR and so forth), and the triple (xR, yC , zE) ∈
QR ×QC ×QE is a line of SQT precisely when x · y = z as elements of (Q, ·). We
may at times write (x, y, z) for the triple (xR, yC , zE) of QR×QC×QE. If (Q, ·) is
additionally a loop, then we set (Q, ·)T? = (PQT, SQT, IQT) where the line IQT is
{(1Q)R, (1Q)C, (1Q)E}.

The design (Q, ·)T is the Thomsen design of (Q, ·) (after [Tho29]). Its associ-
ated Latin square is the Cayley table for (Q, ·). The Latin square of the quasigroup
(Q, ·′), opposite to (Q, ·), is the transpose of that for (Q, ·). For the associated Latin
square design (Q, ·)T, this corresponds to applying the permutation σ that, for ev-
ery q ∈ Q, interchanges qR and qC and fixes qE. The resulting Latin square design
(Q, ·′)T is isomorphic as design to the original, but σ does not induce an LSD-
morphism, since it interchanges the indices R and C and the corresponding fibers.
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A category LSD+ with Latin square designs as objects but larger sets of morphisms
than LSD will be discussed in Section 15.2 below; there σ is a morphism.

For f = (α, β, γ) ∈ HomSet(Q,M)3 let fT = (αT, βT, γT) be the map of
HomSet(QR,MR)×HomSet(QC ,MC)×HomSet(QE ,ME) given by

(xR)αT = (xα)R, (xC)βT = (xβ)C, (xE)γT = (xγ)E .

Clearly T gives a bijection of the two morphism sets. We next see that the re-
striction of T to HomQgp(Q,M) and to HomLoop?(Q,M) (where we shall call it T?)
turns the Thomsen map into a functor.

(3.4). Theorem.

(a) The Thomsen map T is a functor that gives an equivalence of the two categories
Qgp and LSD.

(b) The Thomsen map T is a functor that gives an equivalence of the two categories
Loop and LSD.

(c) The Thomsen map T? is a functor that gives an equivalence of the two cate-
gories Loop? and LSD?.

Proof. (a) Let Q = (Q, ·) and M = (M, ◦) be two quasigroups. Let f =
(α, β, γ) ∈ HomSet(Q,M)3, and suppose x · y = z. Then

xα ◦ yβ = zγ ⇐⇒ {(xα)R, (y
β)C, (z

γ)E} ∈ SMT

⇐⇒ {(xR)αT, (yC)βT, (zE)γT} ∈ SMT

⇐⇒ {xR, yC, zE}fT ∈ SMT .

That is, f ∈ HomQgp(Q,M) if and only if fT ∈ HomLSD(QT,MT). Therefore the
bijection T restricts to a map from Qgp to LSD that is full and faithful. It is also
clearly functorial.

By Proposition (1.1) it remains to prove that T is dense. Let (P, S) be a Latin
square design, and choose a set Q and bijections α : PR −→ Q, β : PC −→ Q,
and γ : PE −→ Q. We define a multiplication on Q by setting xα · yβ = zγ for
each line (x, y, z) ∈ S. If (α0, β0, γ0) is an isotopism of (Q, ·) with (Q, ◦), then
(x, y, z)f = ((xαα0)R, (y

ββ0)C, (z
γγ0)E) gives an isomorphism f in LSD of (P, S)

with (Q, ◦)T.
Part (b) follows immediately from (a) by Corollary (2.2). Then (c) is a conse-

quence of Theorems (1.10) and (3.3). 2

3.2. Central Latin square designs

A particular consequence of Theorem (3.4) is that the automorphism group of
(Q, ·) in Qgp, AutQgp(Q, ·)—that is, the autotopism group Atp(Q, ·)—is isomorphic
to the automorphism group of (Q, ·)T = (P, S) in LSD, AutLSD(P, S). Here an
LSD-automorphism of (P, S) is a triple of permutations, one each for PR, PC, and
PE, that take lines of S to lines of S. More generally the full automorphism group
Aut(P, S) of (P, S) is the set of all permutations of P that take lines to lines.
Any automorphism must take fibers to fibers—they are the equivalence classes
under “noncollinearity”—but it may permute the three fibers among themselves.
The group AutLSD(P, S) is then the kernel of this action, the normal subgroup of
Aut(P, S) that fixes each fiber globally. The quotient is the subgroup of Sym(3)
induced by Aut(P, S) upon the set of three fibers. In the category LSD+, mentioned
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in the previous section and defined in Section 15.2 below, we do have Aut(P, S) =
AutLSD+(P, S).

For x a point of the Latin square design (P, S), a central automorphism τx with
center x is an automorphism with the property that:

(i) xτx = x;
(ii) if {x, y, z} is a line of (P, S) on x then yτx = z and zτx = y.

A central automorphism τx is not an LSD-automorphism, since it globally fixes the
fiber of x but switches the other two fibers.

(3.5). Lemma.

(a) If there is a central automorphism τx of (P, S), then it has order 2 and is the
unique central automorphism with center x.

(b) For g and τx automorphisms of (P, S) we have τx
g = τxg .

(c) Let τx and τy be central automorphisms of (P, S) with {x, y, z} a line. Then
τx
τy = τz, τxτy has order 3, and the set of central automorphisms of (P, S) is

a conjugacy class in Aut(P, S). In particular 〈τx, τy〉 ' Sym(3).

Proof. See [HaN01, Prop. 2.3] and [Hal07a, Prop. 2.3].
If t1 and t2 are two central automorphisms of (P, S) with center x, then the

automorphism t1t2 is trivial on both fibers off x and so is the identity automorphism.
Therefore if there is a central automorphism with center x, then it is unique and
has order 2.

For g an automorphism of (P, S) the conjugate τx
g is clearly a central automor-

phism of (P, S) with center xg. Therefore by uniqueness τx
g = τxg . In particular

if x and y are in different fibers and {x, y, z} is a line of S with τx and τy central
automorphisms, then

τxτyτx = τy
τx = τz = τx

τy = τyτxτy

and therefore

(τxτy)3 = (τxτyτx)(τyτxτy) = τz
2 = 1

and 〈τx, τy〉 ' Sym(3).
As stated, a conjugate of a central automorphism is a central automorphism.

If u and v are arbitrary points of P then either they are in different fibers, so that
τu and τv are conjugate in 〈τu, τv〉 ' Sym(3), or u and v are in the same fiber and
then τu and τv are both conjugate to τw, where w ∈ {x, y} is not in the fiber of u
and v. Thus the set of all central automorphisms is a conjugacy class of Aut(P, S).

2

(3.6). Corollary.

(a) If (P, S) admits central automorphisms with centers x and y from different
fibers, then the set P0 of all centers of central automorphisms of (P, S) is the
point set of a subdesign (P0, S0) of (P, S).

(b) If f is in HomLSD((P, S), (P0, S0)) and there is a central automorphism τx of
(P, S), then there is a unique central automorphism τxf of (P0, S0). 2

Let CAut(P, S) be the subgroup of Aut(P, S) that is generated by all the central
automorphisms of (P, S). Clearly this is a normal subgroup of Aut(P, S).

Of course there may be points x for which there is no central automorphism at
x. Let CLSD be the full subcategory of LSD consisting of those Latin square designs
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that admit a central automorphism at every point. The category CLSD? is then
the full subcategory of LSD? whose objects are the (P, S, I) with (P, S) an object of
CLSD. The objects of CLSD and CLSD? will be called central Latin square designs.
In this case the automorphism group Aut(P, S) induces the full Sym(3) on the set
of fibers. Indeed Aut(P, S) = AutCLSD(P, S) o I, where I = 〈τx, τy〉 ' Sym(3), for
any x and y from different fibers.

(3.7). Theorem. The Latin square design O of order 1 belongs to CLSD. The
category CLSD? is isomorphic to the pointed category CLSD?O.

Proof. The first sentence is clear. The isomorphism of LSD? and LSD?O given
under Theorem (3.3) restricts to an isomorphism of CLSD? and CLSD?O. 2

(3.8). Lemma. If (P, S) is a central Latin square design, then the centralizer
of CAut(P, S) in Aut(P, S) is 1.

Proof. If c is in the centralizer, then τx = τx
c = τxc , for all x ∈ P , by Lemma

(3.5). That is, c fixes all points of P and so is the identity. 2

3.3. The correspondence between Mouf and CLSD

The next theorem is at the heart of the topic, and there are proofs in the
literature from various points of view. The original proof is probably that of Bol
[Bol37] from 1937, which is phrased in the language of 3-nets (that is, Latin square
designs with the roles of points and lines interchanged; see Section 15.1). Funk and
Nagy [FuN93] rekindled interest in such topics.

(3.9). Theorem. Let Q be a loop. Then Q is a Moufang loop if and only if
the Latin square design QT admits a central automorphism τx with center x, for
each of its points x.

In this section we give a brief proof of the theorem in the spirit of [HaN01, Hal07a].
Clearly any Latin square design isomorphic to a member of CLSD belongs itself

to CLSD. Therefore this theorem and Theorem (3.4) give immediately the following
known result [Pfl90, Theorem IV.4.2]:

(3.10). Corollary. Any loop isotopic to a Moufang loop is itself a Moufang
loop. 2

Before we prove the theorem, we render it categorically.

(3.11). Theorem. The Thomsen functor T gives an equivalence of the two
categories Mouf and CLSD, and the functor T? gives an equivalence of the two
categories Mouf? and CLSD?.

Proof. By Theorem (3.9) the loop Q is Moufang if and only if QT is in CLSD
if and only if QT? is in CLSD?. Therefore upon restriction T is a functor from
Mouf to CLSD, and T? is a functor from Mouf? to CLSD?. Furthermore, each of
these categories is a full subcategory of, respectively, Loop, LSD, Loop?, and CLSD?

that is closed under isomorphism in the parent category. Therefore the restrictions
of T and T? to the subcategories Mouf and Mouf? remain full, faithful, and dense.
That is, they give the desired equivalences by Proposition (1.1). 2

In working with central automorphisms of the Thomsen designs QT we may
streamline the notation by writing ρx for τxR , κx for τxC , and εx for τxE .

The rest of this section is devoted to a proof of Theorem (3.9).
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(3.12). Lemma. Let Q = (Q, ·) be a loop.

(a) κ1 ∈ Aut(QT) if and only if Q has the right inverse property (xy)(−1y) = x
for all x, y ∈ Q. In this case inverses are two-sided and xκ1

C = x−1
C .

(b) ρ1 ∈ Aut(QT) if and only if Q has the left inverse property x−1(xy) = y for
all x, y ∈ Q. In this case inverses are two-sided and xρ1R = x−1

R .
(c) ε1 ∈ Aut(QT) if and only if Q has the antiautomorphic inverse property

(xy)−1 = y−1x−1 for all x, y ∈ Q. In this case inverses are two-sided and
xε1E = x−1

E .

Proof. (a) Assume that κ1 is an automorphism of QT, and let x, y ∈ Q. The
two lines {xR, 1C , xE} and {xyR, 1C , xyE} are mapped to themselves by κ1.
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The image of the line {xR, yC , xyE} under κ1 is then the line

{xκ1

R , y
κ1

C , xy
κ1

E } = {xE , yκ1

C , xyR} = {xyR, yκ1

C , xE} .

In the special case x = 1, this line is {yR, yκ1

C , 1E}. As {yR, (−1y)C , 1E} is always a
line, we must have yκ1

C = (−1y)C . Repeating this, we find yC = yκ1

C
κ1 = (−1(−1y))C .

In particular y = −1(−1y), so inverses are two-sided.
Therefore in the general case the image line becomes {xyR, y−1

C , xE}. But

{xyR, y−1
C , (xy)y−1

E } is certainly a line of QT. We conclude that x = (xy)y−1, the
right inverse property.

Now assume that L has the right inverse property. In particular, inverses are
two-sided by Lemma (2.11). The line {xR, yC , xyE} is a generic line of QT, and
the picture above shows that its image under κ1 is also a line (with the image of yC
under κ1 defined to be y−1

C ). Therefore this κ1 is a central automorphism of QT.

(b) This is equivalent to (a) for the opposite loop (Q, ◦) given by x ◦ y = y · x
for all x, y ∈ Q.

(c) For arbitrary x, y ∈ Q we always have in QT the lines (y−1, y, 1) and
(x,−1x, 1). Therefore the generic line (x, y, xy) would have as image under ε1 ∈
Aut(QT) the line (y−1,−1x, (xyE)ε1). In this case setting x = 1 gives us (yE)ε1 =
y−1

E , while setting y = 1 gives (xE)ε1 = −1xE. Therefore ε1 is in Aut(QT) if
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and only if (y−1, x−1, (xy)−1) is a line for all x, y ∈ Q, in which case inverses are
two-sided. 2

If ρ1 and κ1 (= ρ1ε1ρ1) and ε1 (= ρ1κ1ρ1) are automorphisms of QT, then the
lemma tells us that Q is an inverse property loop. Furthermore it says that an
inverse property loop always has two-sided inverses (as seen previously in Lemma
(2.11)) and satisfies the antiautomorphic inverse property (xy)−1 = y−1x−1.

(3.13). Lemma. Let Q be an inverse property loop. Then, for the element x
of Q, we have εx ∈ Aut(QT) if and only if we have (xa)(bx) = (x(ab))x for all a, b
in Q. In this case (xy)x = x(yx) and yεxE = ((xy−1)x)E = (x(y−1x))E for all y in
Q.

Proof. As we are in an inverse property loop, inverses are two-sided by Lemma
(3.12) (or Lemma (2.11)).

Let x, a, b be arbitrary in the inverse property loop Q. We always have in QT
the lines (xa, a−1, x) by the right inverse property and (b−1, bx, x) by the left inverse
property. The line (b−1, a−1, (ab)−1) is the image of the generic line (a, b, ab) under
ε1—the antiautomorphic inverse property.

Suppose εx is an automorphism of QT. The image of the line (b−1, a−1, (ab)−1)
under εx would then be (xa, bx, ((ab)−1)εx) . Setting b = 1 we find (a−1

E )εx =

((xa)x)E for all a whereas a = 1 gives (b−1
E )εx = (x(bx))E.

As (xa, bx, (xa)(bx)) is always a line of QT, we see that εx is an automorphism
of QT if and only if (xa)(bx) is equal to ((ab)−1)εx for all a, b. That is, if and only
if (xa)(bx) = (x(ab))x for all a, b. 2

Proof of Theorem (3.9).
A Moufang loop is an inverse property loop by Proposition (2.12), so by Lemma

(3.12) ρ1 and κ1 are automorphisms of QT. Next by Lemma (3.13) all εx are
automorphisms. But then so are all ρx = κ1εxκ1 and κx = ρ1εxρ1. This gives the
forward direction of the theorem.

If all ρx, κx, and εx are automorphisms of QT, then especially Q is an inverse
property loop by Lemma (3.12). Therefore by Lemma (3.13) the identity (xa)(bx) =
(x(ab))x holds for all x, a, b ∈ Q, and Q is a Moufang loop. 2

3.4. Cayley tables of groups

Every Latin square is the Cayley table of a quasigroup. It is natural to wonder
when the Latin square is the Cayley table of a group. According to [DeK74], the
result goes back at least to Frolov [Fro90] and Brandt [Bra27], although in the
loop theory community it is commonly associated with Reidermeister [Rei29].
(See Section 15.1 for further discussion.) Our treatment follows [DeK74, p.18-19].

For the Latin square E with rows and columns indexed by the set Q with the
cell in row r and column c containing entry er,c consider:

(QC) The Quadrangle Condition. In all cases, if eau = ecw,
eav = ecx, and ebu = edw, then ebv = ecx.

That is, whenever in the Cayley table below we encounter the pattern seen above,
then in fact 4 = 5.
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· u v w x
. . .

. . .
. . .

. . .
. . .

. . .

a . . . 1 . . . 2 . . . . . . . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

b . . . 3 . . . 4 . . . . . . . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

c . . . . . . . . . . . . . . . . . . . . . 1 . . . 2 . . .
. . .

. . .
. . .

. . .
. . .

. . .

d . . . . . . . . . . . . . . . . . . . . . 3 . . . 5 . . .
. . .

. . .
. . .

. . .
. . .

. . .

(3.14). Theorem. The Latin square E is the Cayley table of a group if and
only if it satisfies the Quadrangle Condition (QC).

Proof. If E is the Cayley table of a group, then

ebv = bv = bu(au)−1av = dw(cw)−1cx = dx = edx .

Now assume that E has the Quadrangle Condition, and select one of the loops
with Cayley table E as was done in Section 2.1—choose a cell (say, the upper-
lefthand corner) and then label the columns of E with the entries in that row and
the rows with the entries in that column. The identity e of the loop is the entry
from the original cell.

We claim that this loop is a group. Indeed, for arbitrary r, s, t, first look at the
intersections of rows e and r and columns s and st to see the entries

s st
rs r(st)

Next look at the intersections of rows s and rs and columns e and t and now find

s st
rs (rs)t

.

The Quadrangle Condition then gives r(st) = (rs)t, as claimed. 2

In the proof, the specific choice of cell was not crucial. This is explained by
Corollary (2.7) above.



Chapter 4
Groups with Triality

Lemma (3.5) motivates the following definition:

(4.1). Definition. Let D be a conjugacy class of elements of order 2 in the
group G = 〈D〉; and let π : G −→ Sym(3), the symmetric group on {1, 2, 3}, be a
surjective group homomorphism. Further assume that

(∗) for all d, e ∈ D, if dπ 6= eπ, then |de| = 3.

Then we say that (G,D, π) is a group with triality or triality group. The normal
subgroup kerπ of index 6 in G is the base group of (G,D, π).

We may abuse this by calling G itself a group with triality or a triality group when
D and π are evident. The definition (in a different form—see Section 13.1 below)
goes back to Doro [Dor78] and Glauberman [Gla68]. We shall refer to our triality
and that of Doro-Glauberman as abstract triality in contrast to the motivating
concrete triality of Cartan [Car25], which will be the topic of Part 4.

In Section 4.2.4 we shall see that the pair G and D does not always determine
the map π uniquely, and similarly G and π need not determine D.

4.1. Basics

For each d, e ∈ D with dπ 6= eπ the condition (∗) is equivalent to S = 〈d, e〉 '
Sym(3). In particular G is the split extension kerπ o S. Furthermore d and e are
conjugate within 〈d, e〉, so it would have been enough to require D to be a normal
set, conjugacy following directly.

If (G,D, π) and (G0, D0, π0) are two groups with triality, then a triality homo-
morphism f : (G,D, π) −→ (G0, D0, π0) is a group homomorphism f : G −→ G0

that additionally has Df ⊆ D0 and π = fπ0. We then have the category TriGrp
whose object class is all groups with triality and whose morphisms are the triality
homomorphisms.

Let (P, S) be a central Latin square design. Set D = { τx | x ∈ P } and
G = 〈D〉 = CAut(P, S), a normal subgroup of Aut(P, S). Further define the

27
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homomorphism π : G −→ Sym(3) to extend the map

τx 7→


(2, 3) for x ∈ PR

(1, 3) for x ∈ PC

(1, 2) for x ∈ PE

Then (P, S)A = (G,D, π) is a group with triality by Lemma (3.5). The base group
kerπ is the intersection of AutCLSD(P, S) with CAut(P, S).

Conversely, let (G,D, π) be a group with triality. Set P = P(G,D,π) = D with

PR = D ∩ (2, 3)π
−1

, PC = D ∩ (1, 3)π
−1

, PE = D ∩ (1, 2)π
−1

.

We let S = S(G,D,π) be the union of all the 3-subsets Tu of P = D for u ∈
HomTriGrp((Sym(3), T, IdSym(3)), (G,D, π)), where T = {(2, 3), (1, 3), (1, 2)}. That
is, the 3-subset T0 of D is a line of S(G,D,π) precisely when 〈T0〉 ' Sym(3) is a
complement to kerπ in G. Then (G,D, π)C = (P, S) is a central Latin square
design with the various elements of D naturally acting as central automorphisms
by conjugation (hence the center of G acts trivially).

Because of the remarks of the previous paragraph, we call the various subgroups
I = Sym(3)

u
for u ∈ HomTriGrp((Sym(3), T, IdSym(3)), (G,D, π)) the lines of the

group with triality (G,D, π). A G-conjugate of a line is also a line. If I is a line,
then D is the G-class containing the transpositions of I and π factors through the
isomorphism of I with Sym(3).

(4.2). Lemma. Let (G,D, π) be a group with triality.

(a) If the subgroup H of G contains a line I, then H0 = 〈IH〉 is itself a triality
group with respect to the class D0 = D ∩ H0 = D ∩ H and the projection π0

equal to the restriction of π to H0.
(b) If f : (G,D, π) −→ (G0, D0, π0) is a triality homomorphism, then ker f is a

normal subgroup of G that is contained in kerπ.
(c) Conversely, let K be a normal subgroup of G that is contained in kerπ. Then

there is a surjective triality homomorphism f : (G,D, π) −→ (G0, D0, π0) with
ker f = K and (G0, D0, π0) uniquely determined up to triality isomorphism.

Proof. (a) This is clear.
(b) As π = fπ0 we must have ker f ≤ kerπ.
(c) Set G0 = G/K. The class D0 is uniquely determined as that containing

DK/K. Because K ≤ kerπ, the map π can be factored through G/K = G0 as fπ0

for π0 : G0 −→ Sym(3). Since f is surjective, π = fπ0 determines π0 uniquely. 2

We have a second category TriGrp? of groups with triality whose object class
consists of all (G,D, π, I) with (G,D, π) is a group with triality and I a line in G.
Again we can realize this category as a pointed category.

(4.3). Theorem. The group with triality

O = (Sym(3), {(2, 3), (1, 3), (1, 2)}, IdSym(3))

is a terminal object in TriGrp but is not initial. The category TriGrp? is isomorphic
to the pointed category TriGrp?O.

Proof. As every morphism from (G,D, π) must be compatible with π, the
object O is certainly terminal. The Cayley tables of nontrivial groups give nontrivial
central Latin square designs hence triality groups (G,D, π) with kerπ 6= 1. In that
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case we can find distinct d, e1, e2 ∈ D with dπ 6= eπ1 = eπ2 . For the lines Ii = 〈d, ei〉
there are maps ϕi in HomTriGrp(O, (G,D, π)) with Oϕi = Ii. Thus O is not initial
in TriGrp.

If ϕ ∈ HomTriGrp(O, (G,D, π)) is an anchor, then ϕ(O) is a line Iϕ of (G,D, π).
The isomorphism then takes the object (G,D, π, Iϕ) of TriGrp? to ((G,D, π), ϕ) of
TriGrp?O. 2

The theorem allows us to identify the categories TriGrp? and TriGrp?O.

For f ∈ HomTriGrp((G,D, π), (G0, D0, π0)), let fC act as the restriction map
f |D on P(G,D,π) = D and as the corresponding induced map on S(G,D,π) = S.

If additionally If = I0 so that f ∈ HomTriGrp?((G,D, π, I), (G0, D0, π0, I0)), set

DfC? = DfC, SfC
?

= SfC, and (I ∩D)fC
?

= I0 ∩D0.

(4.4). Proposition.

(a) C : TriGrp −→ CLSD is a faithful, dense functor.
(b) C? : TriGrp? −→ CLSD? is a faithful, dense functor.

Proof. We first check fC ∈ HomCLSD((G,D, π)C, (G0, D0, π0)C). That is, for
each {x, y, z} is in S(G,D,π) we must make sure that {x, y, z}f belongs to S(G0,D0,π0).
As {x, y, z} is in S(G,D,π), for T = {(2, 3), (1, 3), (1, 2)} the definition gives a mor-
phism u ∈ HomTriGrp((Sym(3), T, IdSym(3)), (G,D, π)) with {x, y, z} = Tu. But
then

{x, y, z}f = (Tu)f = Tuf

for uf in HomTriGrp((Sym(3), T, IdSym(3)), (G0, D0, π0)). That is, {x, y, z}f belongs
to S(G0,D0,π0), as desired.

For f as given and g ∈ HomTriGrp((G0, D0, π0), (G1, D1, π1)), we have

(fg)C = fg|D = f |D g|D0
= fCgC ;

and C is indeed a functor.
Let f, g ∈ HomTriGrp((G,D, π), (G0, D0, π0)). Then

fC = gC ⇐⇒ f |D = g|D ⇐⇒ f |〈D〉 = g|〈D〉 ⇐⇒ f = g

since G = 〈D〉. Therefore C is faithful.
Finally C is dense as (P, S) ∈ CLSD is always isomorphic to ((P, S)A)C, giving

(a).
Lemma (1.9) then gives us (b). 2

In Proposition (7.12) below we shall see that neither C nor C? is full.

4.2. Examples

4.2.1. Wreath products. For H a group, the full wreath product H oSym(n)
is the split extension of the direct sum B =

⊕n
i=1Hi, the base group of the wreath

product, by the symmetric group Sym(n), naturally permuting the factors of the
base with action given by hgi = hi.g for each h ∈ H and g ∈ Sym(n).

Routine calculations give

(4.5). Proposition. For arbitrary k, h ∈ H and distinct indices a, b, c, d (as
possible), we have:

(a) (a, b)HoSym(n) ∩B(a, b) = {h−1
a hb(a, b) | h ∈ H };
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(b)
(
k−1
a kb(a, b)

)h−1
a hb(c,d)

= k−1
a kb(a, b);

(c)
(
k−1
a kb(a, b)

)h−1
b hc(b,c)

= (kh)−1
a (kh)b(a, c);

(d)
(
k−1
a kb(a, b)

)h−1
a hb(a,b) = (hk−1h)−1

a (hk−1h)b(a, b). 2

The following elementary result is due to Zara [Zar85] and is also implicit (for
n = 3) in Tits [Tit58] and Doro [Dor78]. (See also [Hal06].)

(4.6). Theorem. Let H be a group and let D be the conjugacy class of the
full wreath product H o Sym(n) containing the transposition class of Sym(n), for
n ≥ 3, and set Wr(H,n) = 〈D〉. Let the associated projection homomorphism be
η : H o Sym(n) −→ Sym(n).

(a) There is a bijection between H and D ∩Bd for each d ∈ D.
(b) For all d, e ∈ D, if |dηeη| = 2 then |de| = 2.
(c) For all d, e ∈ D, if |dηeη| = 3 then |de| = 3.
(d) The quotient (H o Sym(n))/Wr(H,n) is isomorphic to H/H ′.

Proof. For t, r ∈ T , if |tηrη| = 2, then tη = (a, b) and rη = (c, d) for distinct
a, b, c, d. Therefore tr = t by Proposition (4.5)(b), so |tr| = 2, giving (b).

If |tηrη| = 3, then there are h, k ∈ H and distinct a, b, c with t = k−1
a kb(a, b)

and r = h−1
b hc(b, c). By Proposition (4.5)(c), tr = (kh)−1

a (kh)c(a, c). Also by
Proposition (4.5)(c)

rt =
(
(h−1)−1

c (h−1)b(c, b)
)(k−1)−1

b (k−1)a(b,a)
= (h−1k−1)−1

c (h−1k−1)a(c, a) .

Therefore rt = (kh)−1
a (kh)c(a, c) = tr, so that (tr)3 = (trt)(rtr) = (rt)(tr) = 1,

giving (c).
By (c), the conjugacy class of transpositions remains a class in Wr(H,n), so

(a) follows from Proposition (4.5)(a).
By Proposition (4.5)(d), the group Wr(H,n) contains the derived group B′ =

⊕ni=1H
′
i, while the image of B∩Wr(H,n)/B′ is spanned by the images of the various

h−1
a hb by Proposition (4.5)(c). Therefore B/B∩Wr(H,n) ' (H oSym(n))/Wr(H,n)

is a copy of H/H ′, as in (d). 2

This immediately gives

(4.7). Corollary. Let D be the transposition class of H o Sym(3) or H o
Sym(4), respectively, and let G be the subgroup generated by D—respectively Wr(H, 3)
and Wr(H, 4).

(a) (G,D, π) is a group with triality, where in the first case π is η and in the second
π is η followed by the projection from Sym(4) onto Sym(3).

(b) |D| is equal to 3|H| for Wr(H, 3) and 6|H| for Wr(H, 4).
(c) The quotients (H oSym(3))/Wr(H, 3) and (H oSym(4))/Wr(H, 4) are isomorphic

to H/H ′. In particular if H is perfect then H o Sym(3) = Wr(H, 3) and H o
Sym(4) = Wr(H, 4). 2

Not surprisingly the corresponding loop Wr(H, 3)CS is the group H, as we
shall verify in Theorem (10.1) below. The loops Wr(H, 4)CS are precisely the
Chein generalized dihedral loops of Theorem (2.16); see Theorem (10.2) below as
well as [GrZ06, Prop. 1] and [Hal06, §4].
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4.2.2. Weyl groups.
This entire monograph could be viewed as a riff on the tame observation that the
Weyl group of type A2 is the symmetric group of degree 3.

(4.8). Proposition.

(a) W(A2) = 〈 r, c | r2 = c2 = 1, (rc)3 = 1 〉 ' Sym(3).

(b) W(Ã2) = 〈 r, c, e | r2 = c2 = e2 = 1, (rc)3 = (re)3 = (ce)3 = 1 〉 ' Z2oSym(3).
(c) W(A3) = 〈 r1, r2, c | r2

i = c2 = 1, (ric)
3 = 1, (rirj)

2 = 1 〉 ' Sym(4).
(d) W(D4) = 〈 r1, r2, r3, c | r2

i = c2 = 1, (ric)
3 = 1, (rirj)

2 = 1 〉 ' Z3
2 o Sym(4).

(e) W(D̃4) = 〈 r1, r2, r3, r4, c | r2
i = c2 = 1, (ric)

3 = 1, (rirj)
2 = 1. 〉 ' Z4oW(D4).

Proof. See for instance [Hum90]. These all can be calculated directly without
difficulty. 2

In each of these Weyl groups the generators belong to the same conjugacy class,
the reflection class D. The projection maps π given by

r , ri 7→ r c 7→ c e 7→ rcr

describe homomorphisms of each onto W(A2) ' Sym(3).

We write Wn(Ã2) and Wn(D̃4) for the quotients (respectively) of W(Ã2) and

W(D̃4) by n times their root lattice subgroups—nZ2 and nZ4. These are isomorphic

to (respectively) Z2
n o Sym(3) and Z4

n o W(D4); for instance W2(Ã2) ' Sym(4).
Keeping Corollary (4.7) in mind, we easily find the following lemmas.

(4.9). Lemma.

(a) W(Ã2) 'Wr(Z, 3) ' Z2 o Sym(3) is a group with triality.

(b) The center of Wn(Ã2) is cyclic of order gcd(n, 3).

(c) W4(Ã2) ' Wr(Z4, 3) ' Z2
4 o Sym(3) is a group with triality containing 12

transpositions. It has trivial center. 2

(4.10). Lemma. W(D4) ' Wr(Z2, 4) is a group with triality containing 12
transpositions. It has center of order 2 and W(D4)/Z(W(D4)) 'Wr(Z2 × Z2, 3).
2

(4.11). Lemma.

(a) W(D̃4) ' Wr(D∞, 4) ' Z4 o W(D4) is a group with triality. (Here D∞ is a
dihedral group of infinite order.)

(b) W3(D̃4) 'Wr(Sym(3), 4) ' Z4
3 oW(D4) is a group with triality containing 36

transpositions. It has trivial center and has no triality subgroups W4(Ã2) or
W(D4)/Z(W(D4)). 2

4.2.3. Cartan’s triality groups.
Cartan’s triality group PΩ+

8 (F )oSym(3) of type D4 [Car25] over F is a group with
triality in our sense, as verified by Tits [Tit58]. This is concrete triality (mentioned
at the beginning of this chapter) and the example that motivated Doro’s original
terminology [Dor78]. We shall return to the group and its triality in Part 4 below,
particularly in Chapter 18. (See also [GrZ06, Hal11, NVo03].)
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4.2.4. Nonuniqueness.
The group G = 3n o 2 gives an example of a group with triality (G,D, π) in which
G and D do not determine π uniquely as kerπ may be chosen to be any subgroup
of index 3 in the normal subgroup 3n. The group G = W(D4) gives an example
where G and π do not determine D uniquely. Indeed, if z is an element of order 2
in the center of (G,D, π), then (G, zD, π) is also a group with triality.

4.3. Normal subgroups in the base group and wreath products

In Doro’s [Dor78] original treatment of groups with triality (G,D, π, I), the
focus was actually the base group K = kerπ, admitting a group I isomorphic
to Sym(3) acting in a prescribed fashion, as will be described precisely in the
introduction to Chapter 13. There we call the pair (K, I) a group admitting triality
to distinguish it from the group with triality G = K o I .

Recall that the second center of the group G, denoted Z2(G), is the preimage
in G of Z(G/Z(G)).

(4.12). Lemma. Let (G,D, π) be a group with triality and I a line with
D ∩ I = {d, e, f}. Further let K be a normal subgroup of G that is contained in
kerπ.

(a) G′ = 〈 ab | a, b ∈ D 〉 of index 2 in G and Z(G)G′′ ≤ kerπ.
(b) kerπ = [kerπ, I] = 〈 ab | a, b ∈ D , a kerπ = b kerπ 〉.
(c) KZ(G) = kerπ if and only if K = kerπ.
(d) D ∩ Kd = dK = d[K,I], and for H = [K, I]I the triple (H,D ∩ H,π|H) is a

group with triality.
(e) Z(G) = Z2(G) and D ∩ Z(G)d = {d}.
(f) [K,G] = [K,G,G] = 〈 ab | a, b ∈ D, Ka = Kb 〉.

Proof.

(a) Any group generated by a conjugacy class of involutions has derived group of
index at most 2. Here Gπ ' Sym(3).

(b) SetK = 〈 ab | a, b ∈ D , a kerπ = b kerπ 〉. The subgroup [kerπ, I]I is contained
inKoI and contains allD and so equalsG. In particular kerπ = [kerπ, I] = K.

(c) This follows immediately from the previous part.
(d) For d0 ∈ D ∩Kd the group 〈d0, e〉 is symmetric of degree three, so d0, e, and

d are all conjugate within KI = IK. Therefore

D ∩KI = {d, e, f}IK = {d, e, f}K = D ∩ IK

and D ∩Kd = dK .
The subgroup [K, I]I of KI contains IK and so is equal to 〈D ∩KI〉. As

before D∩KI = {d, e, f}[K,I] and dK = D∩Kd = d[K,I]. Indeed this shows for
[K, I]I = H that D ∩H = dH generates H and so H is a group with triality.

(e) For K = Z2(G), from (d)

{d} ⊆ D ∩ Z2(G)d = dZ2(G) = d[Z2(G),I] ⊆ dZ(G) = {d} .

Especially Z2(G) centralizes every d ∈ D and so centralizes G = 〈D〉, hence
Z(G) ≤ Z2(G) ≤ Z(G).

(f) Since the conjugacy class D generates G,

[K,G] = 〈 [K, b] | b ∈ D 〉 = 〈 [K,J ] | J a line 〉 .
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By (b) and (d) we have [K,J ] = [K,J, J ] for all lines J , so [K,G] = [K,G,G].
Then

[K,G] = 〈 [K, b] | b ∈ D 〉
= 〈 k−1bkb | b ∈ D, k ∈ K 〉

= 〈 bkb | b ∈ D, k ∈ K 〉
= 〈 ab | a, b ∈ D, a ∈ Kb 〉

by (d), as desired. 2

(4.13). Proposition. Let (G,D, π) be a group with triality, and set K =
kerπ. The action of G by conjugation on the class D gives a group homomorphism
from G to M o Sym(3) with kernel equal to Z(G). Then K/Z(G) is the intersection
of G/Z(G) with the wreath product base group M1 ⊕M2 ⊕M3; and, for each i, the
projection of K/Z(G) onto Mi is a surjection.

Proof. As before, let I ' Sym(3) be a line with I ∩D = {r, c, e}.
The group G = 〈D〉 acts on the class D by conjugation with kernel CG(D) =

Z(G). By the lemma, this permutation action is imprimitive, respecting the equiv-
alence relation with classes D ∩Kr = rK , D ∩Kc = cK , and D ∩Ke = eK . Here
I permutes the three classes as Sym(3) and K the kernel of this action. This gives
the desired wreath product action, where M is the group induced by K on any one
of the equivalence classes. 2

The proposition motivates our calling kerπ the base group of the group with
triality (G,D, π). The group M will be discussed in Section 12.3. Some care must
be taken. For instance for the triality groups Wr(H, 3) of the previous section, the
corresponding group M will rarely be isomorphic to H. Indeed if H is nonabelian
and simple, then M is isomorphic to H ×H.
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Chapter 5
The Functor B

We already have the most familiar version of “essential equivalence”:

Mouf CLSD TriGrp�
-

�
-T

S

A

C

Here (T,S) is the equivalence of Mouf and CLSD guaranteed by Theorem (3.11),
and A and C are the “automorphism” and “central design” maps of Chapter 4.

From the categorical point of view this is incomplete and imperfect. Proposition
(4.4) above said that C is a functor, but Corollary (7.11) below will show that it
does not give an equivalence. More seriously, the map A is not a functor (as we
shall see in Corollary (9.20) below).

In this chapter we construct a functor B to take the place of A. As with T
we initially construct B as a functor from LSD to TriGrp and then examine its
restriction to the subcategory CLSD.

5.1. A presentation

(5.1). Presentation. For the Latin square design (P, S), the group G(P, S)
has the following presentation:

Generators:
p̃, for arbitrary p ∈ P ;

Relations:
for arbitrary p ∈ P and {p, q, r} ∈ S:

(1) p̃2 = 1;
(2) p̃q̃p̃ = r̃.

In the remaining lemmas of this section, let (P, S) be a fixed but arbitrary
Latin square design.

(5.2). Lemma. The map

x̃ 7→


(2, 3) for x ∈ PR

(1, 3) for x ∈ PC

(1, 2) for x ∈ PE

extends to a homomorphism π(P,S) of G(P, S) onto Sym(3). For every line I ∈ S,

the subgroup 〈Ĩ〉 is isomorphic to Sym(3) and is a complement to kerπ(P,S).

37
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Proof. The line I = {p, q, r} of S meets each of PR, PC, PE exactly once.
Therefore the image of I is {(2, 3), (1, 3), (1, 2)}. Certainly we have (2, 3)2 =
(1, 3)2 = (1, 2)2 = 1, and in all cases we also have (a, b)(a, c)(a, b) = (b, c). There-
fore the group G(P, S) maps onto Sym(3) with the restriction to each subgroup
〈p̃, q̃, r̃〉 an isomorphism. 2

(5.3). Lemma. P̃ = { p̃ | p ∈ P } is a conjugacy class of elements of or-

der 2 in G(P, S), and (G(P, S), P̃ , π(P,S)) is a group with triality. Every line of

(G(P, S), P̃ , π(P,S)) is 〈Ĩ〉 for some line I of S.

Proof. The previous lemma implies that P̃ consists of elements of order 2.
Also elements q̃ and r̃ with different images under π(P,S) are conjugate, so P̃ is
contained in a single conjugacy class.

Since P̃ is a generating set, it itself is a class provided p̃ã ∈ P̃ for all p, a ∈ P .
This is clear by the relations when p and a are from different fibers, so we assume
they are in the same fiber. Let {p, q, r} ∈ S. Then, as just mentioned, q̃ã and r̃ã

both belong to P̃ ; so p̃ã = q̃ãr̃ãq̃ã does as well.
We thus have P̃ a conjugacy class of elements of order 2 in the group G(P, S) =

〈P̃ 〉 and π(P,S) : G −→ Sym(3) a surjective group homomorphism. Furthermore, for

every p̃, q̃ ∈ P̃ with p̃π(P,S) 6= q̃π(P,S) , the order of p̃q̃ is 3, as can be checked within
〈p̃, q̃〉 ' Sym(3). That is, (G(P, S), P̃ , π(P,S)) is a group with triality.

Let T be a line of (G(P, S), P̃ , π(P,S)) with T ∩ P̃ = {x, y, z}. Then there
are p, q in different fibers of P with x = p̃ and y = q̃. There is a line I of S with
I = {p, q, r} so that T0 = 〈p̃, q̃, r̃〉 is a line of (G(P, S), P̃ , π(P,S)). As T ∩T0 contains

the generators x = p̃ and y = q̃ we must have z = r̃ and T = T0 = 〈p̃, q̃, r̃〉 = 〈Ĩ〉.
2

(5.4). Lemma. The map t : P −→ P̃ given by pt = p̃ is a bijection if and only if

(P, S) is a central Latin square design. In this case the induced map t : I 7→ 〈Ĩ〉 gives

a bijection of the set S of lines of (P, S) and the set of lines of (G(P, S), P̃ , π(P,S)).

Proof. If (P, S) is a central Latin square design, then by Lemma (3.5) the
bijection p̃ 7→ τp extends to a homomorphism from G(P, S) onto CAut(P, S). There-
fore the bijection p 7→ τp factors through t, which thus must also be a bijection.

Conversely, assume that t is a bijection. Choose a fixed but arbitrary a in the

fiber PX, and define α ∈ Sym(P ) by xα = (x̃ã)t
−1

for all x ∈ P . Let {p, q, r} ∈ S.

Then 〈p̃, q̃, r̃〉 is a line of (G(P, S), P̃ , π(P,S)) as is

〈p̃, q̃, r̃〉ã = 〈p̃ã, q̃ã, r̃ã〉 = 〈p̃α, q̃α, r̃α〉 .

As t is a bijection, {pα, qα, rα} = {p, q, r}α ∈ S; so α is an automorphism of (P, S).
Since α acts as τa on P \ PX, we have α = τa by Lemma (3.5).

By the previous lemma the map induced by t from S to the line set of the group
(G(P, S), P̃ , π(P,S)) is surjective. When t is bijective on P it must also be injective
on S. 2

5.2. The functor B

Let the map B : ObjLSD −→ ObjTriGrp be given by

(P, S)B = (G(P, S), P̃ , π(P,S)) .
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Similarly B? : ObjLSD? −→ ObjTriGrp? is given by

(P, S, I)B = (G(P, S), P̃ , π(P,S), 〈Ĩ〉) .

Set G = (G(P, S), P̃ , π(P,S)) and G0 = (G(P0, S0), P̃0, π(P0,S0)), and suppose

ϕ = (α, β, γ) is in HomLSD((P, S), (P0, S0)). Let f from P̃ = P t to P̃0 = P t00 be
given by

(xt)f = x̃f =


x̃α = (xα)t0 for x ∈ PR

x̃β = (xβ)t0 for x ∈ PC

x̃γ = (xγ)t0 for x ∈ PE

This is summarized in a commutative diagram:

P P̃ = D

P0 P̃0 = D0

ϕ

t

f (=ϕB)

t0

As we shall next see, the map f on D uniquely determines the morphism ϕB ∈
HomTriGrp(G,G0). Therefore it will only be a mild abuse to replace f with ϕB in
the above commutative diagram (as indicated parenthetically).

(5.5). Lemma.

(a) f extends uniquely to ϕB ∈ HomTriGrp(G,G0).
(b) If (P, S), (P0, S0) are both designs in CLSD, then the map ϕ 7→ ϕB is a bijec-

tion of HomLSD((P, S), (P0, S0)) and HomTriGrp(G,G0) uniquely determined by
t−1ϕt0 = ϕB|P̃ .

Proof. (a) By definition π(P,S) = fπ(P0,S0) on P̃ and P̃ f ⊆ P̃0. Therefore we

need only prove that f extends to a group homomorphism from G(P, S) = 〈P̃ 〉 to
G(P0, S0). It suffices to show that each relation of G(P, S) is mapped to a relation
valid in G(P0, S0).

Clearly (x̃f )2 = 1 for each x̃ ∈ P̃ .
Let (p, q, r) ∈ PR × PC × PE be a line of S. The relation p̃q̃p̃ = r̃ for G(P, S)

becomes under f the candidate relation p̃f q̃f p̃f = r̃f ; that is, ptfqtfptf = rtf .
The set {p, q, r}ϕ = {pα, qβ , rγ} is a line of S0, and so T0 = 〈pαt0 , qβt0 , rγt0〉

is a line of (G(P0, S0), P̃0, π(P0,S0)) with T0 ∩ P̃0 = {pαt0 , qβt0 , rγt0}. Within T0 we
calculate that

ptfqtfptf = pαt0qβt0pαt0 = rγt0 = rtf ,

as required. The images under f of the other G(P, S) relations ãb̃ã = c̃ associated
with the line {p, q, r} = {a, b, c} can be verified within T0 = 〈ptf , qtf , rtf 〉 ' Sym(3)
as well.

(b) Under (a) we have seen that the restriction f of ϕB to P̃ satisfies

tϕB|P̃ = tf = ϕt0 .

The previous lemma tells us that t and t0 are bijections on P and P0 and respect
lines. As G(P, S) is generated by P̃ , the morphisms ϕ and ϕB uniquely determine
each other via

t−1ϕt0 = ϕB|P̃ and ϕ = t(ϕB|P̃ )t−1
0 . 2
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Suppose ϕ? is in HomLSD?((P, S, I), (P0, S0, I0)). By the forgetful functor, we
have also ϕ? in HomLSD((P, S), (P0, S0)). Then ϕ?B naturally induces

ϕ?B? ∈ HomTriGrp?((G(P, S), P̃ , π(P,S), 〈Ĩ〉), (G(P0, S0), P̃0, π(P0,S0), 〈Ĩ0〉)) .

(5.6). Theorem.

(a) B : LSD −→ TriGrp is a functor that is additionally full and faithful when re-
stricted to the subcategory CLSD.

(b) B? : LSD? −→ TriGrp? is a functor that is additionally full and faithful when
restricted to the subcategory CLSD?.

Proof. We have B defined on LSD and B? on LSD?, but we must prove
functoriality.

Let ϕ be in HomLSD((P, S), (P0, S0)) and ϕ0 in HomLSD((P0, S0), (P1, S1)). Let

f denote the restriction of ϕB to P̃ and f0 the restriction of ϕ0B to P̃0. From
Lemma (5.5) we have tf = ϕt0 and t0f0 = ϕ0t1. Therefore

tff0 = ϕt0f0 = ϕϕ0t1 .

This implies ϕϕ0B|P̃ = ff0 = ϕB|P̃ϕ0B|P̃0
, hence ϕϕ0B = ϕBϕ0B. We conclude

that B is a functor, as is B?.
By Lemma (5.5)(b), on the subcategory CLSD the functor B is full and faithful,

and so B? on CLSD? is also by Lemma (1.9). 2

In Proposition (7.12) below we shall see that B from CLSD is not dense, nor is
B? from CLSD?.



Chapter 6
Monics, Covers, and Isogeny in TriGrp

We now have a more categorical version of “essential equivalence”:

Mouf CLSD TriGrp�
-

�
-T

S

B

C

Unfortunately, the pair (B,C) still does not guarantee equivalence. The functor
BC on CLSD is indeed faithful, full, and dense. However CB on TriGrp, while
faithful (as C and B are), is neither full nor dense. The study of the functor
U = CB and its image in TriGrp will be the main topic of the next chapter. This
requires a careful study in the present chapter of the monic morphisms in TriGrp.

6.1. A fibered product

Let (G1, D1, π1, I1) and (G2, D2, π2, I2) be groups with triality. Then G1 ×G2

is not a triality group, but we can easily construct one from it by taking an index 6
subgroup (kerπ1×kerπ2)oI, where I ' Sym(3) sits on the diagonal of I1×I2. The
resulting group with triality is nearly the direct product and corresponds (under
CS) to the direct product of the associated Moufang loops. This is the degenerate
case Ni = kerπi of the following fibered product construction.

(6.1). Proposition. Let (G1, D1, π1, I1) and (G2, D2, π2, I2) be objects in
TriGrp?. For i ∈ {1, 2} assume there are normal subgroups Ni of Gi contained in
kerπi such that, for Ḡi = Gi/Ni, the two groups with triality (Ḡ1, D̄1, π̄1, Ī1) and
(Ḡ2, D̄2, π̄2, Ī2) are isomorphic via δ : Ḡ1 −→ Ḡ2.

Let H be the subgroup { (g1, g2) | ḡδ1 = ḡ2 } of G1 ×G2, the δ-diagonal modulo
N1×N2. In H set D∞ = { (d1, d2) | d1 ∈ D1, d2 ∈ D2, d̄

δ
1 = d̄2 } and G∞ = 〈D∞〉.

Further let I∞ = 〈D∞ ∩ (I1 × I2)〉, isomorphic to Sym(3) via π∞ = (π1 × π2)|G∞ .
Then (G∞, D∞, π∞, I∞) is a group with triality in TriGrp?. For {i, j} = {1, 2},

the projection ai onto (Gi, Di, πi, Ii) is a surjective triality homomorphism with
kernel G∞ ∩Nj ≥ [Nj , I∞] = [Nj , Ij ].

Proof. Most of this is clear from the definitions. CertainlyG∞/G∞∩Nj ' Gi.
If d = (d1, d2) ∈ D∞ ∩ I and n ∈ N1, then [n, d2] = 1 and

[n, d1] = [n, d] = (d1, d2)n(d1, d2) = (dn1 , d2)(d1, d2) ∈ N1 ∩G∞
as (dn1 )δ = dδ1 = d2.
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The elements of the normal set D∞ in H and G∞ have order 2 and generate
G∞. The map π∞ is onto Sym(3) ' I∞ with (D∞)π∞ = {(2, 3), (1, 3), (1, 2)}.
When we have proven that |de| = 3, for all d, e ∈ D∞ with dπ∞ 6= eπ∞ , we will be
done since this implies that 〈d, e〉 ' Sym(3) and hence D∞ is a single class.

Let d = (d1, d2) and e = (e1, e2) be in D∞ with dπ∞ = s 6= t = eπ∞ , so that
dπ1

1 = dπ2
2 = s 6= t = eπ1

1 = eπ2
2 . Therefore in G1 ×G2

((d1, d2)(e1, e2))3 = (d1e1, d2e2)3 = ((d1e1)3, (d2e2)3) = (1, 1) .2

6.2. Monics in TriGrp

(6.2). Proposition. Let C be a full subcategory of TriGrp containing a ter-
minal object and such that the corresponding pointed category C? is closed under
the fibered product of Proposition (6.1). Let (G,D, π) and (G0, D0, π0) be groups in
C, and let f be a triality homomorphism from (G,D, π, I) to (G0, D0, π0, I0). The
following are equivalent:

(1) f is monic in C.
(2) f is monic in C?.
(3) ker f is central in G.
(4) The restriction f : D −→ D0 is an injection.

Proof. (1) =⇒ (2): Suppose that f is not monic in C?, and let a, b ∈
HomC?((G1, D1, π1, I1), (G,D, π, I)) with a 6= b and af = bf . Forgetting the special
lines, we then have a, b ∈ HomC((G1, D1, π1), (G,D, π)) with a 6= b and af = bf ;
that is, f is not monic in C.

(2) =⇒ (3): Assume f is monic in C? and set N = ker f . Let (G1, D1, π1, I1)
and (G2, D2, π2, I2) be two copies of (G,D, π, I) and form the fibered product
(G∞, D∞, π∞, I∞) over G/N (≤ G0) as in Proposition (6.1). By hypothesis the
triality group (G∞, D∞, π∞, I∞) is in C?. If a1 and a2 are (upon identification of
G, G1, and G2) the two projections onto (G,D, π, I) described in the proposition,
then a1f = a2f as maps from (G∞, D∞, π∞, I∞) to (G0, D0, π0, I0). Since f is
monic in C?, this forces a1 = a2. Especially G∞∩N1 = ker a2 = ker a1 = G∞∩N2.
The factors N1 and N2 intersect trivially, therefore G∞ ∩N1 = G∞ ∩N1 ∩N2 = 1.
In particular [N1, I1] = [N1, I∞] ≤ G∞ ∩ N1 = 1; that is, [N, I] = 1. As N is
normal and G = 〈IG〉, this gives N ≤ Z(G).

(3) =⇒ (4): This follows from Lemma (4.12)(e).
(4) =⇒ (1): Let a and b be triality homomorphisms from (G1, D1, π1) to

(G,D, π) with af = bf taking (G1, D1, π1) to (G0, D0, π0). For arbitrary but fixed

d1 ∈ D1 let (da1)f = daf1 = dbf1 = (db1)f , an element of D0. As f is an injection of D
into D0, we have da1 = db1. Thus a and b agree on D1 and so on G1 = 〈D1〉. That
is, a = b. 2

Of course in this proposition the main case of interest is C = TriGrp, but we
will use the result for proper subcategories as well.

6.3. Covers and isogeny

If f is a surjective triality homomorphism from (G,D, π) to (G0, D0, π0) with
ker f contained in Z(G), then we say that f is a covering map and (G,D, π) is a
cover of (G0, D0, π0).
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(6.3). Lemma.

(a) If ζ0 : (G0, D0, π0) −→ (G1, D1, π1) and ζ1 : (G1, D1, π1) −→ (G2, D2, π2) are
covering maps, then ζ0ζ1 : (G0, D0, π0) −→ (G2, D2, π2) is a covering map.

(b) The triality homomorphism f : (G,D, π) −→ (G0, D0, π0) is a covering map if
and only if the restriction f : D −→ D0 is a bijection.

Proof. (a) The composition ζ0ζ1 is a surjective triality homomorphism whose
kernel is contained in Z2(G0) = Z(G0) by Lemma (4.12).

(b) By Proposition (6.2) the kernel of f is central if and only if the restriction
of f to D is injective. In this case, f will be surjective if and only if the restriction
is also surjective. 2

We say that two groups with triality (G,D, π) and (G0, D0, π0) are isogenous if
there is an isogeny from D to D0—a bijection ψ : D −→ D0 with dψeψdψ = (ded)ψ,
for all d, e ∈ D with dπ 6= eπ. We also ask that π|D = ψπ0 (although this is not
strictly necessary as an arbitrary ψ with the first condition can be concatenated
with conjugation by an element of a line to get a bijection that additionally has
this second condition). The inverse ψ−1 : D0 −→ D of the isogeny ψ is also an
isogeny. Isogeny gives an equivalence relation on ObjTriGrp that can be viewed as
a weakened form of isomorphism.

By Lemma (6.3) a covering map is a triality homomorphism f for which the
restriction ψ = f |D is an isogeny. We shall soon discover that all isogenies are
associated with covers. Indeed we find that isogeny is the transitive extension of
the symmetrized covering relation.





Chapter 7
Universals and Adjoints

We return to study of the functor U = CB. This leads to the important full
subcategories of TriGrp consisting of its universal and its adjoint objects.

7.1. Universal and adjoint groups

(7.1). Presentation. For a group with triality (G,D, π), the group GU has
the following presentation:

Generators:

d̃, for arbitrary d ∈ D;

Relations:

for arbitrary d, e ∈ D with dπ 6= eπ:

(1) d̃2 = 1;

(2) d̃ẽd̃ = d̃ed.

(7.2). Theorem.

(a) Set DU = { d̃ | d ∈ D }, and define the map πU on DU by d̃π
U

= dπ. Then πU

extends uniquely to a homomorphism from GU onto Sym(3), and (GU, DU, πU)
is a group with triality.

(b) The map d̃ 7→ d is a bijection of the conjugacy class DU with D that extends
to a covering map ζU

G : (GU, DU, πU) −→ (G,D, π).
(c) (GU, DU, πU) = (G,D, π)U.

Proof. Statement (a) follows immediately from (c). Also, given (c) the map

d̃ 7→ d is a bijection by Lemma (5.4), and (b) then follows from Lemma (6.3).
It remains to prove (c). By Presentations (5.1) and (7.1) both triality groups

(GU, DU, πU) and (G,D, π)U = (G,D, π)CB are generated by the set { d̃ | d ∈ D }
and satisfy the relations d̃2 = 1 for d ∈ D. The remaining relations are

Relation (5.1)(2): d̃ẽd̃ = f̃ , for {d, e, f} a line of (G,D, π)C

for (G,D, π)U, and

Relation (7.1)(2): d̃ẽd̃ = d̃ed, for d, e ∈ D with dπ 6= eπ

for (GU, DU, πU).
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However {d, e, f} is a line of (G,D, π)C if and only if in (G,D, π) we have
I = 〈d, e, f〉 ' Sym(3) with {d, e, f} = I ∩D and dπ 6= eπ. In this case ded = f , so
the relations of (5.1)(2) and (7.1)(2) are equivalent. 2

The triality groups (GU, DU, πU) have an important universal mapping prop-
erty.

(7.3). Theorem. Let (G,D, π) and (H,E, ρ) be groups with triality, and let
ψ : D −→ E have the two properties:

(i) dψeψdψ = (ded)ψ, for all d, e ∈ D with dπ 6= eπ

(ii) π|D = ψρ

(a) There is a unique morphism

ψU ∈ HomTriGrp((G
U, DU, πU), (HU, EU, ρU))

with ζU
Gψ = ψUζU

H as maps from DU to E; that is, the following diagram
commutes:

DU EU

D E

ψU

ζUG ζUH

ψ

(b) There is a unique morphism

ψ0 ∈ HomTriGrp((G
U, DU, πU), (H,E, ρ))

with ζU
Gψ = ψ0 on DU.

Proof. (a) For d ∈ D , we have d̃ζ
U
Gψ = dψ ∈ E. As ζU

H is a bijection of EU

and E, to make the diagram commute we must set

d̃ψ
U

= d̃ψ .

Therefore if there is a morphism ψU as described, then it is uniquely determined
as the extension of this map on the generating set DU to all of GU.

We need to check that the relations of (7.1) defining GU are taken by ψU to
relations valid in HU. The image of DU is within EU, so all these images certainly

square to 1 in HU. Consider now the relation d̃ẽd̃ = d̃ed with dπ 6= eπ, hence
(dψ)ρ 6= (eψ)ρ:

d̃ψ
U

ẽψ
U

d̃ψ
U

= d̃ψ ẽψ d̃ψ by definition;

= ˜dψeψdψ in HU;

= (̃ded)ψ by hypothesis;

= d̃ed
ψU

again by definition.

Thus the defining relations for GU are respected by ψU, which therefore extends to
a homomorphism from GU to HU.

By construction the homomorphism ψU takes DU into EU. Therefore to prove
that ψU is a TriGrp-morphism from (GU, DU, πU) to (HU, EU, ρU), it remains to
observe that on DU

πU = ζU
Gπ = ζU

Gψρ = ψUζU
Hρ = ψUρU .
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(b) The condition ζU
Gψ = ψ0 on DU determines ψ0 uniquely on a generating

set of GU, so there is at most one such morphism. But ψ0 = ψUζU
H has the desired

property. 2

A map ψ as in the theorem has all the properties of an isogeny except it is
not required to be bijective. (We resist the temptation to call it a homogeny.) Of
course isogenies are examples, but also the restriction to D of any morphism from
(G,D, π) gives an example. We examine these two special cases.

(7.4). Theorem. For each ϕ ∈ HomTriGrp((G,D, π), (H,E, ρ)), there is a
unique ϕU ∈ HomTriGrp((G

U, DU, πU), (HU, EU, ρU)) with ζU
Gϕ = ϕUζU

H :

GU HU

G H

ϕU

ζUG ζUH

ϕ

Proof. Set ψ = ϕ|D. The morphism ζU
Gϕ from GU to H has, as its restriction

to the class DU, the map

ζU
G |DUϕ = ζU

Gϕ|D = ζU
Gψ .

Theorem (7.3) then guarantees that ζU
Gϕ = ψUζU

H as TriGrp-morphisms and that
ϕU = ψU is the unique morphism with this property. 2

(7.5). Theorem.

(a) If ψ is an isogeny from (G,D, π) to (H,E, ρ), then the morphism ψU is an
isomorphism of (GU, DU, πU) and (HU, EU, ρU).

(b) If ϕ is a covering map from (H,E, ρ) to (G,D, π), then ζU
G factors through

ϕ; that is, there is a unique triality homomorphism ζ from (GU, DU, πU) to
(H,E, ρ) with ζU

G = ζϕ. Furthermore ζ itself is a covering map.

Proof. (a) By Theorem (7.3) there is a morphism ψU from GU to HU with
ζU
Gψ = ψUζU

H on DU and a morphism (ψ−1)U from HU to GU with ζU
Hψ
−1 =

(ψ−1)UζU
G on EU. Therefore, as a map from DU to D we have

ζU
G = ζU

Gψψ
−1 = ψUζU

Hψ
−1 = ψU(ψ−1)UζU

G .

As ζU
G restricts to a bijection of DU and D, the morphism ψU(ψ−1)U is the identity

map on the generating class DU for GU. Thus ψU(ψ−1)U = 1(G,D,π), and similarly

(ψ−1)UψU = 1(H,E,ρ). We conclude that ψU is an isomorphism.

(b) As ϕ is a cover, ϕ|E is an isogeny (by Lemma (6.3)(b)). Let ψ = ϕ|−1
E be

the inverse isogeny from D to E. By Theorem (7.3), there is a unique morphism ζ
from (GU, DU, πU) to (H,E, ρ) with ζU

Gψ = ζ on DU. That is, the morphism ζ is
unique subject to ζU

G = ζψ−1 on DU. The class DU generates GU, so ζ is in turn
unique subject to ζU

G = ζϕ on all GU. As ζU
G |DU and ψ are both bijections, so is

ζ|DU . Again by Lemma (6.3)(b) the map ζ is a cover. 2

We call (GU, DU, πU) (or any group with triality isomorphic to it) a univer-
sal group with triality. The two preceding theorems express universal properties
of the universal groups with triality. Theorem (7.4) says that any morphism be-
tween groups with triality lifts uniquely to a morphism between the corresponding
universal groups.
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The second part of Theorem (7.5) says that the group with triality (GU, DU, πU)
is a universal central extension of (G,D, π) in TriGrp. This is particularly satisfying
since, in the category of groups, universal central extensions exist generally only for
perfect groups [Asc00, (33.4)]; existence for perfect H is proven via a presentation
that encodes the full Cayley table of H. In Presentation (7.1) we only needed to en-
code the transform table for the conjugacy class D of (G,D, π), so the presentation
is simpler and the construction works in all cases.

(7.6). Proposition.

(a) The triality group (G0, D0, π0) is isogenous to (G,D, π) if and only if the groups
(GU

0 , D
U
0 , π

U
0 ) and (GU, DU, πU) are isomorphic.

(b) The triality group (G0, D0, π0) is isogenous to (G,D, π) if and only if there is
a covering map ζ : (GU, DU, πU) −→ (G0, D0, π0).

(c) The triality group ((GU)U, (DU)U, (πU)U) is isomorphic to (GU, DU, πU).

Proof. (a) By Theorem (7.5) isogeny of (G0, D0, π0) and (G,D, π) gives iso-
morphism of (GU

0 , D
U
0 , π

U
0 ) and (GU, DU, πU). Conversely, if (GU, DU, πU) and

(GU
0 , D

U
0 , π

U
0 ) are isomorphic via ϕ, then the map (ζU

G |DU)−1ϕζU
G0

is an isogeny
from (G,D, π) to (G0, D0, π0).

(b) By Lemma (6.3) if ζ is a cover, then ζ|D is an isogeny. Conversely, if ψ
is an isogeny from (G,D, π) to (G0, D0, π0), then by Theorem (7.5) (GU, DU, πU)
and (GU

0 , D
U
0 , π

U
0 ) are isomorphic via ψU; so ψUζU

G0
is a covering map from GU to

G0.
(c) As (GU, DU, πU) and (G,D, π) are isogenous, this follows from (a). 2

The above results tell us that the universal groups with triality (G,D, π) are
precisely those for which ζU

G is an isomorphism and equally well those that are (up
to isomorphism) in the range of the functor U. Each isogeny class contains a unique
universal group up to isomorphism.

We can now make precise our statement at the end of the previous chapter that
all isogenies are associated with covers. Specifically, suppose that (G1, D1, π1) and
(G2, D2, π2) are isogenous. Then there are a universal group (G,D, π) and covering
maps ζi from G to Gi. Each ζi|D is an isogeny, and (ζ1|−1

D )(ζ2|D) is a specific
isogeny from (G1, D1, π1) to (G2, D2, π2). In particular isogeny is the equivalence
relation generated by covering through symmetry and transitivity.

Loosely, two isogenous triality groups are the same up to centers. Within each
isogeny class the universal group is the unique largest group up to isomorphism,
and all others are covered by it. In each isogeny class there is also a unique smallest
group up to isomorphism, and it is covered by all the others. This is the adjoint
group, which we next define.

Consider the map ζ taking G to G/Z(G) = GA. Lemma (4.2) and Proposition
(6.2) then give a covering map ζ : (G,D, π) −→ (GA, DA, πA) with πA uniquely
determined by π = ζπA. Again by Proposition (6.2) the triality groups (G,D, π)
and (GA, DA, πA) are isogenous. We call (GA, DA, πA) (or any group with triality
that is isomorphic to it) an adjoint group with triality. As we shall see below,
every triality group that is isogenous to (G,D, π) has central quotient isomorphic
to (GA, DA, πA).

The adjoint groups with triality have a particularly elementary characteriza-
tion.
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(7.7). Proposition.

(a) The group with triality (G,D, π) is adjoint if and only if Z(G) = 1. In particular
((GA)A, (DA)A, (πA)A) is equal to (GA, DA, πA).

(b) The groups with triality (GA, DA, πA) and (G,D, π)CA are isomorphic.

Proof. (a) If Z(G) = 1 then clearly (G,D, π) = (GA, DA, πA) is adjoint. On
the other hand, by Lemma (4.12)(e) the adjoint group GA has trivial center and
(GA)A = GA.

(b) By design the element d of D and G acts as τd on (G,D, π)C. Therefore
there is a triality homomorphism from (G,D, π) to (G,D, π)CA that restricts to a
bijection on D. By Proposition (6.2) the group (G,D, π)CA is covered by (G,D, π),
and by Lemma (3.8) it has trivial center. Therefore (G,D, π)CA is isomorphic to
the full central quotient of (G,D, π), namely (GA, DA, πA). 2

Proposition (7.7) is the adjoint counterpart to Theorem (7.2). Compare the
following with Proposition (7.6).

(7.8). Proposition.

(a) The triality group (G0, D0, π0) is isogenous to (G,D, π) if and only if the groups
(GA

0 , D
A
0 , π

A
0 ) and (GA, DA, πA) are isomorphic.

(b) The triality group (G0, D0, π0) is isogenous to (G,D, π) if and only if there is
a covering map ζ : (G0, D0, π0) −→ (GA, DA, πA).

Proof. (a) If (G0, D0, π0) is isogenous to (G,D, π), then by Proposition (7.6)
the groups (GU

0 , D
U
0 , π

U
0 ) and (GU, DU, πU) are isomorphic and cover (G0, D0, π0)

and (G,D, π). These in turn cover (GA
0 , D

A
0 , π

A
0 ) and (GA, DA, πA). Therefore by

Lemma (6.3) the group (GU, DU, πU) covers both adjoint groups (GA
0 , D

A
0 , π

A
0 ) and

(GA, DA, πA). By Proposition (7.7) these groups are isomorphic, both being full
central quotients of (GU, DU, πU)

Conversely if (GA
0 , D

A
0 , π

A
0 ) and (GA, DA, πA) are isomorphic, then by Propo-

sition (7.6)

(GU
0 , D

U
0 , π

U
0 ) ' ((GA

0 )U, (DA
0 )U, (πA

0 )U)

' ((GA)U, (DA)U, (πA)U) ' (GU, DU, πU) .

Therefore (G0, D0, π0) and (G,D, π) are isogenous by Proposition (7.6).
(b) If (G0, D0, π0) is isogenous to (G,D, π), then by (a) the groups with trial-

ity (GA
0 , D

A
0 , π

A
0 ) and (GA, DA, πA) are isomorphic; but by definition the group

(G0, D0, π0) covers (GA
0 , D

A
0 , π

A
0 ). Conversely, if (G0, D0, π0) covers the group

(GA, DA, πA), then by Lemma (6.3) both (G0, D0, π0) and (G,D, π) are isogenous
to (GA, DA, πA); so they are isogenous to each other. 2

7.2. Universal and adjoint categories

The universal triality group category UTriGrp is defined to be the full subcat-
egory of TriGrp with object class consisting of the universal groups with triality.
The category UTriGrp? is the corresponding full subcategory of TriGrp?. By Theo-
rem (7.2) the universal functor U = CB is a functor from TriGrp to UTriGrp taking
(G,D, π) to (GU, DU, πU). Similarly let U? be the functor from TriGrp? to UTriGrp?

taking (G,D, π, I) to (GU, DU, πU, IU), where IU = 〈c̃, d̃, ẽ〉 for I = 〈c, d, e〉 with
c, d, e ∈ D.
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The adjoint categories ATriGrp and ATriGrp? are the full subcategories of TriGrp
and TriGrp? consisting of those objects that are adjoint.

(7.9). Theorem. The group with triality

O = (Sym(3), {(2, 3), (1, 3), (1, 2)}, IdSym(3))

is both universal and adjoint, so it is a terminal object in UTriGrp and ATriGrp but is
not initial. The category UTriGrp? is isomorphic to the pointed category UTriGrp?O,
and the category ATriGrp? is isomorphic to the pointed category ATriGrp?O.

Proof. The triality group Sym(3) is adjoint as it has trivial center and uni-
versal by its presentation as W(A2). Therefore it is also terminal in the full sub-
categories UTriGrp and ATriGrp. The proof from Theorem (4.3) that Sym(3) is not
initial goes over to the full subcategories, as there are groups with triality not iso-
morphic to the universal and adjoint Sym(3); and the isomorphism of TriGrp? and
TriGrp?O given there restricts to isomorphisms of the corresponding subcategories.
2

(7.10). Theorem. For groups with triality (G1, D1, π1) and (G2, D2, π2) the
following are equivalent:

(1) (G1, D1, π1) and (G2, D2, π2) are isogenous in TriGrp.
(2) (G1, D1, π1)U and (G2, D2, π2)U are isomorphic in UTriGrp.
(3) (GA

1 , D
A
1 , π

A
1 ) and (GA

2 , D
A
2 , π

A
2 ) are isomorphic in ATriGrp.

(4) (G1, D1, π1)C and (G2, D2, π2)C are isomorphic in CLSD.
(5) (G1, D1, π1)CS and (G2, D2, π2)CS are isomorphic in Mouf.

Proof. Statements (1) and (2) are equivalent by Theorem (7.2) and Proposi-
tion (7.6). Statements (1) and (3) are equivalent by Proposition (7.8).

Statements (4) and (5) are equivalent as S is a category equivalence.
Statement (1) implies (4) by Lemma (4.12)(e), while (4) implies (2) as U = CB

and B is a functor. 2

(7.11). Corollary. The functor C does not give an equivalence of the
categories TriGrp and CLSD.

Proof. By Lemma (4.10) the triality groups W(D4) and W(D4)/Z(W(D4))
are nonisomorphic but isogenous. By the theorem C takes these to isomorphic
objects in CLSD. But equivalences take nonisomorphic objects to nonisomorphic
objects. 2

Similarly we have

(7.12). Proposition.

(a) The map U = CB is a faithful functor from TriGrp to TriGrp but is neither full
nor dense.

(b) The map U? = C?B? is a faithful functor from TriGrp? to TriGrp? but is neither
full nor dense.

(c) The functors C and C? are not full on TriGrp and TriGrp?.
(d) The functors B and B? are not dense on CLSD and CLSD?.

Proof. C is a faithful and dense functor from TriGrp to CLSD by Proposition
(4.4) while B is a faithful and full functor from CLSD to TriGrp by Theorem (5.6).
This gives the faithful part of (a), and a similar argument gives the corresponding
part of (b).
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The group W(D4) is universal (as revealed by its presentation in Proposition
(4.8)) and is isogenous but not isomorphic to W(D4)/Z(W(D4)) by Lemma (4.10).
Therefore the isomorphism class of W(D4)/Z(W(D4)) is not represented in the im-
age of U or U?, and these functors are not dense. Furthermore (W(D4)/Z(W(D4)))U

and W(D4)U are isomorphic in TriGrp and TriGrp? (both to W(D4), in fact), and
this isomorphism cannot be the image under U or U? of any morphism from
W(D4)/Z(W(D4)) to W(D4); the functors are also not full.

As C and C? are dense while B and B? are full, but U = CB and U? = C?B?

are neither, C and C? are not full and B and B? are not dense. 2

As (Sym(3), {(2, 3), (1, 3), (1, 2)}, IdSym(3)) is both universal and adjoint, The-
orem (7.10) gives us immediately

(7.13). Theorem. For groups with triality (G1, D1, π1, I1) and (G2, D2, π2, I2)
the following are equivalent:

(1) (G1, D1, π1, I1) and (G2, D2, π2, I2) are isogenous in TriGrp?.
(2) (G1, D1, π1, I1)U? and (G2, D2, π2, I2)U? are isomorphic in UTriGrp?.
(3) (GA

1 , D
A
1 , π

A
1 , I

A
1 ) and (GA

2 , D
A
2 , π

A
2 , I

A
2 ) are isomorphic in ATriGrp?.

(4) (G1, D1, π1, I1)C? and (G2, D2, π2, I2)C? are isomorphic in CLSD?.
(5) (G1, D1, π1, I1)C?S? and (G2, D2, π2, I2)C?S? are isomorphic in Mouf?. 2

The previous two theorems might look better were we to define a map V from
TriGrp to ATriGrp by

V = CA with (GA, DA, πA) ' (G,D, π)V ,

in parallel to our earlier definition of the map U from TriGrp to UTriGrp given by

U = CB with (GU, DU, πU) = (G,D, π)U .

We resist this temptation, since unlike U the map CA is not a functor. Indeed in
Corollary (9.20) below we prove that A is not a functor precisely by observing that
this would force CA to be a functor and then deriving a contradiction.

If a morphism is monic (or epic) then it certainly remains monic (or epic) in any
subcategory. But in passage to the subcategory we may have lost some morphisms
and so promoted other morphisms to monic (or epic) status. We now prove that in
the subcategories ATriGrp and UTriGrp of TriGrp there are no monic surprises.

(7.14). Proposition. Let (G,D, π) and (G0, D0, π0) be groups in ATriGrp,
and let f be a triality homomorphism from (G,D, π, I) to (G0, D0, π0, I0). The
following are equivalent:

(1) f is monic in ATriGrp.
(2) f is monic in ATriGrp?.
(3) f is monic in TriGrp.
(4) f is monic in TriGrp?.
(5) f is an injection of G into G0.
(6) the restriction f : D −→ D0 is an injection.

Proof. The objects of ATriGrp? are characterized within TriGrp? as those with
trivial center, so the full subcategory ATriGrp? is closed under the fibered product
of Proposition (6.1). Therefore this result follows directly from Proposition (6.2)
as Z(G) = 1. 2
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(7.15). Proposition. Let (G,D, π) and (G0, D0, π0) be groups in UTriGrp,
and let f be a triality homomorphism from (G,D, π, I) to (G0, D0, π0, I0). The
following are equivalent:

(1) f is monic in UTriGrp.
(2) f is monic in UTriGrp?.
(3) f is monic in TriGrp.
(4) f is monic in TriGrp?.
(5) ker f is central in G.
(6) The restriction f : D −→ D0 is an injection.

Proof. The category UTriGrp? is not closed under the fibered product. Instead
we show directly that f is monic in UTriGrp? if and only if it is monic in TriGrp?.
With that, the forgetful functor and Proposition (6.2) give the full result.

As already mentioned, if f is monic in TriGrp? then it is monic in the subcate-
gory UTriGrp?.

Now assume that f in monic in UTriGrp?, and let g1 and g2 be TriGrp? mor-
phisms from (G1, D1, π1, I1) to (G,D, π, I) with g1f = g2f . Then the giU

? are
morphisms from (G1, D1, π1, I1)U? to (G,D, π, I)U? ' (G,D, π, I) with

g1U
?fU? = (g1f)U? = (g2f)U? = g2U

?fU? .

By Proposition (1.1) the restriction of the functor U? to UTriGrp? is an equivalence,
and especially fU? is monic in the subcategory as f is. Therefore in UTriGrp? we
find g1U

? = g2U
?. By Proposition (7.12) the functor U? is faithful, so g1 = g2.

This proves that f is still monic in the supercategory TriGrp?. 2



Chapter 8
Moufang Loops and Groups with Triality
are Essentially the Same Thing

More precisely we have the following two theorems.

(8.1). Theorem. The categories Mouf, CLSD, and UTriGrp are equivalent.

(8.2). Theorem. The categories Mouf?, CLSD?, and UTriGrp? are equivalent.

As in Lemma (2.14), the categories from the two different theorems cannot be
equivalent to each other, since the categories of the second theorem all have zero
objects while none of the categories in the first theorem do.

Theorem (8.2) follows from Theorem (8.1) as the categories in the second the-
orem are equivalent to the pointed versions of those in the first theorem. The
relevant references are Theorems (1.10), (2.15), (3.7), and (7.9).

8.1. A category equivalence

By Theorem (3.11) we know that Mouf and CLSD are equivalent via T. We
wish to construct equivalences according to:

Mouf CLSD UTriGrp�
-

�
-T

S

B

C

In a certain sense this has been done already via “proof by definition.” Namely
in Theorem (5.6) we showed that B is faithful and full as a functor from CLSD
to TriGrp. By restricting to UTriGrp, the image of B, we have effectively defined
B to be additionally dense as a functor from CLSD to UTriGrp. Thus B gives an
equivalence of CLSD and UTriGrp by Proposition (1.1). Rather than fill in the
details of this argument, we prove something that is more concrete.

(8.3). Proposition. The pair of functors (B,C) is a category equivalence of
CLSD and UTriGrp.

Proof. We must prove:

(i) For every (G,D, π) ∈ UTriGrp we can choose an isomor-
phism χ(G,D,π) in HomUTriGrp((G,D, π), (G,D, π)CB) such
that:

53
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for all

(G1, D1, π1), (G2, D2, π2) ∈ UTriGrp

and each

f ∈ HomUTriGrp((G1, D1, π1), (G2, D2, π2)) ,

we have

fCB = χ−1
(G1,D1,π1)fχ(G2,D2,π2) .

(ii) For every (P, S) ∈ CLSD we can choose an isomorphism
δ(P,S) in HomCLSD((P, S), (P, S)BC) such that:
for all

(P3, S3), (P4, S4) ∈ CLSD

and each

ϕ ∈ HomCLSD((P3, S3), (P4, S4)) ,

we have

ϕBC = δ−1
(P3,S3)ϕδ(P4,S4) .

The morphism f of HomUTriGrp((G1, D1, π1), (G2, D2, π2)) is completely and
uniquely determined by its restriction taking the set D1 to the set D2. Also ϕ of
HomCLSD((P3, S3), (P4, S4)) is determined by its action mapping the set P3 to P4.
In a similar manner, the functor C is completely and uniquely determined on each
object (G,D, π) of UTriGrp by the identity inclusion ι : D −→ D = P(G,D,π) = P
given by d 7→ d. The functor B is determined on each object (P, S) of CLSD by the

bijection t : P −→ P̃ = D given by p 7→ p̃ = pt. The morphisms fC and ϕB are
then uniquely determined by the commutative diagrams

D1 D1 = P1

D2 D2 = P2

ι1

f fC

ι2

P3 P̃3 = D3

P4 P̃4 = D4

t3

ϕ ϕB

t4

For (i), given (G,D, π) ∈ UTriGrp the morphism χ(G,D,π) is the element of
HomUTriGrp((G,D, π), (G,D, π)CB) uniquely determined by

χ(G,D,π)|D = ι(G,D,π)t(G,D,π)C .

Thus (G,D, π)χ(G,D,π) = (G,D, π)U, which is isomorphic to (G,D, π) by Propo-
sition (7.6)(c). Furthermore, with fC = ϕ, P1 = P3, and P2 = P4, we glue the
diagrams together at the middle to get

fCB = ϕB = t−1
1 ι−1

1 fι2t2 = χ−1
1 fχ2 ,

as required for (i).
For (ii), given (P, S) ∈ CLSD the morphism δ(P,S) is the unique element of

HomCLSD((P, S), (P, S)BC) determined by

δ(P,S)|P = t(P,S)ι(P,S)B .

As t(P,S) (by Lemma (5.4)) and ι(P,S)B are both bijections, so is their composition
δ(P,S). Then by Lemma (3.2) the morphism δ(P,S) is an isomorphism.
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With ϕB = f , D3 = D1, and D4 = D2, we now glue the outsides of the
diagrams together and get

ϕBC = fC = ι−1
3 t−1

3 ϕt4ι4 = δ−1
3 ϕδ4 ,

as required for (ii). 2

This proves Theorem (8.1) and so also Theorem (8.2), as discussed above.

8.2. Monics

In Propositions (6.2), (7.14), and (7.15) we studied monic morphisms in the
category of groups with triality and found that they are close to injective.

(8.4). Theorem. In Mouf, Mouf?, CLSD, and CLSD? a morphism is monic
if and only if it is injective on the appropriate underlying set.

Proof. This is immediate from Proposition (7.15) and Theorems (7.2), (7.10),
(7.13), (8.1), and (8.2). 2

On the other hand, it is likely that in these categories epic morphisms need not
be surjective.





Chapter 9
Moufang Loops and Groups with Triality
are Not Exactly the Same Thing

On the other hand, the basic categories Mouf and TriGrp are not equivalent,
nor are Mouf? and TriGrp?.

(9.1). Theorem. The category Mouf is not equivalent to the category TriGrp
or to the category ATriGrp.

(9.2). Theorem. The category Mouf? is not equivalent to the category TriGrp?

or to the category ATriGrp?.

(9.3). Theorem. No two of the categories TriGrp, UTriGrp, and ATriGrp are
equivalent.

(9.4). Theorem. No two of the categories TriGrp?, UTriGrp?, and ATriGrp?

are equivalent.

By Theorems (8.1) and (8.2) the categories Mouf and UTriGrp are equivalent, as
are Mouf? and UTriGrp?. Therefore Theorems (9.1) and (9.2) are actually contained
in Theorems (9.3) and (9.4).

Furthermore using Theorem (1.10) we could deduce Theorem (9.3) from The-
orem (9.4). Therefore this last theorem is the only one that requires proof. That
is not quite the approach we take.

9.1. Mouf and TriGrp are not equivalent

By Theorem (8.1) the categories Mouf and UTriGrp are equivalent. Therefore
to prove that Mouf is not equivalent to TriGrp it is enough to prove that UTriGrp is
not equivalent to TriGrp. At the same time we prove that ATriGrp is not equivalent
to TriGrp.

By Theorem (1.10) these results are immediate consequences of the nonequiv-
alence of the corresponding pointed categories, to be proved in the next section.
Thus this short section is not necessary. Nevertheless we provide it, since it follows
the same path as the later arguments but with simpler details.

Each category TriGrp, UTriGrp, and ATriGrp has an object O that is terminal
but not initial, namely O = (Sym(3), {(2, 3), (1, 3), (1, 2)}, IdSym(3)).

57
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Recall from Section 1.5 that the morphism f from (G,D, π) to (G0, D0, π0)
is terminal-surjective if, for every a ∈ HomTriGrp(O, (G0, D0, π0)), there is a b ∈
HomTriGrp(O, (G,D, π)) with a = bf . Equally well the terminal-order of the tri-
ality group (G,D, π) is |HomTriGrp(O, (G,D, π))|. Category equivalences respect
terminal-order and terminal-surjectivity. Terminal-surjectivity and terminal-order
are also unchanged by passage to full subcategories such as UTriGrp and ATriGrp
within TriGrp.

(9.5). Proposition.

(a) (G,D, π) has terminal-order |D|2/9. In particular (G,D, π) is a terminal object
if and only if it has terminal-order 1.

(b) For the map f ∈ HomTriGrp((G,D, π), (G0, D0, π0)) the following are equivalent:
(1) f is terminal-surjective.
(2) f |D : D −→ D0 is surjective.
(3) f : G −→ G0 is surjective.

Proof. (a) (Compare Lemma (3.1).) Each line I is uniquely determined by

t1 = I ∩ (2, 3)π
−1

and t2 = I ∩ (1, 3)π
−1

. There are |D|/3 choices each for t1 and t2.
(b) As G is generated by the class D and G0 is generated by the class D0 which

contains Df , f is surjective if and only if f |D is onto D0. Let d0 ∈ D0, and choose
a line I0 = 〈d0, e0〉 in G0. Then there is a line I = Oι with Oιf = If = I0 if and
only if there are d, e ∈ D with I = 〈d, e〉 and df = d0, ef = e0. That is, f is
terminal-surjective if and only if f |D is onto D0. 2

Since a covering map from (G,D, π) is precisely a triality homomorphism whose
restriction to D is a bijection, Proposition (6.2) gives directly:

(9.6). Corollary. A morphism of TriGrp is monic and terminal-surjective
if and only if it is a cover. 2

An important consequence of the corollary is that isogeny in TriGrp can be
recognized categorically. Indeed the corollary gives a categorical characterization
of covering, and isogeny is the equivalence relation generated by (symmetrized)
covering.

Isogenous objects within the full subcategories UTriGrp or ATriGrp of TriGrp are
isomorphic, therefore we immediately have:

(9.7). Corollary. In the categories UTriGrp and ATriGrp a morphism is
monic and terminal-surjective if and only if it is an isomorphism. 2

(9.8). Corollary. In TriGrp the map W(D4) −→ W(D4)/Z(W(D4)) is a
monic and terminal-surjective morphism but is not an isomorphism.

Proof. This is immediate from Lemma (4.10). 2

By the previous two corollaries TriGrp cannot be category equivalent to UTriGrp
or ATriGrp. This provides half of Theorem (9.1), as Mouf and UTriGrp are equivalent,
and two-thirds of Theorem (9.3).

9.2. Mouf? and TriGrp? are not equivalent

By Theorem (8.2) the categories Mouf? and UTriGrp? are equivalent. There-
fore to prove that Mouf? is not equivalent to TriGrp? we may prove instead that
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UTriGrp? is not equivalent to TriGrp?. At the same time we show that ATriGrp? is
not equivalent to TriGrp?.

The proof is in spirit the same as that of the previous section, but the details are
messier. The categories TriGrp?, UTriGrp?, and ATriGrp? again have the object O =
(Sym(3), {(2, 3), (1, 3), (1, 2)}, IdSym(3),Sym(3)), but it is now a zero object—both
terminal and initial. In this case all objects have O-order 1 and every morphism is
O-surjective, so we must look elsewhere.

Recall various categorical concepts from Section 1.5. The nonzero object Z of
a category C with zero objects is a Z-object provided it satisfies:

(i) for all nonzero A there are nonzero f ∈ HomC(Z,A);
(ii) if HomC(A,Z) contains nonzero morphisms, then there are

morphisms f ∈ HomC(A,Z) and g ∈ HomC(Z,A) with gf =
1Z ;

(iii) a nonzero idempotent in EndC(Z) must be 1Z .

In C there is at most one isomorphism class of Z-objects by Lemma (1.11).
Let Z be a Z-object in C. The morphism f ∈ HomC(X,Y ) is Z-surjective if,

for every a ∈ HomC(Z, Y ), there is a b ∈ HomC(Z,X) with a = bf . The Z-order of
the object X of C is |HomC(A,X)|. Both Z-order and Z-surjectivity are unaffected
by category equivalence or passage to full subcategories containing zero objects.

The following proposition motivates the terminology.

(9.9). Proposition.

(a) In Mouf? the group (Z,+) is a Z-object.
(b) In Mouf? the Moufang loop L has Z-order |L|. In particular L is a zero object

if and only if it has Z-order 1.
(c) In Mouf? a morphism is Z-surjective if and only if it is surjective on the ap-

propriate underlying set.

Proof. Recall from Proposition (2.13) that Moufang loops are power as-
sociative; that is, a subloop generated by a single element is a cyclic subgroup.
Therefore, for every element x ∈ L, the map ιx : 1 7→ x extends uniquely to a
morphism ιx ∈ HomMouf?(Z, L), and every morphism of HomMouf?(Z, L) has this
form. In particular, |HomMouf?(Z, L)| is the number of such ιx, namely |L|, giving
(b) (subject to (a)).

Similarly for (c), let f ∈ HomC(X,Y ). Then every ιy, for y ∈ Y , factors as ιxf ,
for some x ∈ X, if and only if the map f : X −→ Y is surjective at the set level.

It remains to prove (a):
(i) There are nonzero morphisms in HomC(Z, A) if and only if |A| 6= 1. That is, if
and only if A is not a zero object in Mouf?.

(ii) Every f0 ∈ HomMouf?(A,Z) has image mZ for some integer m, and the map
is nonzero precisely when m is not 0. Let f0 be a nonzero map with image mZ,
and choose an element a of the loop A with af0 = m. Then af = 1 extends to
a surjective morphism f : A −→ Z. The map g = ιa ∈ HomMouf?(Z, A) given by
1g = a then has 1gf = (1g)f = af = 1. Therefore gf = IdZ, as desired.

(iii) Each endomorphism of Z is multiplication by some fixed integer m. Therefore
the only nonzero idempotent is given by m = 1. 2
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(9.10). Proposition.

(a) In TriGrp? the group W(Ã2) is a Z-object.
(b) In TriGrp? the group (G,D, π, I) has Z-order |D|/3. In particular the group

(G,D, π, I) is a zero object if and only if it has Z-order 1.

Proof. Let (W,DW , πW , IW ) be the triality group

W = W(Ã2) = 〈 r, c, e | r2 = c2 = e2 = 1, (rc)3 = (re)3 = (ce)3 = 1 〉
of Lemma (4.9), where we set DW = rW , IW = 〈r, c〉, and

rπW = (2, 3), cπW = (1, 3), (rcr)πW = eπW = (1, 2) .

(i) In the group with triality (G,D, π, I) let I = 〈x, y〉 with xπ = (2, 3) and yπ =

(1, 3). For every element w ∈ D(1,2) = (1, 2)π
−1 ∩D, the map

rιw = x, cιw = y, eιw = w

extends uniquely to ιw ∈ HomTriGrp?((W,DW , πW , IW ), (G,D, π, I)), giving every
morphism of this set. Therefore there are nonzero morphisms if and only if D(1,2) 6=
{xyx}. That is, if and only if (G,D, π, I) is not a zero object in TriGrp?. Equally well
|HomTriGrp?((W,DW , πW , IW ), (G,D, π, I))| = |D(1,2)| = |D|/3, giving (b) (subject
to (a)).

(ii) Every f0 ∈ HomTriGrp?((G,D, π, I), (W,DW , πW , IW )) has image mZ2 o IW for
some integer m, and the map is nonzero precisely when m is not 0. Let f0 be such
a nonzero map. In particular xf0 = r and yf0 = c. Choose an element w of D
with wf0 = (m,m)rcr. Then xf = r, yf = c, wf = e extends to a surjective map
f : (G,D, π, I) −→ (W,DW , πW , IW ).

The map g in HomTriGrp?((W,DW , πW , IW ), (G,D, π, I)) given by rg = x, cg =
y, eg = w then has rgf = r, cgf = c, egf = e. That is, gf = 1(G,D,π,I), as desired.

(iii) Each endomorphism of Z2 o IW taking IW to itself is completed by multipli-
cation of Z2 by some fixed integer m. Therefore the only nonzero idempotent is
given by m = 1 and so is 1(W,DW ,πW ,IW ). 2

The adjoint group with triality W(Ã2) is also universal since any cover must be

generated by three transpositions satisfying the same defining relations as W(Ã2).

From this it is not hard to show that each Wn(Ã2) is universal (although it is
adjoint only when 3 does not divide n by Lemma (4.9)).

(9.11). Proposition. For f ∈ HomTriGrp?((G,D, π, I), (G0, D0, π0, I0)) the
following are equivalent:

(1) f is Z-surjective.
(2) f |D : D −→ D0 is surjective.
(3) f : G −→ G0 is surjective.

Proof. As G is generated by the class D and G0 is generated by the class D0

which contains Df , f is surjective if and only if f |D is onto D0.
Let w0 ∈ D0 with wπ0

0 = t ∈ Sym(3), and let I0 = 〈x0, y0〉 with xπ0
0 6= t 6= yπ0

0 .
Thus rι0 = x0, cι0 = y0, rι0 = w0 extends to a morphism ι0 to (G0, D0, π0, I0) from

W(Ã2), realized as (W,DW , πW , IW ) as above.
Any morphism ι from (W,DW , πW , IW ) to (G,D, π, I) is described by rι = x,

cι = y, and eι = w where wπ = t and I = 〈x, y〉. The map f is Z-surjective if and
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only if for every ι0 there is an ι with ι0 = ιf . This is true in turn if and only if for
each w0 ∈ D0 there is a w ∈ D with wf = w0. Thus f is Z-surjective if and only if
f |D is onto D0. 2

This together with Proposition (6.2) again gives three corollaries.

(9.12). Corollary. A morphism in TriGrp? is monic and Z-surjective if and
only if it is a cover. 2

As before, an important consequence is that isogeny in TriGrp? can be recog-
nized categorically. The corollary gives a categorical characterization of covering,
and isogeny is the equivalence relation generated by (symmetrized) covering.

(9.13). Corollary. In the categories UTriGrp? and ATriGrp? a morphism is
monic and Z-surjective if and only if it is an isomorphism. 2

(9.14). Corollary. In TriGrp? the map W(D4) −→W(D4)/Z(W(D4)) is a
monic and Z-surjective morphism but is not an isomorphism.

Proof. This is again immediate from Lemma (4.10). 2

The two corollaries say that TriGrp? cannot be category equivalent to UTriGrp?

or ATriGrp?. This provides half of Theorem (9.2), as Mouf? and UTriGrp? are
equivalent, and two-thirds of Theorem (9.4).

9.3. Mouf? and ATriGrp? are not equivalent

Theorem 3.6 of [HaN01] suggests (but fortunately does not state) that the cat-
egories Mouf and ATriGrp? are equivalent. This is certainly not the case. (ATriGrp?

has zero objects while Mouf has terminal objects that are not initial.) However
this does raise the question as to whether Mouf and ATriGrp are equivalent and,
similarly, Mouf? and ATriGrp?.

This seems unlikely, as it would say that UTriGrp and ATriGrp or UTriGrp? and
ATriGrp? are equivalent. On the other hand, the arguments of the previous two
sections will fail since U : ATriGrp −→ UTriGrp and U? : ATriGrp? −→ UTriGrp? are
faithful functors that are dense (indeed give bijections of isomorphism classes) and
respect the appropriate orders and surjections.

In the previous two sections, we used the fact that the groups with triality
W(D4) and W(D4)/Z(W(D4)) are isogenous but not isomorphic. We then needed
to realize this categorically. Here the crucial observation we use is more complicated:

The adjoint group with triality W3(D̃4) contains as a subgroup
the universal group W(D4), but it does not contain as a subgroup
the adjoint group W(D4)/Z(W(D4)).

The categorical rendering is correspondingly more complicated.

(9.15). Proposition.

(a) There are, up to isomorphism and up to isotopism, exactly two loops of order
4: the cyclic and elementary abelian groups of order 4.

(b) There are, up to isomorphism and up to isotopism, exactly six Moufang loops
of order 12. Each has a subloop of order 4.
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Proof. (a) It is an easy and pleasant exercise to see that there are only two
types of 4× 4 Latin squares.

(b) Chein and Pflugfelder [ChP71] proved that the Moufang loops of order 12
are (up to isomorphism) the five groups of order 12 and one nonassociative Moufang
loop of order 12, the smallest nonassociative Moufang loop. That loop is, in fact,

W3(D̃4)CS and has W(D4)CS as a subloop of order 4. Each group of order 12 has
Sylow 2-subgroups of order 4. 2

In the category C, a subobject of the object B is defined as an appropriate
equivalence class of monic morphisms f ∈ HomC(X,B) for various isomorphic X;
see [Jac89, p.18]. We only need a weaker (and somewhat abused) version of this.
We say that B has X as a subobject if there is at least one monic morphism in
HomC(X,B). Category equivalences take subobjects (in this sense) to subobjects.

(9.16). Corollary.

(a) In Mouf? there are, up to isomorphism, exactly two loops having Z-order 4: the
cyclic and elementary abelian groups of order 4.

(b) In Mouf? there are, up to isomorphism, exactly six Moufang loops having Z-
order 12. Each has a subloop of Z-order 4.

Proof. Part (a) and the first sentence of (b) are immediate from the corre-
sponding parts of the proposition. Let the Moufang loop Q of Z-order (and order)
12 have the subloop X. That is, there is a monic map f ∈ HomMouf?(X,Q). By
Theorem (8.4) the map f is injective. Therefore L has a subloop isomorphic to X,
and the result is completed by the last sentence of the proposition. 2

(9.17). Corollary.

(a) In UTriGrp? there are, up to isomorphism, exactly two triality groups having

Z-order 4: W4(Ã2) and W(D4).
(b) In ATriGrp? there are, up to isomorphism, exactly two triality groups having

Z-order 4: W4(Ã2) and W(D4)/Z(W(D4)).

Proof. By Theorem (8.2) and the previous corollary, there are only two
isomorphism classes of universal triality groups with Z-order 4. By Lemmas (4.9)

and (4.10) one contains W4(Ã2), with trivial center, and the other W(D4) with
center of order 2. This gives (a), and (b) follows immediately. 2

Similarly by Theorem (8.2):

(9.18). Corollary. In UTriGrp? there are, up to isomorphism, exactly six
triality groups with Z-order 12. Each has a triality subgroup of Z-order 4. 2

On the other hand:

(9.19). Lemma. In ATriGrp? the group with triality W3(D̃4) has Z-order 12
and has no triality subgroup of Z-order 4.

Proof. By Lemma (4.11) the group W3(D̃4) is adjoint and has Z-order 12.
For it to have in ATriGrp? a subgroup of Z-order 4 there would need to be a monic
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map to it from either W4(Ã2) or W(D4)/Z(W(D4)) by Corollary (9.17). By Propo-

sition (7.14) such a monic map is an injection. But W3(D̃4) does not have triality

subgroups W4(Ã2) or W(D4)/Z(W(D4)), again by Lemma (4.11). 2

The lasts two corollaries show that UTriGrp? and ATriGrp? are not equivalent.
This completes the proof of nonequivalence stated in Theorem (9.4) and also that
of Theorem (9.2), since Mouf? and UTriGrp? are equivalent.

Furthermore, by Theorems (2.15) and (7.9) the categories of Theorems (9.2)
and (9.4) may be thought of as the pointed counterparts to the categories of The-
orems (9.1) and (9.3), which thus are also nonequivalent by Theorem (1.10), com-
pleting the proof of those theorems.

Similar arguments to those of this section lead to the following, which was
promised in Chapter 5.

(9.20). Corollary. The map A : CLSD −→ TriGrp is not a functor.

Proof. Let W be the triality group W(D4) and W the corresponding adjoint

group W(D4)/Z(W(D4)) as in Lemma (4.10). Let T be the adjoint group W3(D̃4)
as in Lemma (4.11).

Next let (P, S) = WC 'WC and (PT , ST ) = TC, so that

(P, S)A = WCA 'WCA 'W
and

(PT , ST )A = TCA ' T .
The group W3(D̃4) is the split extension of a 3-group by W(D4), so in TriGrp

there are morphisms

W T W
f g

with fg = 1W . As (P, S) = WC and (PT , ST ) = TC we then have in CLSD

(P, S) (PT , ST ) (P, S)
fC gC

with fCgC = 1(P,S).
Were A to be a functor, then CA would also be a functor and we would get

new morphisms in TriGrp:

(P, S)A (PT , ST )A (P, S)A
fCA gCA

with fCAgCA = 1(P,S)A. That is, there would be in TriGrp morphisms

W T W
f0 g0

with f0g0 = 1W . But T 'W3(D̃4) has no subgroup W(D4)/Z(W(D4)) by Lemma
(4.11), so there are no such morphisms. 2
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Chapter 10
The Functors S and M

We already have concrete constructions of the equivalences T, B, and C, even
on the parent categories Loop, LSD, and TriGrp. In this chapter and the next we
discuss more precisely the remaining S, M, and G and their pointed versions.
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10.1. S and S?

We first define the functor S? from its parent category LSD? to Loop?. This
then leads to S from LSD to Loop as well as the restrictions of S? to CLSD? and S
to CLSD.

Let (P, S) ∈ LSD with I a line of S. We identify (P, S) with an isomorphic
Latin square design by renaming its points. First relabel the elements of PE as
{xE | x ∈ Q } for a set Q with 1 ∈ Q so that 1E = I ∩ PE. Next we let I =
(1R, 1C, 1E); and, more generally, for each x ∈ Q, rename the points xR ∈ PR and
xC ∈ PC according to

(xR, 1C, xE), (1R, xC, xE) ∈ S .

We can now define on Q the structure (Q, ·) whose binary operation is given
by

(xR, yC, (x · y)E) ∈ S .

As (P, S) is a Latin square design, (Q, ·) is in fact a loop with identity element 1.
We set (Q, ·) = (P, S, I)S?.

67
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If f ∈ HomLSD?((P, S, I), (P0, S0, I0)) with M = (P0, S0, I0)S? then fS? ∈
HomMouf?(Q,M) is the homotopism (α, β, γ) given by

xα = x0 where xfR = (x0)R ,

yβ = y0 where yfC = (y0)C ,

zγ = z0 where zfE = (z0)E .

This completes the description of S?. For S, we must define the various (P, S)S
and fS for f ∈ HomLSD((P, S), (P0, S0)).

For each (P, S) ∈ LSD choose a line I = I(P,S). Then we set (P, S)S =
(P, S, I(P,S))S

?. (Recall that we are viewing Loop? as a subcategory of Loop.)
For every g ∈ HomLSD((P, S), (P0, S0)) there is a unique line I0 = Ig(P,S) in S0 with

gI(P,S)
∈ HomLSD?((P, S, I(P,S)), (P0, S0, I0)). (Note that I0 need not be equal to

I(P0,S0).) We then set gS = gI(P,S)
S?. As the initial choice of I(P,S) was arbi-

trary, this fabrication of the functor S from S? is not canonical; however replacing
I(P,S) by some other line I of (P, S) replaces (P, S)S by a loop isotope. Since iso-
topism is isomorphism in the category Loop, this does not cause a problem for our
construction of the equivalence S.1

By design (P, S, I)S?T? and (P, S, I) are isomorphic. Therefore by Theorem
(3.9) the restriction of S? to CLSD? has its image in Mouf?, and correspondingly
the restriction of S to CLSD has its image in Mouf.

10.2. M and M?

We effectively construct the functors M? from TriGrp? to Mouf? and M from
TriGrp to Mouf as the compositions M? = C?S? and M = CS.

Let (G,D, π) be a group with triality. For the line I = I(G,D,π), we set

r1 = I ∩ (2, 3)π
−1

c1 = I ∩ (1, 3)π
−1

e1 = I ∩ (1, 2)π
−1

.

We then let (1, 2)π
−1

= { eh | h ∈ Q } for a set Q (with 1 ∈ Q).
Next for each x ∈ Q set

rx = 〈c1, ex〉 ∩ (2, 3)π
−1

and cy = 〈r1, ey〉 ∩ (1, 3)π
−1

.

We define on Q the structure (Q, ·) with binary operation given by

ex·y = 〈rx, cy〉 ∩ (1, 2)π
−1

.

As 〈rx, cy〉 = 〈rx, ex·y〉 = 〈ex·y, cy〉 intersects D in {rx, cy, ex·y}, any two of x,
y and x · y determine the remaining one uniquely; so (Q, ·) is a loop with identity
element 1. Furthermore by construction the elements of D act as a full collection of
central automorphisms on the Latin square designQT, so by Theorem (3.9) the loop
Q is a Moufang loop. We set (Q, ·) = (G,D, π, I)M? and so (Q, ·) = (G,D, π)M.

If f ∈ HomTriGrp?((G,D, π, I), (G0, D0, π0, I0)) with the Moufang loop M =
(G0, D0, π0, I0)M? then fM? ∈ HomMouf?(Q,M) is the homotopism (α, β, γ) given

1At the highest level, we are invoking the Axiom of Choice in these arguments. But at the
lowest level, for any particular Latin square we are merely choosing a cell to play the roll of the

identity, as in Remark (2.3) and our proof of Theorem (3.14).
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by

xα = x0 where rfx = rx0

yβ = y0 where cfy = cy0

zγ = z0 where efz = ez0 .

For g ∈ HomTriGrp((G,D, π), (G0, D0, π0)) there is a unique line I0 = Ig of the trial-
ity group (G0, D0, π0) with g inducing gI ∈ HomTriGrp?((G,D, π, I), (G0, D0, π0, I0)).
In this case we let gM be gIM

? viewed as an element of HomMouf(Q,M).

As an example, we consider the triality groups introduced in Section 4.2.1—the
wreath products Wr(H, 3) for H a group. A version of this is already in Doro’s
paper [Dor78, p. 385].

(10.1). Theorem. Let H be a group and D the conjugacy class of the
full wreath product H o Sym(3) containing the transposition class of Sym(3). Set
Wr(H, 3) = 〈D〉, and let π be the projection homomorphism from the wreath product
and Wr(H, 3) to Sym(3). Then the Moufang loop

(Wr(H, 3), D, π,Sym(3))M?

is isomorphic to the group H.

Proof. We construct the loop (Q, ·) as above. Set

r1 = (2, 3) , c1 = (1, 3) , e1 = (2, 3) .

Next (1, 2)π
−1

= { eh | h ∈ Q } is given by

eh = h−1
1 h2(1, 2) , for h ∈ H ,

by Proposition (4.5)(a). In particular we may identify the set Q with H.
For each x ∈ H we define

rx = 〈c1, ex〉 ∩ (2, 3)π
−1

= (1, 3)x−1
1 x2(1, 2)(1, 3) = x−1

3 x2(3, 2)

and

cy = 〈r1, ey〉 ∩ (1, 3)π
−1

= (2, 3)y−1
1 y2(1, 2)(2, 3) = y−1

1 y3(1, 3) .

Finally the product x · y of the two elements x, y ∈ Q = H is given by

ex·y = 〈rx, cy〉 ∩ (1, 2)π
−1

= (x−1
3 x2(3, 2))(y−1

1 y3(1, 3))(x−1
3 x2(3, 2))

= x−1
3 x2y

−1
1 y2(3, 2)x−1

1 x2(1, 3)(3, 2)

= x−1
3 x2y

−1
1 y2x

−1
1 x3(3, 2)(1, 3)(3, 2)

= (xy)−1
1 (xy)2(1, 2)

= exy .

Thus x · y = xy, and the loop (Q, ·) is isomorphic to the group H. 2

We do not prove the following similar theorem here, but results equivalent to
it can be found in [GrZ06, Prop. 1] and [Hal06, §4].

(10.2). Theorem. Let H be a group and D the conjugacy class of the
full wreath product H o Sym(4) containing the transposition class of Sym(4). Set
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Wr(H, 4) = 〈D〉, and let π be the homomorphism from the wreath product and
Wr(H, 4) to the quotient Sym(3) of Sym(4). Then the Moufang loop

(Wr(H, 4), D, π,Sym(3))M?

is isomorphic to the Chein generalized dihedral loop having H of index 2, as con-
structed in Theorem (2.16).



Chapter 11
The Functor G

In this chapter we give a construction of the functors G and G?. We then
discuss the properties of universal groups with triality in terms of their associated
Moufang loops.

11.1. G and G?

The functor TB gives an equivalence of Mouf and UTriGrp by taking the loop
Q to the universal group with triality G(PQT, SQT). We wish a more direct and
simpler version of this functor.

(11.1). Presentation. For the quasigroup Q, the group GQ has the following
presentation:

Generators:
rx, cx, and ex for arbitrary x ∈ Q;

Relations:
for arbitrary x, y ∈ Q:

(1) r2x = c2x = e2x = 1;
(2) rxcyrx = cyrxcy = exy.

The map
rx −→ (2, 3) cx −→ (1, 3) ex −→ (1, 2)

gives a homomorphism onto Sym(3). Thus the relation (2) effectively says that, for
each pair x, y ∈ Q, the subgroup 〈rx, cy, exy〉 is isomorphic to Sym(3).

We have immediately:

(11.2). Lemma. If (α, β, γ) : Q −→ M is an surjective homotopism of the
quasigroups Q and M , then the map

rx −→ rxα cx −→ cxβ ex −→ exγ

extends uniquely to a surjective homomorphism of groups from GQ to GM . Espe-
cially an isotopism (α, β, γ) extends uniquely to an isomorphism of GQ an GM .
2

In particular by Lemma (2.1) it is always possible to replace the quasigroup Q
of the presentation with a loop.
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(11.3). Theorem. For a loop Q the groups GQ and G(PQT, SQT) are iso-
morphic universal groups with triality under the map

rx
ι−→ x̃R cx

ι−→ x̃C ex
ι−→ x̃E

The transposition class of the universal group with triality GQ is its generating set
DQ = { rx, cx, ex | x ∈ Q } and the map πQ : D −→ Sym(3) is given by

rx 7→ (2, 3) cx 7→ (1, 3) ex 7→ (1, 2) .

For every x, y ∈ Q the restriction of πQ is an isomorphism of 〈rx, cy, exy〉 and
Sym(3). Especially IQ = 〈r1, c1, e1〉 is a line of the group with triality (GQ, DQ, πQ).

The loop Q is a Moufang loop if and only if each of the maps

x 7→ rx , x 7→ cx , x 7→ ex

is a bijection of Q and the corresponding subset DQ ∩ (i, j)π
−1
Q of GQ.

Proof. Clearly the map ι is a bijection of the generating sets for the two
corresponding free groups, so we must show that ι takes the relations (11.1) for GQ

to relations valid in G(PQT, SQT) and conversely that ι−1 takes the relations (5.1)
for G(PQT, SQT) to relations valid in GQ. This is clearly the case for the relations
(11.1)(1) and (5.1)(1) which merely state that all generators square to the identity.

Consider first the relations

rxcyrx = exy and cyrxcy = exy

of (11.1)(2). Under ι these become

x̃RỹCx̃R = x̃yE and ỹCx̃RỹC = x̃yE .

As {x̃R, ỹC, x̃yE} is a line of (PQT, SQT), both of these are relations under (5.1)(2).
Conversely, for each line {x̃R, ỹC, x̃yE} of (PQT, SQT) we have the following six

relations of (5.1)(2) and their images under ι−1:

x̃RỹCx̃R = x̃yE
ι−1

−→ rxcyrx = exy

ỹCx̃RỹC = x̃yE
ι−1

−→ cyrxcy = exy

x̃Rx̃yEx̃R = ỹC
ι−1

−→ rxexyrx = cy

ỹCx̃yEỹC = x̃R
ι−1

−→ cyexycy = rx

x̃yEỹCx̃yE = x̃R
ι−1

−→ exycyexy = rx

x̃yEx̃Rx̃yE = ỹC
ι−1

−→ exyrxexy = cy .

In particular, the first two relations from (5.1)(2) are sent by ι−1 to relations of
(11.1)(2). Indeed the subgroup 〈 rx, cy, exy〉 of GQ satisfies the relations

r2x = c2
y = 1 and (rxcy)3 = (rxcyrx)(cyrxcy) = e2

xy = 1

and so is a homomorphic image of W(A2) ' Sym(3). On the other hand πQ
clearly is a homomorphism of GQ onto Sym(3), so πQ restricts to an isomorphism
of 〈rx, cy, exy〉 and Sym(3), as claimed.

Now all the relations of (5.1)(2) are sent by ι−1 to relations that hold within
〈rx, cy, exy〉 ' Sym(3). Therefore ι gives an isomorphism of GQ with G(PQT, SQT).
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From Lemma (5.3) and Proposition (8.3) we know that G(PQT, SQT) is a uni-
versal group with triality whose transposition class is { x̃R, x̃C, x̃E | x ∈ Q } and
that its projection map π is determined by

x̃R 7→ (2, 3) x̃C 7→ (1, 3) x̃E 7→ (1, 2) .

Therefore under the isomorphism ι−1 the group GQ is a universal group with triality
whose transposition class is

{ x̃R, x̃C, x̃E | x ∈ Q }ι
−1

= { rx, cx, ex | x ∈ Q }

and whose projection map πQ is ιπ.
By Lemma (5.4) the loop Q is Moufang precisely when there is a bijection

between the points of the Latin square design and the elements of the generating
conjugacy class. 2

As a consequence of the theorem, we may set QG = (GQ, DQ, πQ). For the
morphism (α, β, γ) ∈ HomLoop(Q,M) the corresponding morphism of UTriGrp is
(α, β, γ)G = (a, b, c) given by

rax = rxα cbx = cxβ ecx = exγ .

Recalling that IQ = 〈r1, c1, e1〉, we define QG? = (GQ, DQ, πQ, IQ). The theorem
then immediately gives:

(11.4). Corollary.

(a) QG and QTB are isomorphic in TriGrp and UTriGrp.
(b) QG? and QT?B? are isomorphic in TriGrp? and UTriGrp?. 2

11.2. Properties of universal groups

The following properties of universal groups coming from Moufang loops will
be of interest in Section 13.1. By Proposition (2.12) every Moufang loop is an
inverse property loop, has two-sided inverses, and satisfies the antiautomorphic
inverse property (xy)−1 = y−1x−1. In particular, part (a) of the proposition below
is unambiguous as stated.

(11.5). Proposition. Let G = GQ for Q a Moufang loop, and let K = kerπQ.
Set η = r1, σ = c1, ε = e1, and µ = ησ = σε. Further let H = CK(η), the subgroup
of all elements of K that commute with η. For each x ∈ Q define Rx = cxc1 and
then set R = {Rx | x ∈ Q }.

(a) For distinct x, y in Q we have Rx 6= Ry and R−1
x = Rx−1 .

(b) The set R equals { [k, σ] | k ∈ K } and is a set of right (and left) coset repre-
sentatives for H in K.

(c) RxRy ∈ HRxy.

(d) Rxy = R−µ
2

y RxR−µy = R−µx RyR−µ
2

x .
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Proof. (a) As Q is Moufang, if x 6= y then cx 6= cy by Theorem (11.3).
Therefore Rx = cxc1 6= cyc1 = Ry. Also

R−1
x = c1cx

= c1(exex)cx(exex)

= c1ex(excxex)ex

= c1exr1ex

= c1ex(c1c1)r1(c1c1)ex(c1c1)

= (c1exc1)(c1r1c1)(c1exc1)c1

= rxe1rxc1

= cx−1c1 = Rx−1 .

(b) The group K acts transitively by conjugation on rK1 ⊆ { rx | x ∈ Q } with
stabilizer H = CK(r1) = CK(η). Because (cxc1)π = 1, each Rx of R belongs to K

with rRx1 = rcxc11 = ec1x = rx. Therefore rK1 = { rx | x ∈ Q } and R = {Rx | x ∈ Q }
is a set of right coset representatives for H. Furthermore

cK1 = (re11 )K = (rK1 )e1 = { re1x | x ∈ Q } = { cz | z ∈ Q } ,
and so R = { [k, c1] | k ∈ K } = { [k, σ] | k ∈ K }. Finally R is closed under inverses
(by (a)), so it is also a set of left coset representatives.

(c) We must prove that RxRyR−1
xy ∈ H = CK(η). That is, we must show that

(cxc1)(cyc1)(cxyc1)−1 = cxc1cycxy centralizes r1. Indeed

r
cxc1cycxy
1 = ec1cycxyx = rcycxyx = ecxyxy = r1 .

(d) We have

R−µ
2

y RxR−µy = ((cyc1)−1)c1r1(cxc1)((cyc1)−1)r1c1

= (r1c1)(c1cy)(c1r1)(cxc1)(c1r1)(c1cy)(r1c1)

= r1(c1c1)cyc1r1cx(c1c1)r1c1cyr1c1

= r1cyc1(r1cxr1)c1cyr1c1

= r1cy(c1exc1)cyr1c1

= r1(cyrxcy)r1c1

= (r1exyr1)c1

= cxyc1 = Rxy .

This gives the first equality. The second can be proved in a similar way, but it also
follows from the first if we use R−1

ab = R(ab)−1 = Rb−1a−1 from (a). 2

We also have new versions of the universal functors U? and U.

(11.6). Theorem.

(a) For every group with triality (G,D, π, I) the groups

(G,D, π, I)M?G? and (G,D, π, I)U?

are isomorphic in TriGrp? and UTriGrp?. In particular, every universal group
with triality (G,D, π, I) is isomorphic to QG? for the Moufang loop Q =
(G,D, π, I)M?. Furthermore for every Moufang loop Q, we have QG?M? iso-
morphic to Q.
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(b) For every group with triality (G,D, π) the groups

(G,D, π)MG and (G,D, π)U

are isomorphic in TriGrp and UTriGrp. In particular, every universal group with
triality (G,D, π) is isomorphic to QG for the Moufang loop Q = (G,D, π)M.
Furthermore for every Moufang loop Q, we have QGM isomorphic to Q.

Proof. On (G,D, π, I) the functor M?G? is realized by

rx
ι7→ rx cx

ι7→ cx ex
ι7→ ex

taking (G,D, π, I) to the universal group with triality QG? for the Moufang loop
Q = (G,D, π, I)M?. The inverse map

rx
ι−1

7→ rx cx
ι−1

7→ cx ex
ι−1

7→ ex .

is a bijection on D and respects the relations of QG?, so it is a cover by Lemma
(6.3). If (G,D, π, I) itself is universal, this is an isomorphism.

In the transition from the Moufang loop Q to QG?, each element x of Q gives
rise to the three generators rx, cx, and ex of QG? = (G,D, π, IQG?), while each
pair x, y ∈ Q leads to the line 〈rx, cy, exy〉. In particular we have the special line
IQG? = 〈r1, c1, e1〉. To construct QG?M? = (QG?)M? we first (see Section 10.2)
set

r1 = r1 c1 = c1 e1 = e1 ,

and then let { ex | x ∈ Q } = (1, 2)π
−1

= { ez | z ∈M } for some set M in bijection
with Q via, say, z 7→ z̄ ∈ Q, taking care that 1 ∈ M with 1̄ = 1. Next for each
z ∈M we must set

rz = 〈c1, ez〉 ∩ (2, 3)π
−1

= rz̄ and cz = 〈r1, ez〉 ∩ (1, 3)π
−1

= cz̄ .

The set M then receives the loop structure (M, ◦) given by

eu◦v = eu◦v = 〈ru, cv〉 ∩ (1, 2)π
−1

= 〈rū, cv̄〉 ∩ { ez̄ | z ∈M } = eūv̄ .

As Q is a Moufang loop, different x ∈ Q give different ex. Therefore for all u, v ∈M
we have u ◦ v = ūv̄; that is, the bijection of M and Q given by z 7→ z̄ is an
isomorphism of the loops Q and (M, ◦) = QG?M?.

The second part of the theorem follows immediately from the first. 2

11.3. Another presentation

A presentation related to that of (11.1) and Theorem (11.3) appears in [Hal06,
(2.5)], parameterized there by an integer n and a group Q. If we specialize that
presentation to n = 3 and allow Q to be a loop, we get:

(11.7). Presentation. For a loop Q, the group G(Q) has the following
presentation:

Generators:
for arbitrary x ∈ Q and distinct a, b ∈ {1, 2, 3}:

〈〈x ; a , b〉〉 .
Relations:

for arbitrary x, y ∈ Q and distinct a, b, c ∈ {1, 2, 3}:
(1) 〈〈x ; a , b〉〉2 = 1;
(2) 〈〈x ; a , b〉〉 = 〈〈x−1 ; b , a〉〉;
(3) 〈〈x ; a , b〉〉〈〈y ; b ,c〉〉 = 〈〈xy ; a , c〉〉.
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Theorem 4.1 of [Hal06] states that, for Q a Moufang loop, the above group
G(Q) is a universal group with triality. The proof was not given, other similar
results in the literature instead being cited. Here we give a proof in a precise form
of a more general result.

Recall that a loop has the antiautomorphic inverse property when it satisfies
the identical relation (xy)−1 = y−1x−1. By Proposition (2.12) Moufang loops are
inverse property loops and satisfy the antiautomorphic inverse property.

(11.8). Theorem. Let Q be a loop with the antiautomorphic inverse property.
Then the groups G(Q) and GQ are isomorphic universal groups with triality under
the maps

{〈〈x ; 2 , 3〉〉, 〈〈x−1 ; 3 , 2〉〉} ι1−→ rx
ι2−→ 〈〈x ; 2 , 3〉〉 ,

{〈〈x ; 3 , 1〉〉, 〈〈x−1 ; 1 , 3〉〉} ι1−→ cx
ι2−→ 〈〈x ; 3 , 1〉〉 ,

{〈〈x ; 2 , 1〉〉, 〈〈x−1 ; 1 , 2〉〉} ι1−→ ex
ι2−→ 〈〈x ; 2 , 1〉〉 .

(11.9). Proposition. Let Q be a loop. The group GQ is a homomorphic
image of G(Q) under the map

{〈〈x ; 2 , 3〉〉, 〈〈x−1 ; 3 , 2〉〉} ι1−→ rx

{〈〈x ; 3 , 1〉〉, 〈〈x−1 ; 1 , 3〉〉} ι1−→ cx

{〈〈x ; 2 , 1〉〉, 〈〈x−1 ; 1 , 2〉〉} ι1−→ ex

Proof. The generators of G(Q) are mapped to those of GQ, so we need only
check that the relations (11.7) are respected by the map ι1. This is clearly the case
for (11.7)(1-2).

Consider the six relations 〈〈x ; a , b〉〉〈〈y ; b ,c〉〉 = 〈〈xy ; a , c〉〉 of (11.7)(3). The
relation 〈〈x ; 2 , 3〉〉〈〈y ; 3 ,1〉〉 = 〈〈xy ; 2 , 1〉〉 is mapped to r

cy
x = exy, valid in GQ by

(11.1)(2). Also

〈〈1 ; 3 , 1〉〉〈〈1 ; 2 ,3〉〉 = 〈〈1 ; 1 , 3〉〉〈〈1 ; 3 ,2〉〉 = 〈〈1 ; 1 , 2〉〉 = 〈〈1 ; 2 , 1〉〉
is mapped to cr11 = e1. Therefore the subgroup S = 〈〈〈1 ; 2 , 3〉〉, 〈〈1 ; 3 , 1〉〉〉 of G(Q)
is isomorphic to Sym(3) and is mapped isomorphically to the subgroup Sι2 = 〈r1, c1〉
of GQ.

For fixed x and y, the subgroup S acts regularly on the set of six relations
〈〈x ; a , b〉〉〈〈y ; b ,c〉〉 = 〈〈xy ; a , c〉〉. After verifying that

rr1x = rx−1 cc1x = cx−1 ee1x = ex−1 ,

we can use the action of Sι2 to check that the images of these six relations under
ι1 remain valid. 2

Proof of Theorem (11.8).
In view of (11.7)(2) the maps ιi are inverse bijections of generating sets for the

appropriate free groups. As we already have Proposition (11.9), we now need only
check that ι2 gives a homomorphism from GQ to G(Q). This we do by checking
that the relations (11.1) are respected by the map ι2. This is clearly the case for
(11.1)(1), but we must check the two parts of (11.1)(2).

We have

(cyrxcy)ι2 = 〈〈y ; 3 , 1〉〉〈〈x ; 2 , 3〉〉〈〈y ; 3 , 1〉〉 = 〈〈xy ; 2 , 1〉〉 = eι2xy .
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Therefore the relation cyrxcy = exy remains true under ι2.
Similarly

(rxcyrx)ι2 = 〈〈x ; 2 , 3〉〉〈〈y ; 3 , 1〉〉〈〈x ; 2 , 3〉〉
= 〈〈x−1 ; 3 , 2〉〉〈〈y−1 ; 1 , 3〉〉〈〈x−1 ; 3 , 2〉〉
= 〈〈y−1x−1 ; 1 , 2〉〉 = 〈〈(y−1x−1)−1 ; 2 , 1〉〉
= 〈〈xy ; 2 , 1〉〉 = eι2xy ,

as desired. In passing to the last line, we have used the assumption that Q satisfies
the antiautomorphic inverse property. 2

It is unclear whether or not Theorem (11.8) is valid for all loops Q, but the
antiautomorphic inverse identity appears prominently in the present proof that
G(Q) is a group with triality. As the following proposition shows, the crucial cases
would be right inverse property loops that are not antiautomorphic, that is, are
not inverse property loops. Gabor Nagy [Nag11] has done calculations showing
that for right Bol loops of order 8 and 16 the conclusion of Theorem (11.8) remains
valid.

The following proposition should be compared with Theorem (13.25) below.

(11.10). Proposition. Let Q be a loop, and consider the group G(Q), as
presented in (11.7). For x, y ∈ Q and arbitrary a, b, c, d ∈ with a 6= b, c 6= d, we
have

〈〈x ; a , b〉〉 = 〈〈y ; a , b〉〉 ⇐⇒ 〈〈x ; c , d〉〉 = 〈〈y ; c , d〉〉 .
In this case we write x ∼ y. The equivalence relation ∼ is a congruence on the loop
Q, and Q/∼ is an right inverse property loop.

Proof. Again, the action of S = 〈〈〈1 ; 2 , 3〉〉, 〈〈1 ; 3 , 1〉〉〉 ' Sym(3) shows that if
〈〈x ; a , b〉〉 = 〈〈y ; a , b〉〉 holds for one pair a 6= b then it holds for all such pairs, giving
the equivalence relation. For 〈〈x1 ; a , b〉〉 = 〈〈x2 ; a , b〉〉 and 〈〈y1 ; b , c〉〉 = 〈〈y2 ; b , c〉〉,
we find

〈〈x1y1 ; a , c〉〉 = 〈〈x1 ; a , b〉〉〈〈y1 ; b ,c〉〉 = 〈〈x2 ; a , b〉〉〈〈y2 ; b ,c〉〉 = 〈〈x2y2 ; a , c〉〉 .
Therefore the equivalence relation is a congruence.

Two applications of (11.7)(3) yield

〈〈x ; a , b〉〉 = 〈〈x−1 ; b , a〉〉 = 〈〈(x−1)−1 ; a , b〉〉 ,
so inverses are two-sided in the quotient Q/ ∼.

Next as 〈〈x ; a , b〉〉〈〈y ; b ,c〉〉 = 〈〈xy ; a , c〉〉 with 〈〈y ; b , c〉〉 of order 2,

〈〈x ; a , b〉〉 = 〈〈xy ; a , c〉〉〈〈y ; b ,c〉〉 = 〈〈xy ; a , c〉〉〈〈y
−1 ; c ,b〉〉 = 〈〈(xy)y−1 ; a , b〉〉 .

Hence x ∼ (xy)y−1, and Q/ ∼ has the right inverse property. 2





Chapter 12
Multiplication Groups and Autotopisms

The material in this chapter certainly qualifies as “basic” and could have been
presented right after Chapter 4.

12.1. Multiplication and inner mapping groups

For x ∈ Q, a quasigroup, we define the left multiplication map L(x), given by

aL(x) = xa ,

and similarly the right multiplication map R(x) , given by

aR(x) = ax .

Within Sym(Q) (the symmetric group on the set Q), we then define the right
multiplication group

MltR(Q) = 〈R(x) | x ∈ Q 〉 ,
the left multiplication group

MltL(Q) = 〈L(x) | x ∈ Q 〉 ,

and the multiplication group

Mlt(Q) = 〈R(x),L(x) | x ∈ Q 〉 = 〈MltR(Q),MltL(Q)〉.

Many properties of a loop can be easily described in terms of its translation
maps and multiplication groups.

(12.1). Proposition. Let Q be a loop.

(a) MltR(Q), MltL(Q), and Mlt(Q) are transitive subgroups of Sym(Q).
(b) Q is a group if and only if MltR(Q) is semiregular.
(c) Q is an abelian group if and only if Mlt(Q) is abelian.

Proof.

(a) 1R(x) = x = 1L(x).
(b) If Q is a group, then MltR(Q) is the right regular representation of Q. Con-

versely always 1R(xy) = xy = (1R(x))R(y), therefore semiregularity forces R(xy) =
R(x)R(y). That is, for all z ∈ Q, we have z(xy) = (zx)y. Hence Q is associative
and a group.

79
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(c) If Q is an abelian group, then Mlt(Q) = MltR(Q) = MltL(Q) is the regular
representation of Q. Conversely, if Mlt(Q) is abelian then transitivity forces it
to be regular. Therefore Q is a group by (a) and is isomorphic to MltR(Q), a
subgroup of the abelian group Mlt(Q). 2

Identities in the loop Q often correspond to identities in Mlt(Q).

(12.2). Proposition. Let Q be a loop.

(a) Q is a left inverse property loop ⇐⇒ L(x)−1 = L(x−1) for all x ∈ Q.
(b) Q is a right inverse property loop ⇐⇒ R(x)−1 = R(−1x) for all x ∈ Q.
(c) Q has the flexible property ⇐⇒ L(x) R(x) = R(x) L(x) for all x ∈ Q. 2

As x = 1L(x) = 1R(x) for every loop

L(x) = L(y) ⇐⇒ x = y ⇐⇒ R(x) = R(y) .

We get a quick proof of the already observed

(12.3). Corollary. If the loop Q has the left or right inverse property, then
inverses are two-sided.

Proof. With the left inverse property

L(x) = (L(x)−1)−1 = L(x−1)−1 = L((x−1)−1) ,

hence x = (x−1)−1. 2

Certain more complicated identities in Mlt(Q) will be important in the next
chapter.

(12.4). Proposition. Let Q be a Moufang loop. For all x ∈ Q define
P(x) = R(x)−1 L(x)−1. Then for all x, y ∈ Q we have:

(a) P(x) R(xy) L(x) = R(y), R(x) L(xy) P(x) = L(y), L(x) P(xy) R(x) = P(y).
(b) P(x) L(yx) R(x) = L(y), L(x) R(yx) P(x) = R(y), R(x) P(yx) L(x) = P(y).

Proof. By Proposition (12.2) we have

P(x) = R(x)−1 L(x)−1 = L(x)−1 R(x)−1 = R(x−1) L(x−1) = L(x−1) R(x−1)

and

P(x)−1 = (R(x−1)−1 L(x)−1)−1 = L(x) R(x) = R(x) L(x) = P(x−1) .

The Moufang identity (xy)(zx) = (x(yz))x becomes

zR(x) L(xy) = zL(y) P(x)−1

and yL(x) R(zx) = yR(z) P(x)−1

,

hence R(x) L(xy) P(x) = L(y) as in (a) and L(x) R(zx) P(x) = R(z) as in (b).
Inverting the first of these leads to

L(y−1) = L(y)−1 = (R(x) L(xy) P(x))−1

= P(x)−1 L(xy)−1 R(x)−1

= P(x−1) L(y−1x−1) R(x−1) ,

giving P(x) L(yx) R(x) = L(y) as in (b).



12.1. MULTIPLICATION AND INNER MAPPING GROUPS 81

In this we set x = uv and y = u−1 to find

L(u)−1 = L(u−1)

= P(uv) L(u−1(uv)) R(uv)

= P(uv)(L(v) R(uv))

= P(uv)(R(u) P(v)−1) ,

so P(v) = L(u) P(uv) R(u) as in (a).
The final two identities come from inverting two of those already verified. Al-

ternatively, the identities of (b) are exactly those of (a) when interpreted in the
Moufang loop opposite to Q. 2

The inner mapping group Inn(Q) is the stabilizer of the identity 1Q in the
multiplication group Mlt(Q) of the loop Q.

(12.5). Proposition. Let Q be a loop.

(a) Inn(Q) = 〈R(x) R(y) R(xy)−1,R(x) L(y) R(yx)−1 | x, y ∈ Q 〉 .
(b) Inn(Q) = 〈L(y) R(y)−1,R(x) R(y) R(xy)−1,L(x) L(y) L(yx)−1 | x, y ∈ Q 〉 .

Proof. This is an easy consequence of the Reidermeister rewriting process
[Bog08, p. 69], discussed also in Section 13.2 on page 95 below.

(a) The group Mlt(Q) has the generating set X = {L(x),R(x) | x ∈ Q }.
Its subgroup I = Inn(Q) has, as a right transversal, the coset representative set
T = {R(x) | x ∈ Q }.

Let w =
∏n
i=1 gi(xi) ∈ Inn(Q), so that 1w = 1 with each gi ∈ {R,L,R−1,L−1}.

We wish to rewrite w as a product of elements or inverses of elements from the set

H = {R(x) R(y) R(xy)−1,R(x) L(y) R(yx)−1 | x, y ∈ Q }
by scanning w from left to right, inserting words R(z)−1 R(z) as appropriate. To
do this, we must identify coset representatives from T for each product tuε with
t ∈ T , u ∈ X, and ε = ±1.

Specifically,

(1x)y = xy , hence R(x) R(y) ∈ I R(xy) and R(x) R(y) R(xy)−1 ∈ I ,
and

y(1x) = yx , hence R(x) L(y) ∈ I R(yx) and R(x) L(y) R(yx)−1 ∈ I .
Next, letting the equation x = by determine b from the pair x, y,

1R(x) R(y)−1

= 1R(by) R(y)−1

= (by)R(y)−1

= b = 1R(b) ,

indicating that

R(x) R(y)−1 R(b)−1 = R(by) R(y)−1 R(b)−1 ∈ I ,
something we already knew since

R(by) R(y)−1 R(b)−1 = (R(b) R(y) R(by)−1)−1 .

Again if x = ya defines a, then

1R(x) L(y)−1

= 1R(ya) L(y)−1

= (ya)L(y)−1

= a = 1R(a) ,

corresponding to

R(x) L(y)−1 R(a)−1 = R(ya) L(y)−1 R(a)−1 = (R(a) L(y) R(ya)−1)−1 ∈ I .
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Now for X ∈ {R,L} and ε = ±1, let w = R(x) X(y)ε
∏n
i=3 gi(xi), where if

needed we set g1(x1) = R(1). Then we can rewrite the initial segment of w:

R(x) X(y)ε = R(x) X(y)ε(R(z)−1 R(z)) = (R(x) X(y)ε R(z)−1) R(z) .

Here R(x) X(y)ε R(z)−1 = hε = h1 for h ∈ H ⊂ Inn(Q) with the appropriate z
equal to one of xy, yx, b, or a. Then w = h1 R(z)

∏n
i=3 gi(xi), and we can proceed

with rewriting w1 = R(z)
∏n
i=3 gi(xi), a shorter word in the generators than the

original w.
Continuing in this fashion, we ultimately arrive at w = (

∏n−1
i=1 hi) R(z) where

each hi or its inverse is one of the elements of H. We then have

1 = 1w = 1(
∏n−1
i=1 hi) R(z) = 1R(z) = z ,

so in fact w =
∏n−1
i=1 hi. Therefore 〈H〉 = Inn(Q), as claimed in (a).

(b) With x = 1

R(x) L(y) R(yx)−1 = R(1) L(y) R(y1)−1 = L(y) R(y)−1 .

Furthermore

(L(x) R(x)−1)(R(x) L(y) R(yx)−1)(L(yx) R(yx)−1)−1 = L(x) L(y) L(yx)−1 .2

The generating set of Proposition (12.5)(b) is the usual, preferred set ([Bru58,
p. 61],[Pfl90, I.5.2]). In it, the elements of the second and third types speak to
associativity in Q; in particular, for an associative loop Q they always vanish. That
is, if Q is a group then the generators of the first (and only nontrivial) type are
conjugations, and Inn(Q) is the inner automorphism group of Q. This motivates
the following result.

(12.6). Proposition. In the loop Q, the subloop N is normal if and only if
it is invariant under the action of Inn(Q).

Proof. Using the definition of normality (from page 13) and the previous
proposition, we recast this as:

For all n1, n2 ∈ N and x, y ∈ Q, there is an n3 ∈ N with
(n1x)(n2y) = n3(xy)

m

for all n ∈ N and x, y ∈ Q, we have nR(x) R(y) R(xy)−1 ∈ N and

nR(y) L(x) R(xy)−1 ∈ N .

(⇓) Set n1 = n and n2 = 1. Then

nR(x) R(y) = (nx)y = (n1x)(n2y) = n3(xy) = n
R(xy)
3

and nR(x) R(y) R(xy)−1

= n3 ∈ N . Similarly with n1 = 1 and n2 = n

nR(y) L(x) = x(ny) = (n1x)(n2y) = n3(xy) = n
R(xy)
3
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and nR(y) L(x) R(xy)−1

= n3 ∈ N .

(⇑) We have, with all ni in N ,

(n1x)(n2y) = n
R(x) R(n2y)
1 = n

R(x(n2y))
4 = n4(x(n2y))

= n4(n
R(y) L(x)
2 ) = n4(n

R(xy)
5 ) = n4(n5(xy))

= n
R(n5(xy))
4 = n

R(n5) R(xy)
6 = (n6n5)(xy)

= n3(xy) .2

Our original definition of subloop normality was qualitative: a subloop is nor-
mal when it is the kernel of some homomorphism. This proposition now gives us
a quantitative definition: a subloop is normal when it is invariant under the inner
mapping group.

12.2. Autotopisms

Recall from Section 2.2 that an autotopism of the quasigroup Q is a Qgp-
automorphism; that is, a triple (α, β, γ) of permutations of Q with xαyβ = (xy)γ

for all x, y ∈ Q. They form the group AutQgp(Q) = Atp(Q)—the autotopism group
of Q. As noted in Section 3.2, the category equivalence of Theorem (3.4) implies
that Atp(Q) is isomorphic to AutLSD(QT), the automorphism group of QT in LSD,
a normal subgroup of index at most six in Aut(QT), the full automorphism group
of QT.

(12.7). Proposition. The loop Q is a Moufang loop if and only if the triple

(L(x),R(x),L(x) R(x))

is an autotopism of Q for every x ∈ Q.

Proof. We have

(xa)(bx) = (aL(x))(bR(x))

and

(x(ab))x = (ab)L(x) R(x) .

2

In a sense, this result was at the heart of our proof of Lemma (3.13). Indeed,
let Q be an inverse property loop for which εx is an automorphism of QT. The
equation a · b = ab in Q becomes the line (a, b, ab) of QT. The image of this line
under ε1 is (b−1, a−1, (ab)−1); and, as in the proof of that lemma, the image of this
line under εx is (xa, bx, ((ab)−1)εx) = (xa, bx, (x(ab))x). That is,

(a, b, ab)ε1εx = (xa, bx, (x(ab))x) ,

which gives the first part of Proposition (12.8) below. The other parts of that
proposition can be proven is a similar fashion and also are interpretations of the first
part in conjugates of Q, inverse property loops by Lemma (3.12). (See Section 15.2
for discussion of conjugates. Compare the proposition with [Hal07a, Prop. 3.15].)

Note that, for all u and v from Q, the elements ρuρv, κuκv, and εuεv induce
LSD-automorphisms of QT and hence autotopisms of Q.

(12.8). Proposition. Let Q be an inverse property loop.



84 12. MULTIPLICATION GROUPS AND AUTOTOPISMS

(a) If εx ∈ Aut(QT) for some x of Q, then the element ε1εx induces on QT the
automorphism (L(x),R(x),L(x) R(x)) which is thus an autotopism of Q.

(b) If ρx ∈ Aut(QT) for some x of Q, then the element ρ1ρx induces on QT the
automorphism (R(x) L(x),L(x−1),L(x)) which is thus an autotopism of Q.

(c) If κx ∈ Aut(QT) for some x of Q, then the element κ1κx induces on QT the
automorphism (R(x−1),L(x) R(x),R(x)) which is thus an autotopism of Q. 2

We now have the deferred proof of two identities from Proposition (2.12).

(12.9). Corollary. In the Moufang loop Q we have x(a(xb)) = ((xa)x)b,
for all x, a, b ∈ Q, and similarly b(x(ax)) = ((bx)a)x, for all x, a, b ∈ Q.

Proof. By the proposition we have the autotopism (R(x) L(x),L(x−1),L(x))
of Q. When applied to a · c = ac, this yields

(x(ax))(x−1c) = x(ac) .

Set b = x−1c, so that xb = c by the left inverse property. Then

(x(ax))b = x(a(xb)) .

An application of the flexible property x(ax) = (xa)x now gives the first of the
desired identities. The second follows immediately, as the opposite of a Moufang
loop is a Moufang loop. 2

12.3. Moufang multiplication groups, nuclei, and special autotopisms

We return to the triality base group of adjoint groups with triality, thought of
in Section 4.2.1 as a subgroup of the base group of a wreath product M o Sym(3).
Here we see that M is the multiplication group of the corresponding Moufang loop.

(12.10). Lemma. Let Q be a Moufang loop and K the base group of the
adjoint group with triality QTA. Then K = 〈 ρ1ρx, κ1κx, ε1εx | x ∈ Q 〉 is a
normal subgroup of Atp(Q).

Proof. The observation on generation is immediate from the more general
Lemma (4.12)(b). The rest follows from remarks in the previous section and Propo-
sition (12.8). 2

The group K of the lemma will be called the special autotopism group of Q and
be denoted SAtp(Q), its elements being special autotopisms. The corresponding
adjoint group with triality

GQ /Z(GQ) = QTA = SAtp(Q) o Sym(3)

will correspondingly be denoted TAtp(Q).

(12.11). Proposition. Let Q be a Moufang loop. Then SAtp(Q) induces on
each fiber of the Latin square design QT the multiplication group Mlt(Q).

Proof. Proposition (12.8) says that, for fixed x, the generators ε1εx, ρ1ρx,
and κ1κx induce on the fibers QTR, QTC, and QTE, respectively, the subgroup

〈L(x),R(x)〉 =〈L(x),R(x) L(x),R(x−1)〉 = 〈R(x),L(x−1),L(x) R(x)〉
= 〈L(x) R(x),L(x),R(x)〉 .
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Therefore K induces 〈L(x),R(x) | x ∈ Q 〉 = Mlt(Q) on each fiber. 2

If we want full information about the base group, then we need to know not
only the group it induces on each fiber but also what the kernel of that action is.

In an arbitrary loop (indeed quasigroup) Q the right nucleus Nucρ(Q) is the
set of all z with

(ab)z = a(bz) for all a, b ∈ Q .
Similarly the left nucleus Nucλ(Q) is the set of all x with

(xb)c = x(bc) for all b, c ∈ Q ,

and the middle nucleus Nucµ(Q) is the set of all y with

(ay)c = a(yc) for all a, c ∈ Q .

A particular consequence of the next proposition is that each of these is a subloop
of Q, indeed a subgroup.

The nucleus of Q is then Nuc(Q) = Nucλ(Q) ∩ Nucµ(Q) ∩ Nucρ(Q), the set
of all elements of Q that associate with all elements of Q is all possible ways. The
relevance of this here is the following proposition.

(12.12). Proposition. Let Q be a loop.

(a) The bijection z ←→ (IdQ,R(z),R(z)) gives an isomorphism between the right
nucleus Nucρ(Q) of Q and that subgroup of Atp(Q) consisting of all autotopisms
of the form (IdQ, Y, Z). Especially R(z−1) = R(z)−1 for all z ∈ Nucρ(Q).

(b) The bijection z ←→ (L(z−1), IdQ,L(z−1)) gives an isomorphism between the left

nucleus Nucλ(Q) of Q and that subgroup of Atp(Q) consisting of all autotopisms

of the form (X, IdQ, Z). Especially L(z−1) = L(z)−1 for all z ∈ Nucλ(Q).
(c) The bijection z ←→ (R(z),L(z−1), IdQ) gives an isomorphism between the mid-

dle nucleus Nucµ(Q) of Q and that subgroup of Atp(Q) consisting of all au-
totopisms of the form (X,Y, IdQ). Especially R(z−1) = R(z)−1 and L(z−1) =
L(z)−1 for all z ∈ Nucµ(Q).

Proof. (a) Assume (IdQ, Y, Z) is an autotopism. As 1 · a = a always, we have

aY = 1 · aY = 1IdQ · aY = aZ ;

that is, Y = Z. Set z = 1Y = 1Z . Then a · 1 = a gives aIdQ · 1Y = aZ or a · z = aZ ;
that is Y = Z = R(z). Finally a · b = ab yields aIdQ · bY = (ab)Z or a(bz) = (ab)z,
and z is in the right nucleus Nucρ.

Now assume z ∈ Nucρ. Then

aIdQ · bR(z) = a(bz) = (ab)z = (ab)R(z)

always, and (IdQ,R(z),R(z)) is an autotopism of Q.
For x and y in Nucρ(Q) we have always

aR(x) R(y) = (ax)y = a(xy) = aR(xy) ,

so z 7→ R(z) is a homomorphism of quasigroups, hence loops, hence groups. (It is
worth noticing that this only uses y ∈ Nucρ(Q).)

Certainly each (IdQ, Y, Z)−1 = (IdQ,R(z)−1,R(z)−1) is in this subgroup, and
so must be equal to (IdQ,R(w),R(w)) for some w ∈ Nucρ(Q). Then z−1 =

1R(z)−1

= 1R(w) = w.
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(b) This follows by applying (a) to the opposite loop, except we find that
z 7→ L(z) is an anti-isomorphism of groups, so we must compose it with inversion
to get an isomorphism z 7→ L(z)−1 = L(z−1).

(c) An autotopism (X,Y, IdQ) is a principal autotopism of Q. Therefore by
Lemma (2.1) there are z and w with wz = 1 and X = R(z) and Y = L(w). Applied
to 1 · 1 = 1 this gives z · w = 1, so in fact w = z−1 is a two-sided inverse for z.

The autotopism (X,Y, IdQ)−1 = (R(z)−1,L(z−1)−1, IdQ) is also principal and
so equals (R(w),L(w−1), IdQ) for some w, which can only be z−1. When applied
to 1 · b = b, this gives z−1(zb) = b for all b ∈ Q.

Let a and b be arbitrary in Q, and set c = zb. Then

a(zb) = (ac)IdQ = aX · cY = aR(z)cL(z−1) = (az)(z−1(zb)) = (az)b .

That is, z belongs to the middle nucleus Nucµ(Q).
Conversely, for z ∈ Nucµ(Q) and b ∈ Q

z−1(z(z−1b)) = (z−1z)(z−1b) = z−1b ,

so by cancellation z(z−1b) = b always. Now for arbitrary a, b ∈ Q

aR(z) · bL(z−1) = (az) · (z−1b) = a(z(z−1b)) = ab = (ab)IdQ ;

that is, (R(z),L(z−1), IdQ) is an autotopism.
As before the associated bijection z 7→ R(z) gives an isomorphism and z 7→ L(z)

an anti-isomorphism, so we are done. 2

(12.13). Corollary. ([Bru58, Theorem VII.2.1],[Pfl90, IV.1.5,7])

(a) Let Q be a left inverse property loop. Then Nucλ(Q) = Nucµ(Q) is a subgroup
of Q.

(b) Let Q be a right inverse property loop. Then Nucρ(Q) = Nucµ(Q) is a subgroup
of Q.

(c) Let Q be a loop with the antiautomorphic inverse property. Then Nucρ(Q) =

Nucλ(Q) is a subgroup of Q.

(d) Let Q be an inverse property loop. Then Nuc(Q) = Nucλ(Q) = Nucµ(Q) =
Nucρ(Q) is a subgroup of Q.

Proof. (See [Bru58, Theorem VII.2.] and [Pfl90, Theorem I.4.3].) By
Lemma (3.12), Q is a left inverse property loop if and only if Aut(QT) contains the
automorphism ρ1. But the map ρ1 interchanges autotopisms of the form (X,Y, IdQ)
and (W, IdQ, Z), thought of as automorphisms of the Latin square design QT. This
gives (a), and similar arguments yield (b) and (c) hence (d). 2

(12.14). Lemma. Let Q be a Moufang loop. Then Nuc(Q) = Nucλ(Q) =
Nucµ(Q) = Nucρ(Q) is a normal subgroup of Q.

Proof. (See [Bru58, Theorem VII.2.] and [Pfl90, Corollary IV.1.7].) Every
Moufang loop is an inverse property loop, so by the corollary all we need is a
demonstration that Nuc(Q) is normal in the Moufang loop Q.

By Propositions (12.5) and (12.6), this will be the case provided that, for every
z ∈ Nuc(Q) and a, b ∈ Q, we can show

zR(a) R(b) R(ab)−1

∈ Nuc(Q) , zL(a) L(b) L(ba)−1

∈ Nuc(Q) , zL(a) R(a)−1

∈ Nuc(Q) .

As z ∈ Nucλ(Q) ∩Nucρ(Q), the first two come easily; indeed

zR(a) R(b) R(ab)−1

= z = zL(a) L(b) L(ba)−1

.
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Since Q is Moufang, it admits the autotopism (L(a),R(a),L(a) R(a)) by Propo-
sition (12.7). As z is in the nucleus, we also have the autotopism (IdQ,R(z),R(z))
by Proposition (12.12)(a). Therefore we have a third autotopism

(L(a),R(a),L(a) R(a)) (IdQ,R(z),R(z)) (L(a),R(a),L(a) R(a))−1

= (L(a) L(a)−1,R(a) R(z) R(a)−1, ∗)
= (IdQ,R(a) R(z) R(a)−1, ∗) ,

where in these last two lines we do not need the third mapping specifically. Again by
Proposition (12.12)(a) there is a w in the (right) nucleus with R(a) R(z) R(a)−1 =
R(w). Indeed

w = 1w = 1R(a) R(z) R(a)−1

= (az)a−1 .

Therefore zL(a) R(a)−1

= (az)a−1 ∈ Nuc(Q), as desired. 2

(12.15). Theorem. Let Q be a Moufang loop and K = SAtp(Q), the special
autotopism group and the base group of the adjoint group with triality TAtp(Q).
There are isomorphic groups A1, A2, and A3 such that:

(a) A1 is the kernel of the projection of K onto one of its three coordinates and so
is normal in K with K/A1 isomorphic to Mlt(Q);

(b) A2 is normal in Mlt(Q);
(c) A3 is normal in Q and is contained in the nucleus of Q.

Indeed the three kernels A1 are

{ (IdQ,R(z),R(z)) | z ∈ A3 } ,
{ (L(z), IdQ,L(z)) | z ∈ A3 } ,
{ (R(z),L(z−1), IdQ)) | z ∈ A3 } .

In particular A2 may be taken to be the image of either of the two kernels not A1.

Proof. Let A1 be the kernel of the homomorphism from K onto Mlt(Q) given
by Proposition (12.11), where we (somewhat arbitrarily) choose A1 to be those
elements of K having the form (IdQ, Y, Z) as autotopisms of Q. This gives (a).

By Proposition (12.12)(a), A1 is then isomorphic to a subgroup A3 of the
nucleus of Q via z ←→ (IdQ,R(z),R(z)). By Proposition (12.8) the element k =
ε1εx of K acts as the autotopism (L(x),R(x),L(x) R(x)). Hence, as in the proof of
Lemma (12.14),

k(IdQ,R(z),R(z))k−1 = (IdQ,R((xz)x−1),R((xz)x−1)) ∈ A1 .

Thus the nuclear subgroup A3 is fixed by all L(x) R(x)−1 as well as being fixed
pointwise by all R(x) R(y) R(xy)−1 and L(x) L(y) L(yx)−1. Therefore A3 is normal
in Q by Propositions (12.5) and (12.6), completing (c).

Finally the subgroup Aκ1
1 = { (R(z),L(z−1), IdQ)) | z ∈ A3 } is normal in K

and isomorphic to A1 (and A3), while meeting A1 trivially; so its image A2 in
Mlt(Q) ' K/A1 is normal and isomorphic to A1, as needed for (b). 2

(12.16). Corollary. The Moufang loop Q is finite if and only if GQ is finite
if and only if Mlt(Q) is finite.
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Proof. As Mlt(Q) is a transitive subgroup of Sym(Q), the (arbitrary) loop Q
is finite if and only if Mlt(Q) is finite. By Theorem (12.15) for Moufang Q

|Mlt(Q)| ≤ |GQ/Z(GQ)| ≤ 6|Mlt(Q)|2 ,
so Mlt(Q) is finite if and only if GQ/Z(GQ) is finite. If GQ/Z(GQ) is infinite, then
certainly GQ is infinite. If GQ/Z(GQ) is finite, then G′Q is finite by a classical result

of Schur [Rob82, 10.1.4]. As Z(GQ) ≤ G′Q by Lemma (4.12), both Z(G) and GQ

are finite. 2

(12.17). Corollary. (Glauberman [Gla68, Theorem 6]) If Q is a Moufang
loop with trivial nucleus, then Mlt(Q) admits a group of automorphisms Sym(3) in
such a way that Mlt(Q) o Sym(3) is a group with triality.

Proof. In Theorem (12.15) if the nucleus of Q is trivial then the isomorphic
groups A3 and A1 are both trivial. That is, when the nucleus is trivial, Mlt(Q)
is isomorphic to the triality base group and so naturally admits Sym(3) giving a
group with triality. 2

The question then arises, when exactly does the multiplication group of a
Moufang loop naturally admit the triality? The difficulty is that the nucleus can be
nontrivial but with the corresponding subgroups of Atp(Q) intersecting SAtp(Q)
trivially. The question has been studied by Phillips [Phi94, Phi99] but is not
completely solved.

(12.18). Proposition. Let Q be a Moufang loop. Then the universal group
with triality GQ is solvable if and only if the multiplication group Mlt(Q) is solvable.

Proof. The group GQ is a central extension of the adjoint group with triality
TAtp(Q), so a further equivalent statement would be the solvability of TAtp(Q)
or indeed of its base group K. By Theorem (12.15) the group K has a normal
subgroup A such that K/A is isomorphic to Mlt(Q) with A in turn isomorphic to
a normal subgroup of Mlt(Q). In particular K is solvable if and only if Mlt(Q) is
solvable, as desired. 2



Chapter 13
Doro’s Approach

We have discussed groups with triality (G,D, π). In Doro’s original treatment
[Dor78] of abstract triality for groups the main object of study is the base group
K, the kernel of the homomorphism π, which admits a group Sym(3), the image of
π, inducing automorphisms in a prescribed manner.

Specifically, Doro defined a group with triality to be a group K that admits an
action of I ' Sym(3) as a (not necessarily faithful) group of automorphisms such
that, for σ of order 2 and µ of order 3 in I, we have

(i) [k, σ][k, σ]µ[k, σ]µ
2

= 1, for all k ∈ K;
(ii) K = [K, I] .

In order to avoid confusion, we will in this case say that the group K admits the
triality I. Doro proved that the set { [k, σ] | k ∈ K } naturally carries the structure
of a Moufang loop; see Theorem (13.4)(a) below.

The group Sym(3) acts regularly by conjugation on the set of its ordered pairs
consisting of an element of order 2 and an element of order 3. Therefore the above
conditions are actually independent of the specific choices of the elements σ and µ.

As we shall see in this chapter Doro’s viewpoint is basically the same as ours for
TriGrp?. This is relatively easy to check except for the specifics regarding universal
groups, which take up a lot of the chapter.

13.1. Doro’s categories

Let objects of the category Doro be triples (K, I, ιI) with K admitting the
triality I and ιI : I ' Sym(3) an isomorphism, so that K canonically admits the
triality Sym(3) = IιI . The pair (ϕ, ι) belongs to HomDoro((K, I, ιI), (H,J, ιJ))
when ι : I −→ J is an isomorphism with ιI = ιιJ and ϕ : K −→ H is a compatible
Sym(3)-homomorphism: for all a ∈ I and k ∈ K

(ka)ϕ = (kϕ)a
ι

or equivalently (ka
iI

)ϕ = (kϕ)a
ιiJ
.

Doro [Dor78, p. 383] actually introduced a slightly different category, which
he called T . Doro’s T is isomorphic to the full subcategory of Doro whose objects
are those (K, I, ιI) with I = Sym(3) and ιI = IdSym(3). As this subcategory T is
full and dense, it is equivalent to Doro by Corollary (1.2).

The following observation is due to Richard Parker [Lie87, Lemma 3.2].

89
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(13.1). Lemma. Let I ' Sym(3) act on the group K. Further let σ and
η have order 2 in I so that µ = ησ has order 3. Then for k ∈ K we have

[k, σ][k, σ]µ[k, σ]µ
2

= (σkη)3 in K o I.

Proof. Let ε = σησ be the third element of order 2 in I. Then η = σεσ = εσε
and µ = σε, so that

[k, σ][k, σ]µ[k, σ]µ
2

= (k−1σkσ).εσ(k−1σkσ)σε.σε(k−1σkσ)εσ

= (k−1σk)(σεσ)(k−1σk)(σσ)(εσε)(k−1σk)(σεσ)

= (σkη)3 .2

(13.2). Theorem.

(a) Let (G,D, π, I) ∈ TriGrp?. Then (K, I, ιI) ∈ Doro where K = kerπ and ιI =
π|I .

(b) Let (K, I, ιI) ∈ Doro. Then (G,D, π, I) ∈ TriGrp? where G = K o I, D = σG

for σ of order 2 in I, and gπ = sιI for g = ks with k ∈ K and s ∈ I.

Proof. For (a) the group G is generated by D, so G is contained in and thus
equal to [K, I]I. Therefore K = [K, I], and the rest follows from the lemma.

In (b) as K = [K, I], we have G = KI = [K, I]I = IG = 〈D〉. Let η be a
second element of order 2 in I and d, e ∈ D with dπ 6= eπ. There is a t ∈ I such
that (de)t = σmηn with m,n ∈ K. But then |de| = |σkη| for k = mn−1 ∈ K, and
the lemma again applies. 2

We therefore immediately have:

(13.3). Theorem. The categories Doro and TriGrp? are isomorphic. 2

After a long and tiring journey, we have finally arrived at Doro’s original con-
struction of a Moufang loop from a group admitting triality.

(13.4). Theorem. Let (K, I, ιI) ∈ Doro. Choose distinct elements σ, η of
order 2 in I and set µ = ησ.

(a) (Doro [Dor78, Theorem 1]) Let R = { [k, σ] | k ∈ K } and H = CK(η). Then
R is a set of right coset representatives for H in K. If we define a binary
product on R by

m ◦ n = p for mn ∈ Hp ,

then (R, ◦) is a Moufang loop.
(b) (Grishkov and Zavarnitsine [GrZ06, Lemma 2]) For (R, ◦) as in (a) we

have m ◦ n = n−µ
2

mn−µ = m−µnm−µ
2

.
(c) Let (G,D, π, I) ∈ TriGrp? with G = K o I, D = σG, and (ks)π = sιI for

k ∈ K, s ∈ I. Then (R, ◦) as defined in (a) is isomorphic to the Moufang loop
(G,D, π, I)M?.

Proof. By Theorem (13.2) we have (G,D, π, I) ∈ TriGrp? as claimed in (c).
As H ≥ Z(G) and [k, σ] = [kZ(G), σ] for all k ∈ K, we may, without loss of
generality, assume that (G,D, π, I) ∈ UTriGrp?. By Theorem (11.6) there is a
Moufang loop Q with (G,D, π, I) isomorphic to QG? and then (G,D, π, I)M?

isomorphic to QG?M? and hence to Q.
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Part (c) is now a consequence of Proposition (11.5) parts (a), (b), and (c).
Part (a) then follows from the present (c) and (11.5)(b) again, while (b) comes
from (11.5)(d). 2

The adjoint category ATriGrp? is the full subcategory of TriGrp? consisting of
those objects (G,D, π, I) with Z(G) = 1. For (K, I, ιI) ∈ Doro, let ZI(K) =
Z(K)∩CK(I) so that ZI(K) = Z(KoI). We then let ADoro be the full subcategory
of Doro of those (K, I, ιI) with ZI(K) = 1.

(13.5). Theorem. The categories ADoro and ATriGrp? are isomorphic. 2

Using Theorem (13.4)(a), Doro [Dor78, p. 383] defined a functor M from his
category T of groups admitting triality to the category Mouf? of Moufang loops
(with loop homomorphisms as morphisms). This functor can be thought of as our
functor M? composed with the isomorphism of Theorem (13.3). Although Doro
did not expressly define adjoint or universal subcategories of the category T , he did
deal with adjoint and universal groups as important objects. For instance, in his
Corollary 1 to Theorem 2 Doro noted that if two groups G1 and G2 admitting the
triality I give isomorphic Moufang loops M(G1) and M(G2), then the correspond-
ing adjoint groups G1/ZI(G1) and G2/ZI(G2) are isomorphic groups admitting
triality. The current Proposition (7.8) is a version of Doro’s corollary.

Doro also defined a functor G from Mouf? to T that assigns to each Moufang
loop a universal group admitting triality. Doro’s functor G is defined via a presenta-
tion parametrized by Q, as is our functor G?. Doro showed that the corresponding
map is a functor and that the groups in its image have M(G(Q)) isomorphic to Q
and are appropriately universal subject to that.

The rest of this chapter is devoted to proof and discussion of the fact that Doro’s
universal functor G and our G? are basically the same. We do this by proving that
Doro’s universal group admitting triality, which we shall call K(Q) rather than
G(Q), is canonically isomorphic to the kernel KQ of πQ, where (GQ, DQ, πQ, IQ) is
our universal group with triality QG? from Section 11.1.

The treatment is long for two reasons. We squeeze out as much generality as
we can by considering arbitrary loops Q, only at the end specializing to Moufang
loops. But even without the generality, a full proof would take us a while, since we
give a full account of the use of the Reidermeister-Schreier method to move from
our defining presentation of the group GQ to its normal subgroup KQ of index 6.

We begin with Doro’s presentation [Dor78, p. 383].

(13.6). Presentation. Let Q be a Moufang loop. The group K(Q) has the
following presentation:

Generators:

for arbitrary x ∈ Q:

Rx, Lx, and Px ;

Relations:

for arbitrary x, y ∈ Q:

(1) R1 = L1 = P1 = 1;

(4) PxRyLx = Rx−1y; RxLyPx = Lx−1y; LxPyRx = Px−1y;

(5) LyRxPy = Rxy−1 ; PyLxRy = Lxy−1 ; RyPxLy = Pxy−1 ;

(6) PxLxRx = 1;

(7) PxPyPx = Pxyx; LxLyLx = Lxyx; RxRyRx = Rxyx.
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The reason behind our strange numbering should become apparent later.

(13.7). Theorem. (Doro [Dor78, Theorem 2]) Let Q be a Moufang loop.
The group K(Q) = [K(Q), I] of Presentation (13.6) admits the triality group of
automorphisms I = 〈σ, µ〉 ' Sym(3) acting via:

Rx
σ←→ R−1

x and Lx
σ←→ P−1

x

Rx
µ−→ Px

µ−→ Lx
µ−→ Rx .

Each of the maps

x 7→ Rx x 7→ Lx x 7→ Px

is a bijection of Q with the corresponding subset of the generators.

We let UDoro be the full subcategory of Doro consisting of those objects from
Doro isomorphic to those of Theorem (13.7).

(13.8). Theorem. The categories UDoro and UTriGrp? are isomorphic.

Theorems (13.7) and (13.8) are immediate consequences of Theorem (13.3) and
the following theorem which will be proven in Section 13.4 below.

(13.9). Theorem. Let Q be a Moufang loop, and let KQ be the kernel of the
map πQ on the universal group with triality GQ of Section 11.1. Then KQ has the
following presentation:

Generators:

for arbitrary x ∈ Q:

Rx, Lx, and Px;

Relations:

for arbitrary x, y ∈ Q:

(1) R1 = L1 = P1 = 1;

(4) PxRyLx = Rx−1y; RxLyPx = Lx−1y; LxPyRx = Px−1y;

(5) LyRxPy = Rxy−1 ; PyLxRy = Lxy−1 ; RyPxLy = Pxy−1 ;

(6) PxLxRx = 1;

(7) PxPyPx = Pxyx; LxLyLx = Lxyx; RxRyRx = Rxyx.

In fact the relations (6) and (7) are consequences of relations (1), (4), and (5).
As a subgroup of GQ, the chosen generators of KQ are Rx = cxc1, Lx = e1ex,

and Px = rxr1, for x ∈ Q.
The group KQ = [KQ, IQ] admits the triality group of automorphisms IQ =

〈σ, µ〉 ' Sym(3) acting via:

Rx
σ←→ R−1

x and Lx
σ←→ P−1

x

Rx
µ−→ Px

µ−→ Lx
µ−→ Rx .

Each of the maps

x 7→ Rx x 7→ Lx x 7→ Px

is a bijection of Q with the corresponding subset of the generators.
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13.2. A presentation of the base group

The next theorem is the central result of the universality work in this chapter.
Starting from Presentation (11.1) for the universal group GQ, we find a presentation
for kerπQ, its normal subgroup of index 6. To do this we use the Reidermeister-
Schreier method, largely following the treatment of Bogopolski [Bog08, §§2.8-9].

(13.10). Theorem. Let Q be a loop, and let KQ be the kernel of the map πQ
on GQ. Then KQ has the following presentation:

Generators:

for arbitrary x ∈ Q:

Rx, Lx, and Px ;

Relations:

for arbitrary x, y ∈ Q:

(1) R1 = L1 = P1 = 1;

(2) PxRxyLx = Ry; RxLxyPx = Ly; LxPxyRx = Py;

(3) LyRxyPy = Rx; PyLxyRy = Lx; RyPxyLy = Px.

As a subgroup of GQ, the chosen generators of KQ are Rx = cxc1, Lx = e1ex, and
Px = rxr1, for x ∈ Q.

The group KQ = [KQ, IQ] admits the triality group of automorphisms IQ =
〈c1, e1〉 = 〈σ, µ〉 ' Sym(3) with σ = c1 and µ = c1e1 acting via:

Rx
σ←→ R−1

x and Lx
σ←→ P−1

x

Rx
µ−→ Px

µ−→ Lx
µ−→ Rx .

Let Q be a loop, and let G be the free group generated by

X = { rx, cx, ex | x ∈ Q } .

With reference to Presentation (11.1) for the group GQ, we let R be the set of
relators

r2x , c
2
x , e

2
x for all x ∈ Q ,

rxcyrxe
−1
xy , cyrxcye

−1
xy for all x, y ∈ Q .

The kernel J of the canonical map from G to GQ = 〈X | R 〉 is then the normal
closure within G of the relator set R.

Next let K be the preimage in G of KQ, the kernel of the homomorphism
πQ on GQ (as defined in Theorem (11.3)). Therefore K has index 6 in G, and a
particularly nice set of coset representatives for K in G is

T = {1, r1, c1, e1, e1r1, e1c1} .

The kernel KQ is thus isomorphic to the quotient K/J , and J is the normal closure
within K of the set of elements

⋃
t∈T { trt−1 | r ∈ R }.

The construction of a presentation of KQ from that for GQ is a two step process.
First we construct (following Schreier) a convenient set of free generators for the
subgroup K of G. Then we use the Reidermeister rewriting process to write the
various trt−1 as words in those generators, giving a complete set of relators.

For each g ∈ G we let g be the unique element of T with g ∈ Kg. As the set of
coset representatives T is a Schreier transversal (that is, every initial segment of a
member of T also belongs to T ), Theorem 8.10 of [Bog08] tells us that the group
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K is freely generated within G by the set of nonidentity elements tg(tg)−1 for t ∈ T
and g ∈ X. The appropriate coset representatives tg are easy to tabulate:

tg rx cx ex
1 r1 c1 e1

r1 1 e1r1 e1c1

c1 e1c1 1 e1r1
e1 e1r1 e1c1 1
e1r1 e1 r1 c1

e1c1 c1 e1 r1

We then list and name the elements tg(tg)−1 in:

t ∈ T g ∈ X tg(tg)−1 Name

1 rx rxr
−1
1 Pr,x

r1 rx r1rx P−r,x
c1 rx c1rx(e1c1)−1 L−r,x
e1 rx e1rx(e1r1)−1 R−r,x
e1r1 rx e1r1rxe

−1
1 Rr,x

e1c1 rx e1c1rxc
−1
1 Lr,x

1 cx cxc
−1
1 Rc,x

r1 cx r1cx(e1r1)−1 L−c,x
c1 cx c1cx R−c,x
e1 cx e1cx(e1c1)−1 P−c,x
e1r1 cx e1r1cxr

−1
1 Lc,x

e1c1 cx e1c1cxe
−1
1 Pc,x

1 ex exe
−1
1 L−e,x

r1 ex r1ex(e1c1)−1 Re,x

c1 ex c1ex(e1r1)−1 Pe,x

e1 ex e1ex Le,x

e1r1 ex e1r1exc
−1
1 P−e,x

e1c1 ex e1c1exr
−1
1 R−e,x

As motivation for the names from the final column, refer to Proposition (12.8) and
momentarily set

L = ε1εx = (L(x),R(x),L(x) R(x)) ,

R−1 = κ1κx = (R(x−1),L(x) R(x),R(x)) ,

P−1 = ρ1ρx = (R(x) L(x),L(x−1),L(x)) .

Then the names refer to the first entry of the corresponding autotopism and

RLP = RPL = LRP = LPR = PRL = PLR = (IdQ, IdQ, IdQ) .
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(13.11). Proposition. The subgroup K of G is freely generated by the non-
identity elements of

Rr,x, R
−
r,x, Lr,x, L

−
r,x, Pr,x, P

−
r,x ,

Rc,x, R
−
c,x, Lc,x, L

−
c,x, Pc,x, P

−
c,x ,

Re,x, R
−
e,x, Le,x, L

−
e,x, Pe,x, P

−
e,x .

for all x ∈ Q. The only identity elements among these are

Pr,1 , R
−
r,1 , Rc,1 , P

−
c,1 , L

−
e,1 .

Proof. For each x ∈ Q we have the eighteen elements of K named in the
previous table. Of these, only those with x = 1 have any chance of being the
identity in the free group G generated by X. When we check the eighteen elements
tg(tg)−1 with g ∈ {r1, c1, e1}, we find the identity only in five cases:

Pr,1 =r1r
−1
1 = 1 ; R−r,1 = e1r1(e1r1)−1 = 1 ; Rc,1 = c1c

−1
1 = 1;

P−c,1 = e1c1(e1c1)−1 = 1 ; L−e,1 = e1e
−1
1 = 1. 2

The Reidermeister rewriting process (which has been discussed earlier starting
on page 81) is relatively simple. Starting with one of the conjugated relator words
trt−1, written as a product of letters from X∪X−1, we scan the word starting from
the front; subwords s−1s, for s ∈ T , are inserted in such a way that ever increasing
initial segments of the word are products of generators of the subgroup K (from
Proposition (13.11)) or their inverses. For instance, the relator r2x = rxrx begins
with rx; this is not one of our subgroup generators, but rxr

−1
1 = Pr,x is. Therefore

we rewrite as follows:

rxrx = rx(r−1
1 r1)rx = (rxr

−1
1 ) r1rx = Pr,x r1rx = Pr,xP

−
r,x .

That trt−1 belongs to K and indeed to J is not very important for the rewriting
process. Indeed, we can scan any word in the letters X∪X−1 from beginning to end
in the same way, the result being a rewritten version of the corresponding element
of G as a product of generators of K or their inverses, followed by a single coset
representative from T ; for instance rx = (rxr

−1
1 )r1 = Pr,xr1 . If the word happens to

belong to the subgroup K (as all the elements trt−1 of J certainly do), then that
coset representative must turn out to be the identity, as in the example displayed
above.

There are five basic relator types r for GQ and six members t of the transversal
T . Therefore there are thirty different types of word trt−1 to be rewritten, one of
which was discussed above. We give several representative examples, the first in
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detail:

t = e1c1, r = cyrxcye
−1
xy :

e1c1.cyrxcye
−1
xy .(e1c1)−1 = e1c1cy(e−1

1 e1)rxcye
−1
xy (e1c1)−1

= (e1c1cye
−1
1 ) e1rxcye

−1
xy (e1c1)−1

= Pc,y.e1rxcye
−1
xy (e1c1)−1

= Pc,y.e1rx((e1r1)−1(e1r1))cye
−1
xy (e1c1)−1

= Pc,y.(e1rx(e1r1)−1)(e1r1)cye
−1
xy (e1c1)−1

= Pc,yR
−
r,x.(e1r1)cye

−1
xy (e1c1)−1

= Pc,yR
−
r,x.(e1r1)cy(r−1

1 r1)e−1
xy (e1c1)−1

= Pc,yR
−
r,x.((e1r1)cyr

−1
1 )r1e

−1
xy (e1c1)−1

= Pc,yR
−
r,xLc,y.r1e

−1
xy (e1c1)−1

= Pc,yR
−
r,xLc,y(R−e,xy)−1 ;

t = r1, r = cxcx :

r1.cxcx.r
−1
1 = r1cx(e1r1)−1(e1r1)cxe

−1
1

= L−c,xLc,x ;

t = e1c1, r = exex :

e1c1.exex.(e1c1)−1 = e1c1ex(r−1
1 r1)cx(e1c1)−1

= (e1c1exr
−1
1 )(r1cx(e1c1)−1)

= R−e,xRe,x ;

t = c1, r = rxcyrxe
−1
xy :

c1.rxcyrxe
−1
xy .c

−1
1 = c1rx(e1c1)−1(e1c1)cy(e−1

1 e1)rx(e1r1)−1(e1r1)e−1
xy c
−1
1

= (c1rx(e1c1)−1)((e1c1)cye
−1
1 )(e1rx(e1r1)−1)(e1r1)e−1

xy c
−1
1

= L−r,xPc,yR
−
r,x(Pe,xy)−1 .

Reidermeister-Schreier now gives us a first approximation to Theorem (13.10).

(13.12). Proposition. The group KQ has the following presentation:

Generators:

for arbitrary x ∈ Q:

Rr,x, R
−
r,x, Lr,x, L

−
r,x, Pr,x, P

−
r,x ,

Rc,x, R
−
c,x, Lc,x, L

−
c,x, Pc,x, P

−
c,x ,

Re,x, R
−
e,x, Le,x, L

−
e,x, Pe,x, P

−
e,x .

Relations:

for arbitrary x, y ∈ Q:

(0) for arbitrary a ∈ {r, c, e} and W ∈ {R,L, P},
Wa,xW

−
a,x =W−a,xWa,x = 1;

(1) Pr,1 = R−r,1 = Rc,1 = P−c,1 = L−e,1 = 1;

(2) Pr,xL
−
c,yRr,x(L

−
e,xy)

−1 = P−r,xRc,yL
−
r,x(Re,xy)

−1 =

L−r,xPc,yR
−
r,x(Pe,xy)

−1 = R−r,xLc,yP
−
r,x(Le,xy)

−1 =

Rr,xP
−
c,yLr,x(P

−
e,xy)

−1 = Lr,xR
−
c,yPr,x(R

−
e,xy)

−1 = 1;

(3) Rc,yL
−
r,xPc,y(L

−
e,xy)

−1 = L−c,yRr,xP
−
c,y(Re,xy)

−1 =
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R−c,yPr,xL
−
c,y(Pe,xy)

−1 = P−c,yLr,xR
−
c,y(Le,xy)

−1 =

Lc,yP
−
r,xRc,y(P

−
e,xy)

−1 = Pc,yR
−
r,xLc,y(R

−
e,xy)

−1 = 1.

Proof. The generators are those of Proposition (13.11), including those that
represent the identity. The relations (1) set those five identity generators to 1.

The eighteen elements trxrxt
−1, tcxcxt

−1, and texext
−1 after rewriting become

the eighteen relation types of (0), three of these having been discussed above.
The six elements trxcyrxe

−1
xy t
−1 after rewriting give the six relation types of (2),

an example appearing above. Finally the six elements tcyrxcye
−1
xy t
−1 give the six

relation types of (3), one example appearing in detail above. 2

We now concern ourselves with simplifying this presentation.

(13.13). Lemma. For all W ∈ {R,L, P}, all a ∈ {r, c, e}, and all x ∈ Q, we
have W−1

a,x = W−a,x.

Proof. This is immediate from the relations (0) in the proposition. 2

(13.14). Lemma. For all W ∈ {R,L, P} and all a ∈ {r, c, e}, we have Wa,1 =
1.

Proof. By Lemma (13.13) and the relations (1), we have five of the nine
desired identities:

Pr,1 = Rr,1 = Rc,1 = Pc,1 = Le,1 = 1 .

The relations (2) and (3) then give

R−1
r,1Lc,1P

−1
r,1 = P−1

c,1 Lr,1R
−1
c,1 = Le,1 = 1 ,

so that Lc,1 = Lr,1 = 1. Finally by (2)

Re,1 = P−1
r,1 Rc,1L

−1
r,1 = 1 and Pe,1 = L−1

r,1Pc,1R
−1
r,1 = 1 . 2

(13.15). Lemma. For all W ∈ {R,L, P}, all a, b ∈ {r, c, e}, and all z ∈ Q, we
have Wa,z = Wb,z.

Proof. By Lemma (13.13) and the relations in (2) and (3), for each W there
are appropriate U and V with

U−1
r,xWc,zV

−1
r,x = We,xz and V −1

c,y Wr,zU
−1
c,y = We,zy .

By Lemma (13.14), when we set x = y = 1 we get

Wc,z = U−1
r,1 Wc,zV

−1
r,1 = We,z = V −1

c,1 Wr,zU
−1
c,1 = Wr,z . 2

Proof of Theorem (13.10). Lemma (13.15) tells us that, for a given x ∈ Q,
each of the nine generators Wa,x from Proposition (13.12) can be replaced by the
corresponding generator Wx from Theorem (13.10). Furthermore the nine genera-
tors W−a,x and the relations (0) of the proposition can be deleted, provided that in

the remaining relations we replace each W−a,x with W−1
a,x = W−1

x . The list of names
preceding Proposition (13.11) then gives the stated correspondence Rx = rxr1,
Lx = e1ex, and Px = cxc1.

The five relations of (1) in the proposition now become the three relations of
(1) in the theorem.
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After the replacements, the inverse of each of the six relators of (2) from the
proposition is a conjugate of a second relator of (2). Taking just one relation from
each such pair, we are left with

P−1
x RyL

−1
x R−1

xy = R−1
x LyP

−1
x L−1

xy = L−1
x PyR

−1
x P−1

xy = 1 .

These are clearly equivalent to the relations (2) in the theorem.
Similarly the relations (3) in the proposition reduce to

L−1
y RxP

−1
y R−1

xy = P−1
y LxR

−1
y L−1

xy = R−1
y PxL

−1
y P−1

xy = 1 ,

which are equivalent to those of (3) in the theorem.
By Theorem (13.2) the group KQ admits the group IQ = 〈c1, e1〉 ' Sym(3) as

a triality group of automorphisms. It remains to verify the action of its generators
σ = c1 and µ = c1e1, which we do within GQ. (This could also be done using the
Reidermeister-Schreier process.)

Rσx = Rc1
c,x = c−1

1 (cxc
−1
1 )c1 = c−1

1 cx

= (c2
1)−1c1cx = c1cx

= R−c,x = R−1
x ;

Lσx = Lc1
r,x = c−1

1 (e1c1rxc
−1
1 )c1 = c−1

1 e1c1rx

= (c2
1)−1c1(c1r1c1)c1rx = r1c

2
1rx = r1rx

= P−r,x = P−1
x ;

Rµx = Rc1e1
c,x = e−1

1 c−1
1 (cxc

−1
1 )c1e1 = e−1

1 c−1
1 cxe1

= (e2
1)−1e1(c2

1)−1c1cxe1 = e1c1cxe1

= Pc,x = Px ;

Pµx = P c1e1
r,x = e−1

1 c−1
1 (rxr

−1
1 )c1e1

= e1(e2
1)−1(c2

1)−1c1rxc
2
1r1(r21)−1c1e1

= e1(c1rxc1)(c1r1c1)e1 = e1exe1e1 = e1ex

= Lc,x = Lx .

It remains to prove KQ = [KQ, 〈σ, µ〉]. First note that with x = 1 the identity
L−1
y RxP

−1
y R−1

xy = 1 yields L−1
y P−1

y = Ry. This implies

[Lx, σ] = L−1
x Lσx = L−1

x P−1
x = Rx .

Therefore [KQ, 〈σ, µ〉] contains Rx and so also Rµx = Px and Pµx = Lx, for all x ∈ Q,
a full set of generators for KQ. 2

Some useful identities are a consequence.

(13.16). Proposition. In KQ we have the following, for all {U, V,W} =
{R,L, P} and x, y ∈ Q.

(a) UxVxWx = 1, and in particular UxVx = VxUx = W−1
x .

(b) Wx−1 = W−1
x = W−1x.

(c) W−1
xy = Wy−1x−1 .

(d) WxWyWx = W(xy)x = Wx(yx).

Proof. (a) Either UxVxyWx = Vy or UxVyxWx = Vy, and in both cases y = 1
gives the identity.
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(b) Choose U and V so that

UxWxyVx = Wy and VxWzxUx = Wz .

With y = −1x and z = x−1, the previous part gives

W−1
x = UxVx = W−1x and W−1

x = VxUx = Wx−1 .

(c) From UxWxyVx = Wy and VzWvzUz = Wv we find first

Wxy = U−1
x WyV

−1
x and Wvz = V −1

z WvU
−1
z ,

then next

W−1
xy = (U−1

x WyV
−1
x )−1 = VxW

−1
y Ux

= V −1
x−1Wy−1U

−1
x−1 = Wy−1x−1 .

(d) Again assume UxWxyVx = Wy so that

WxWyWx = WxUxWxyVxWx = V −1
x WxyU

−1
x = W(xy)x ,

where we have used the first part of the lemma and an identity from the proof of
the previous part. The rest of this part follows from a similar argument. 2

13.3. Equivalent presentations

We give several presentations for KQ. The presentation (I) is that of Theo-
rem (13.10). The presentation (II) is essentially Doro’s presentation; see Theorem
(13.9). The presentation (III) is shorter than the others, a property that might be
helpful in applications.

(13.17). Theorem. Let Q be a loop. Consider the group K with the following
presentation:

Generators:
Rx, Lx, and Px for arbitrary x ∈ Q;

Relations:
(1) R1 = L1 = P1 = 1.

Then each of the following additional sets of relations gives the same quotient
of K, namely the kernel KQ of πQ:

(I) for arbitrary x, y ∈ Q,
(2) PxRxyLx = Ry; RxLxyPx = Ly; LxPxyRx = Py.
(3) LyRxyPy = Rx; PyLxyRy = Lx; RyPxyLy = Px.

(II) for arbitrary x, y ∈ Q,
(4) PxRyLx = R(x−1)y; RxLyPx = L(x−1)y; LxPyRx = P(x−1)y.
(5) LyRxPy = Rx(−1y); PyLxRy = Lx(−1y); RyPxLy = Px(−1y).

(III) for arbitrary x, y ∈ Q,
(2) PxRxyLx = Ry; RxLxyPx = Ly; LxPxyRx = Py.
(8) R−1

xy = Ry−1x−1 ; L−1
xy = Ly−1x−1 ; P−1

xy = Py−1x−1 .

There are many other related and equivalent sets of relations. In (III) the
relation set (2) could be replaced by any one of (3), (4), or (5). Also since the
subscripts of (8) contain six left inverses, each of which might be replaced by a
right inverse, there are 64 variants of (8) which could be considered. The theorem
remains true with any of these in place of (8); see Remark (13.22).

By substituting y = 1 into (8) we get

(9) for all x ∈ Q, R−1
x = Rx−1 , L−1

x = Lx−1 , P−1
x = Px−1 .
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There are three left inverses in the subscripts of (9), so it has eight variants, all
valid within KQ by Proposition (13.16). (In fact it is not hard to prove that any
one of the eight variants implies all of the others; see the proof of Lemma (13.19)
below.)

(13.18). Lemma. Let N be a quotient group of K that additionally satisfies
(4) and (5) for all x, y ∈ Q. Then (9) holds within N .

Proof. For each W , we may choose U and V so that in N

UxWyVx = W(x−1)y and UxVyWx = Vy(−1x) .

In the first y = 1 gives UxVx = Wx−1 , and in the second y = x gives UxVx = W−1
x .
2

(13.19). Lemma. Let N be a quotient group of K that additionally satisfies
(9). Then within N :

(a) (2) holds for all x, y ∈ Q if and only if (4) holds for all x, y ∈ Q.
(b) (3) holds for all x, y ∈ Q if and only if (5) holds for all x, y ∈ Q.

Proof. Set z = −1x so that x = z−1. Then Ux = Uz−1 = U−1
z = U−1

−1x; that

is, U−1
x = U−1x and similarly V −1

x = V−1x. Thus

Wy = UxWxyVx ⇐⇒ U−1
x WyV

−1
x = Wxy

⇐⇒ U−1xWyV−1x = Wxy ⇐⇒ UzWyVz = W(z−1)y .

Therefore, given (9), we have (2) if and only if we have (4). The other case is
similar. 2

(13.20). Lemma. Let N be a quotient group of K that additionally satisfies
(8). Then (2) holds for all x, y ∈ Q if and only if (3) holds for all x, y ∈ Q.

Proof. As (8) implies (9) we have

PxRxyLx = Ry ⇐⇒ L−1
x R−1

xy P
−1
x = R−1

y ⇐⇒ Lx−1Ry−1x−1Px−1 = Ry−1 .

Therefore the first relation in (2) holds for all x, y ∈ Q if and only if the first relation
in (3) holds for all x, y ∈ Q, and the other two cases are similar. 2

Proof of Theorem (13.17). By Proposition (13.16)(b) and Lemma (13.18), the
relations (9) hold under both (I) and (II). Therefore (I) and (II) are equivalent by
Lemma (13.19), Next (I) implies (III) by Proposition (13.16)(c), and (III) imples
(I) by Lemma (13.20). 2

(13.21). Lemma. Let N be a quotient group of K that additionally satisfies
(2) or (3). Then the equivalence relation

x ∼ y ⇐⇒ Rx = Ry , Lx = Ly , and Px = Py .

is a congruence on Q.

Proof. Assume that (2) holds in N , the case (3) being similar. Thus for each
W there are appropriate choices for U and V with UxWxyVx = Wx or, equivalently,
Wxy = U−1

x WyV
−1
x . Therefore when x1 ∼ x2 and y1 ∼ y2, we have

Wx1y1 = U−1
x1
Wy1V

−1
x1

= U−1
x2
Wy2V

−1
x2

= Wx2y2 .2
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(13.22). Remark. The lemma leads to a proof that in Theorem (13.17) we
could replace the relations (2) and (3) of (I) for KQ by any one of (2)-(5) together
with any one of the 64 variants of (8). Indeed, each of these variants has (9) (and
all its eight variants) as a consequence, therefore by Lemma (13.19) we only need
consider the variant together with (2) or (3). But then the lemma together with all
variants of (9) gives all variants of (8), in particular (8) itself. This and Lemma
(13.20) now show that the new pair is equivalent to the pair (2) and (8) of (III) and
so to (2) and (3) of (I).

13.4. Moufang loops

Most of Theorem (13.9) follows directly from Theorem (13.10) and material
from the previous section. What is new is the last assertion that, for the Moufang
loop Q, the maps x 7→ Wx are bijections. That came naturally for Doro, since he
designed his presentation with a certain image in mind, namely the multiplication
group Mlt(Q). Indeed the properties of the multiplication group such as those we
found in Proposition (13.16) provided the motivation for Doro’s presentation.

(13.23). Proposition. Let Q be a Moufang loop. Then the map given by

Rx 7→ R(x) , Lx 7→ L(x) , Px 7→ R(x)−1 L(x)−1

extends to a homomorphism from KQ onto Mlt(Q).

Proof. Doro used the properties of the translation maps corresponding to the
relations of Theorem (13.9) as motivation for his presentation. We instead verify
that the images of the relation sets

(1) R1 = L1 = P1 = 1;
(2) PxRxyLx = Ry; RxLxyPx = Ly; LxPxyRx = Py;
(3) LyRxyPy = Rx; PyLxyRy = Lx; RyPxyLy = Px.

of Theorem (13.10) are valid in Mlt(Q).
The translation maps R(1) and L(1) are the identity permutation of Q as is

P(1) = R(1)−1 L(1)−1. Thus the relations of (1) are taken to relations of Mlt(Q).
The relations of (2) are mapped to the three identities of Proposition (12.4)(a),
while those of (3) are mapped to the identities of Proposition (12.4)(b) (with x and
y switched). 2

Proof of Theorem (13.9). By Theorem (13.17), the relations (1), (4), and (5) of
Theorem (13.9) are equivalent to the relations (1), (2), and (3) of Theorem (13.10),
and so by that theorem they present KQ. Furthermore the additional relations (6)
and (7) are consequences of the relations of the previous sentence by Proposition
(13.16)(a,d). The action of IQ is that of Theorem (13.10) as is the form of the
generators.

It remains to prove bijectivity for the thee maps x 7→Wx. For an arbitrary loop
Q, the map R(x) takes 1 to x; so for distinct x and y in Q, the right translations
R(x) and R(y) are distinct permutations of Q. That is, the map x 7→ R(x) is
a bijection. By the proposition, for Moufang Q the bijection x 7→ R(x) factors
through the map x 7→ Rx, which is therefore also a bijection. The action of µ now
guarantees that all three of the maps x 7→Wx are bijections, as required.

A second proof of bijectivity comes from

x 7→ cx 7→ cxc1 = Rx , x 7→ ex 7→ e1ex = Lx , x 7→ rx 7→ rxr1 = Px
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being bijections by Theorem (11.3). 2

Doro’s argument [Dor78, p. 384] for bijectivity of the maps x 7→ Wx is mis-
leading. He focused on the maps P(x) = R(x)−1 L(x)−1 and ultimately asserted
that x 7→ Px is a bijection. As we have seen, this is true. But it is not as immediate
as the corresponding statement for x 7→ Rx (or x 7→ Lx), since there are Moufang
loops (for instance, elementary abelian 2-groups) for which the map x 7→ P(x) is
not a bijection even though x 7→ Px is.1

The next two results show that the bijectivity of the maps x 7→Wx in Theorem
(13.10) characterizes Q as a Moufang loop.

(13.24). Proposition. Let Q be a loop, and let KQ be the kernel of the
map πQ, as presented in Theorem (13.10). Let W ∈ {R,L, P}. Then W(xy)(zx) =
W(x(yz))x in KQ, for all x, y, z ∈ Q.

Proof. We only prove this for W = R, the other cases then following from the
action of µ. In our verification, we use freely the various parts of Proposition (13.16),
particularly Wx−1 = W−1

x . We also use various identities such as UzWzvVz = Wv,
sometimes in the form Wzv = Uz−1WvVz−1 .

R(xy)(zx) = P−1
xy RzxL

−1
xy

= Py−1x−1RzxLy−1x−1

= (LyPx−1Ry)Pz−1RxLz−1(RyLx−1Py)

= Rx(Rx−1LyPx−1)RyPz−1RxLz−1Ry(Lx−1PyRx−1)Rx

= RxLxyRyPz−1RxLz−1RyPxyRx

= RxPy−1(PyLxyRy)Pz−1RxLz−1(RyPxyLy)Ly−1Rx

= RxPy−1LxPz−1RxLz−1Px(Rz−1Rz)Ly−1Rx

= RxPy−1(LxPz−1Rx)(Lz−1PxRz−1)RzLy−1Rx

= RxPy−1Px−1z−1PzxRzLy−1Rx

= Rx(Py−1RzLy−1)Rx

= RxRyzRx

= R(x(yz))x 2

(13.25). Theorem. Let Q be a loop, and let KQ be the kernel of the map πQ,
as presented in Theorem (13.10). For x, y ∈ Q we have

Rx = Ry ⇐⇒ Lx = Ly ⇐⇒ Px = Py .

In this case we write x ∼ y. The equivalence relation ∼ is a congruence on the loop
Q, and Q/∼ is the largest Moufang quotient of Q.

Proof. The action of µ guarantees that for x, y ∈ Q we have

Rx = Ry ⇐⇒ Lx = Ly ⇐⇒ Px = Py .

Let ∼ be the associated equivalence relation. By Lemma (13.21) the relation ∼ is
in fact a congruence on Q. By Proposition (13.23) the largest Moufang quotient of

1Thanks go to Petr Vojtěchovský for pointing out the possible confusion.
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Q is a quotient of Q/∼. On the other hand, by Proposition (13.24) the quotient
Q/∼ is itself a Moufang loop. 2





Chapter 14
Normal Structure

A primary motivation for this work was the wish to formalize the relation-
ships between the normal structure of Moufang loops and of groups with triality,
particular simplicity in each class.

14.1. Simplicity

Recall from Chapter 2 that the subloop M of the loop Q is normal if there is
a loop homomorphism with kernel M and that the nonidentity loop Q is simple
if its only normal subloops are the identity and itself. Also, from Chapter 1, a
nonterminal object in a category is simple if every morphism from it is either monic
or trivial.

(14.1). Theorem. Let Q be a Moufang loop. The following are equivalent:

(1) Q is simple.
(2) Q is simple in Mouf.
(3) Q is simple in Mouf?.

Proof. (1) =⇒ (2): Let Q be simple and consider f ∈ HomMouf(Q,A). By
Lemma (2.5) there is a B and an isomorphism i ∈ HomMouf(A,B) with fi ∈
HomMouf?(Q,B). By simplicity of Q the kernel of fi is 1Q or Q. If ker fi = 1Q,
then g = fi is injective hence monic, and so f = gi−1 is also monic. If ker fi =
Q, then for the zero object O = {1} of Mouf?, we have fi = eo where {e} =
HomMouf?(Q,O) ⊆ HomMouf(Q,O) and {f} = HomMouf?(O,B) ⊆ HomMouf(O,B).
Thus f = eoi−1 factors through the terminal object O of Mouf.

(2) =⇒ (3): The category Mouf? is a subcategory of Mouf with the same object
class and same terminal objects. Monic morphisms in Mouf remain monic in Mouf?.
Thus an object that is simple in Mouf remains simple in Mouf?.

(3) =⇒ (1): Suppose Q is simple in Mouf?, and let f : Q −→M be a loop homo-
morphism. Then f ∈ HomMouf?(Q,M), so f is either trivial or monic. If f is trivial,
then it factors f = eo where {e} = HomMouf?(Q,O) and {o} = HomMouf?(O,M)
for O a zero object in Mouf?. Thus ker f = ker e = Q. On the other hand, if f is
monic, then it is injective by Theorem (8.4) and so ker f = 1Q. Therefore the only

105
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kernels of loop homomorphisms from Q are Q and 1Q, and Q is a simple Moufang
loop. 2

The group with triality (G,D, π) or (G,D, π, I) is terminal precisely when G is
isomorphic to Sym(3). We say that the group with triality (G,D, π) or (G,D, π, I)
with G 6' Sym(3) is triality quasisimple provided the only normal subgroups of G
properly contained in kerπ are the subgroups of Z(G). It is further triality simple
provided the only normal subgroup of G properly contained in kerπ is the identity;
that is, it is triality simple provided it is triality quasisimple and has trivial center.

(14.2). Theorem. A triality group is simple in TriGrp if and only if it is
triality quasisimple.

Proof. For the group (G,D, π) to be simple in TriGrp, all morphisms from
it are either monic or trivial. A morphism is trivial when it factors through a
terminal object, so as loop homomorphism it has image a copy of Sym(3) and
kernel equal to kerπ. By Proposition (6.2) a morphism is monic precisely when
as a loop homomorphism it has central kernel. Therefore nonterminal (G,D, π) is
simple in TriGrp if and only if all the normal subgroups of G contained properly in
kerπ are central; that is, when (G,D, π) is triality quasisimple. 2

(14.3). Theorem. Let (G,D, π, I) be a group with triality. The following are
equivalent:

(1) (G,D, π) is triality quasisimple.
(2) (G,D, π) is simple in TriGrp.
(3) (G,D, π, I) is triality quasisimple.
(4) (G,D, π, I) is simple in TriGrp?.
(5) (G,D, π)U is triality quasisimple.
(6) (G,D, π)U is simple in UTriGrp.
(7) (G,D, π, I)U? is triality quasisimple.
(8) (G,D, π, I)U? is simple in UTriGrp?.
(9) (GA, DA, πA) is triality simple.

(10) (GA, DA, πA) is simple in ATriGrp.
(11) (GA, DA, πA, IA) is triality simple.
(12) (GA, DA, πA, IA) is simple in ATriGrp?.

Proof. The previous theorem gives: (1)⇐⇒ (2). The remaining equivalences
follow from elementary observations:

(i) The definitions of triality quasisimplicity and simplicity for (G,D, π, I) make
no reference to I. Therefore (1)⇐⇒ (3), (5)⇐⇒ (7), (9)⇐⇒ (11).

(ii) By Lemma (4.12)(c),(e) triality quasisimplicity is an isogeny invariant, and
only the adjoint group has trivial center. Therefore (1)⇐⇒ (5), (1)⇐⇒ (9).

(iii) For the category C from {TriGrp,UTriGrp,ATriGrp} and an object (G,D, π) of
C that contains the line I, the forgetful functor between C? and C preserves
terminal objects—(G,D, π) is terminal if and only if G ' Sym(3) if and only
if (G,D, π, I) is terminal. Furthermore we have noted in Section 1.4 that

HomC((G,D, π), (G0, D0, π0))

is the disjoint union over the lines I0 of (G0, D0, π0) of the sets

HomC?((G,D, π, I), (G0, D0, π0, I0)) .
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By Propositions (6.2), (7.14), and (7.15) the monic morphisms in these sets
are those that induce injections of D into D0. Therefore the original set is
composed entirely of trivial morphisms (ones that factor through terminal
objects) and monic morphisms if and only if the the same is true of each of
the sets in the disjoint union. Thus (G,D, π) is simple in C if and only if
(G,D, π, I) is simple in C?. This gives (2)⇐⇒ (4), (6)⇐⇒ (8), (10)⇐⇒ (12).

(iv) So far we have three connected components under the relation ⇐⇒, namely
(6)⇐⇒ (8), (10)⇐⇒ (12), and the rest. To complete the connection and the
theorem we add two further equivalent statements:

(5.5) (G,D, π)U is simple in TriGrp.
(9.5) (GA, DA, πA) is simple in TriGrp.

Since we have already proven (1) ⇐⇒ (2) we have (5) ⇐⇒ (5.5) and
(9) ⇐⇒ (9.5) immediately. To show (5.5) ⇐⇒ (6) and (9.5) ⇐⇒ (10),
and thereby complete our proof of the theorem, we must observe that the ob-
jects (G,D, π) of UTriGrp and ATriGrp that are simple are exactly those that
are already simple within TriGrp. But this is clear since the terminal objects
of the three categories coincide, and by Propositions (6.2), (7.14), and (7.15)
the monic morphisms from (G,D, π) in each category are precisely those that
are injective on D. 2

We now have a categorical proof of one of Doro’s basic results.

(14.4). Theorem. (Doro [Dor78, Corollary 2.2]) The Moufang loop Q is
simple if and only if TAtp(Q) = GQ/Z(GQ) is triality simple.

Proof. By Theorem (14.1) the Moufang loop Q is simple as a loop if and only
if it is simple in Mouf?. Proposition (1.12) then says that this is the case if and
only if QG? is simple in UTriGrp?. By Theorem (14.3) this is true if and only if
TAtp(Q) = GQ/Z(GQ) is triality simple. 2

(14.5). Theorem. (Doro [Dor78], Nagy and Valsecchi [NVa04]) Let
(G,D, π, I) be triality simple. Set M = (G,D, π, I)M?. Then exactly one of:

(1) G ' (Z3 × Z3) o Z2 and M is a cyclic group of order 3.

(2) G 'Wp(Ã2) ' Z2
p o Sym(3), and M is a cyclic group of order p, a prime not

equal to 3.
(3) kerπ is a nonabelian simple group, and M is nonabelian, nonassociative, and

simple.
(4) G is isomorphic to the wreath product M o Sym(3) of Section 4.2.1, and M is

a nonabelian simple group,

Proof. We only sketch the proof. Set K = kerπ. Then either K is a finite
elementary abelian p-group (for some prime p) or K is the direct product of k ∈
{1, 2, 3, 6} copies of a nonabelian simple group H permuted transitively by I under
conjugation. (For finite G this is immediate as K is characteristically simple; for
arbitrary G this comes from elementary arguments—see [NVo03].)

If K is abelian, then by Proposition (4.8)(b) the triality simple group G is

Wp(Ã2)/Z(Wp(Ã2)) for some prime p. This and Lemma (4.9) give (1) and (2).
Doro gave short and elementary proofs that k = 6 cannot occur (also a conse-

quence of Proposition (4.8)(b) and that k = 3 leads to (4). The case k = 1 is then
(3).
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Doro also gave a complicated argument proving that k = 2 cannot occur for
finite nonabelian simple H. Later Nagy and Valsecchi gave an elementary proof
that k = 2 gives a contradiction for arbitrary nonabelian simple H. 2

The following elegant consequence may be well-known, but we have been unable
to find it in the literature. See [NVa04, Theorem 4.3] for the forward direction.

(14.6). Corollary. Let M be a Moufang loop. Then M is nonassociative
and simple if and only if Mlt(M) is nonabelian and simple.

Proof. For M a nonassociative simple Moufang loop, SAtp(M) (= kerπ)
is nonabelian simple by the previous two theorem. But Mlt(M) is an image of
SAtp(M) by Proposition (12.11).

For the converse, assume that H = Mlt(M) is a nonabelian simple group. By
Theorem (12.15) either H equals SAtp(M) or SAtp(M) contains the two normal
subgroups H1 = { (Id, h, h) | h ∈ H } and H2 = { (h, Id, h) | h ∈ H }, both isomor-
phic to H. But in that case [H1, H2] = { (Id, Id, h) | h ∈ H } is also isomorphic to
H within Atp(M), a clear contradiction.

We conclude that if Mlt(M) is nonabelian simple, then TAtp(M) is triality
simple. In the first two cases of the theorem M is an abelian group, so Mlt(M)
is also abelian by Proposition (12.1). In the last case of the theorem M itself is a
nonabelian simple group. But there Mlt(M) is isomorphic to M ×M , being the
product of the left-regular and right-regular permutation representations of M .

We are left with case (3) of the theorem, and M is a nonassociative simple
Moufang loop. 2

14.2. Short exact sequences

In many contexts a version of the fundamental First Isomorphism Theorem
reveals the image of a homomorphism as canonically isomorphic to a quotient by
its kernel. This is unavailable in arbitrary categories, but here we are able to use
kernel morphisms in Mouf? and TriGrp? effectively to relate short exact sequences
of Moufang loops and images of groups with triality.

(14.7). Theorem. Let

1 N Q M 1α δ

be a short exact sequence of Moufang loops. Then we have a short exact sequence
of groups

1 KN,Q GQ GM 1α′ δ′

where δ′ = δG? is a morphism of groups with triality that has kernel (as group

homomorphism) KN,Q = 〈KGQ
0 〉 = 〈KKQ

0 〉 for K0 = [KN,Q, IQ], a central quotient
of KN , the kernel of πN on GN .

Proof. Apply the functor G? to the given exact sequence in Mouf? to find
the following sequence in UTriGrp?:

Sym(3) GN GQ GM Sym(3) .α? δ?

Here the first morphism can be taken to be the injection of IN into GN and the
last to be projection onto IM .
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As the original loop sequence is exact, any two consecutive morphisms in it
have trivial composition. This is respected by G?. In particular, α?δ? is a trivial
morphism from GN to GM . The morphism α is injective hence monic in Mouf? by
Theorem (8.4), therefore α? is monic; and so at the group level its kernel is central
by Proposition (6.2). Similarly surjective δ is Z-surjective by Proposition (9.9),
thus δ? is Z-surjective hence surjective by Proposition (9.11). (See also Lemma
(11.2).)

The map α : N −→ Q is a kernel morphism for δ : Q −→M in Mouf? by Lemma
(2.10). Therefore α? : GN −→ GQ is a kernel morphism for δ? : GQ −→ GM in
UTriGrp?. That is, for every γ? : G −→ GQ with γ?δ? trivial, there is a unique
γ?α? : G −→ GN with γ? = γ?α?α

?:

G

GN GQ GM

γ?
γ?α?

α? δ?

Set δ′ = δ?, and let the short exact sequence of groups

1 KN,Q GQ GM 1α′ δ′

define the normal subgroup KN,Q of GQ. As δ? is a morphism, KN,Q ≤ kerπQ.

Set G0 = 〈IKN,QQ 〉, so that (G0, D0, π0, IQ) is a group with triality for D0 =
DQ ∩ G0 and π0 the restriction of πQ to G0. The injection γ : G0 −→ GQ is in

particular monic. As G0 = 〈IKN,QQ 〉 = [KN,Q, IQ]IQ and kerπ0 ≥ G0 ∩KN,Q, we

have kerπ0 = [KN,Q, IQ] = K0.
Consider the universal group with triality GU

0 and the corresponding map
γU : GU

0 −→ GQ, monic because its kernel is central in GU
0 . As γδ? is trivial, so is

γUδ?. Therefore as above there is a unique map β = γU
α? with γU = γU

α?α
? = βα?,

where, since γU is monic, its initial factor β is also monic. (See the exercise on page
3.)

GU
0

GN GQ GM

γU

β=γU
α?

α? δ?

Let G1 be the image of GN under α?. As α?δ? is trivial, the triality group G1 is
contained in G0. We let ι be the corresponding injection. Then we have most of
the diagram

GN

GU
1

GU
0

GN GQ GM

IdGN

(α?)U

(α?)UιUγU=α?

ιU

γU

β

α? δ?
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The diagonal (α?)UιUγU from GN to GQ takes IN to IQ. It also has KN in its
kernel, since γUδ? is trivial. Therefore in fact (α?)UιUγU is equal to α?. As α? is
a kernel morphism for δ?, uniqueness forces (α?)UιUβ from GN to GN to be the
identity morphism IdGN .

The identity IdGN = (α?)UιUβ is certainly surjective, so its final factor β is as
well. We have already noted that β is monic. Therefore by Proposition (9.11) and
Corollary (9.13) the morphism β is an isomorphism of the groups GU

0 and GN in
UTriGrp?.

If ζ is the natural covering map from GU
0 to G0, then β−1ζ is a covering map

from GN to G0. In particular kerπ0 = K0 is a central quotient of kerπN = KN , as
claimed.

As IQ normalizes K0 we have 〈KGQ
0 〉 = 〈KKQ

0 〉, so it remains to prove KN,Q =

〈KGQ
0 〉. By definition K0 = [KN,Q, IQ], so KN,Q contains the normal subgroup

K1 = 〈KGQ
0 〉 of GQ. For g ∈ GQ,

K1 ≥ Kg
0 = [KN,Q, IQ]g = [KN,Q, I

g
Q] .

Therefore K1 ≥ [KN,Q,GQ] and KN,Q/K1 is central in GQ /K1. As GQ is universal,
K1 = KN,Q by Lemma (4.12)(e), as desired. 2

We have immediately a version in Doro’s context.

(14.8). Corollary. Let

1 N Q M 1α δ

be a short exact sequence of Moufang loops. Then we have a short exact sequence
of groups

1 KN,Q KQ KM 1α′ δ′

where δ′ = δG? is a morphism of groups admitting the triality IQ that has kernel

(as group homomorphism) KN,Q = 〈KKQ
0 〉 for K0 = [KN,Q, IQ], a central quotient

of KN , the kernel of πN on GN . 2

Conversely, we have an expanded version of Doro’s [Dor78, Corollary 1.1].

(14.9). Theorem. Let (G,D, π) be a group with triality and K be a normal
subgroup that is contained in kerπ. Then there is a short exact sequence of Moufang
loops

1 N Q M 1α δ

and a related commutative diagram of groups

1 KN,Q GQ GM 1

1 K G H 1

α′

λ

δ′

χ µ

whose rows are exact and whose vertical maps have central kernels. Indeed, we may
take Q = GM? and M = HM? with χ and µ the associated covers by the universal
groups GQ = GM?G? and GM = HM?G?. The image of KN,Q under λ is [K,G].
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Proof. Let H = G/K, a group with triality. By Theorem (11.6) the universal
groups GU and HU are naturally isomorphic to the groups GM?G? and HM?G?.
We have

1 K G H 1

1 N Q M 1

1 KN,Q GQ GM 1

1 K G H 1

M? M?

α δ

G? G?

α′

λ
α′χ

δ′

χ µ

α′′ δ′′

Here χ and µ are the appropriate covers, and we may take the maps α, α′, and
α′′ to be injections. As α′δ′ is trivial, so is α′δ′µ = α′χδ′′. Therefore α′χ factors
through K as λα′′. As α′ is injective and χ has central kernel, so does λ.

It remains to prove Kλ
N,Q = [K,G]. We already know Kλ

N,Q ≤ [K,G], so we

must show λ takes KN,Q onto [K,G]. By Lemma (4.12)

[K,G] = 〈 de | d, e ∈ D, e ∈ Kd 〉 .

As χ is a cover, by Lemma (6.3) the map (dχ)χ = d describes a bijection (indeed
isogeny) between the elements dχ of DQ and the elements d of D. Suppose e ∈ Kd
so that de is one of the chosen generators of [K,G]. Then

1H = (de)α
′′δ′′ = (de)δ

′′
= dδ

′′
eδ
′′

= (dχχ)δ
′′
(eχχ)δ

′′
= dχδ

′′

χ eχδ
′′

χ = dδ
′µ
χ eδ

′µ
χ = (dδ

′

χ e
δ′

χ )µ.

That is, dδ
′

χ e
δ′

χ is in the kernel of µ and the two elements dδ
′

χ and eδ
′

χ of DM are
in the same coset of kerµ. As µ is a cover, its kernel is central in GM ; so by
Lemma (4.12)(e) we must have dδ

′

χ = eδ
′

χ . Therefore 1GM = dδ
′

χ e
δ′

χ = (dχeχ)δ
′
, and

dχeχ ∈ ker δ′ = KN,Q. Then

(dχeχ)λ = (dχeχ)λα
′′

= (dχeχ)α
′χ = (dχeχ)χ = dχχe

χ
χ = de .

Hence each of the chosen generators of [K,G] is in Kλ
N,Q, and the map λ takes

KN,Q onto [K,G] as desired. 2

14.3. Solvable Moufang loops

Following the standard definition for groups, a Moufang loop Q is solvable
[Gla68, p. 397] if it possesses a finite series of subloops

1 = Q0 ≤ · · · ≤ Qi ≤ Qi+1 ≤ · · · ≤ Qn = Q

in which each Qi is normal in Qi+1 with the quotient Qi+1/Qi an abelian group.1

(14.10). Theorem. Let Q be a Moufang loop whose universal group with trial-
ity GQ is solvable. Then Q is solvable of derived length at most k, the derived length
of the base group kerπQ/Z(GQ) = KQ/Z(GQ) of the adjoint group GQ/Z(GQ)..

1For arbitrary loops a stronger definition of solvability is more appropriate; for a thorough
discussion of this, see Stanovský and Vojtěchovský [SVo14].
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Proof. The proof is by induction on k. When k = 0 we have kerπQ =
Z(GQ) = 1, hence Q = 1 as needed.

Assume k ≥ 1 and let K be the preimage of the last term in the derived series
of KQ/Z(GQ). Consider the commutative diagram of Theorem (14.9):

1 KN,Q GQ GM 1

1 K GQ H 1

α′

λ

δ′

Id µ

associated with the short exact sequence of Moufang loops

1 N Q M 1α δ

for M = HM? and N the kernel of the loop homomorphism δ. Here µ is the
cover of H by GM , hence H/Z(H) and GM/Z(GM ) are isomorphic. In particular
kerπM/Z(GM ) has derived length less than k, so by induction M is solvable with
derived length at most k − 1.

As α′, Id, and the map from K to GQ are all injections, so is λ.
Following Theorem (14.7) where K0 = [KN,Q, IQ], the composition

KN K0 KN,Q Kα? ι λ

has central kernel. Extend this by IN and IQ, as appropriate, to

GN G0 KN,Q.IQ K.IQ
α? ι λ

where by the definition of K we have K ′ ≤ Z(GQ) and especially IQ centralizes K ′.
Then

GN G0 〈IKN,QQ 〉 〈IKQ 〉
α? λ

still has central kernel, so the adjoint group with triality GN/Z2(GN ) = GN/Z(GN )
(by Lemma (4.12)(e)) has abelian base group. Therefore by Theorem (12.15) the
multiplication group Mlt(N) is also an abelian group. But then by Proposition
(12.1) the Moufang loop N is also an abelian group. Therefore the Moufang loop
Q itself is solvable of derived length at most k = 1 + (k − 1), as required. 2

(14.11). Corollary. Let Q be a Moufang loop whose multiplication group is
solvable. Then Q is solvable.

Proof. This is an immediate consequence of Proposition (12.18) and Theorem
(14.10). 2

Vesanen [Ves96] proved the corollary for arbitrary loops that are finite. We
also have its converse for finite Moufang loops.

(14.12). Theorem. Let Q be a finite solvable Moufang loop. Then the groups
GQ and Mlt(Q) are solvable.

Proof. The proof is by induction on k, the derived length of Q. If k = 0 then
Q = 1, in which case GQ = IQ ' Sym(3) and Mlt(Q) = 1, both solvable.

Now assume k ≥ 1. Let N be a normal abelian subgroup of Q with M = Q/N
of derived length k − 1. Consider the associated short exact sequence of groups
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from Theorem (14.7):

1 KN,Q GQ GM 1α′ δ′

As M has derived length k − 1, GM is solvable by induction. Also KN,Q =

〈KGQ
0 〉 where K0 = [KN,Q, IQ] is a normal subgroup of KN,Q that is a central

quotient of kerπN . As N is an abelian group, by Proposition (12.1) the group
Mlt(N) is solvable (indeed abelian). Therefore by Proposition (12.18) GN and its
section K0 are both solvable. Now

KN,Q = 〈KGQ
0 〉 = 〈 [KN,Q, IQ]g | g ∈ GQ 〉 = 〈 [KN,Q, I

g
Q] | g ∈ GQ 〉 .

There are at most |Q|2 distinct conjugates IgQ in GQ, a finite number by assumption.
Therefore KN,Q is generated by finitely many GQ-conjugates of the solvable normal
subgroup K0 and so is solvable itself.

As GM and KN,Q are both solvable, GQ is solvable. Its section Mlt(Q) is then
also solvable; see again Proposition (12.18). 2





Chapter 15
Some Related Categories and Objects

15.1. 3-nets

In the early 20th Century Hilbert, Reidermeister, Thomsen, Moufang, Bol and
others [Hil00, Rei29, Tho29, Mou35, Bol37] studied quasigroups and loops in
the context of algebraic systems that might coordinatize geometries, in particular
3-nets, which are dual to Latin square designs. The algebraic properties of the
loops thus corresponded to certain geometric properties, in particular the closure
of certain geometric configurations. For instance, the projective planes that can
be coordinatized by a field are precisely those that satisfy Desargues’ Theorem
[VeY16].

A 3-net is a partial linear space that is dual to a Latin square design. That is,
a 3-net (S, P ) is a point set S together with a set P of subsets of S called lines—
the line set being partitioned P = PR ∪ PC ∪ PE into pairwise disjoint parallel
classes—and satisfying:

(i) every point l ∈ S is contained in exactly one line from each
parallel class PR, PC, and PE;

(ii) if p, q are two lines not in the same parallel class, then they
intersect at a unique point l ∈ S.

We thus see that a 3-net is the same as a Latin square design (as in Chapter
3) except that the roles of points and lines have been interchanged; that is, the two
concepts are dual to each other. Most of the early work in this area was done in
terms of nets; see [Bol37, Tho29].

We can thus easily define the dual category 3Net of 3-nets and have the follow-
ing.

(15.1). Theorem. The categories 3Net and LSD are isomorphic. 2

Bol [Bol37] considered the existence of certain automorphisms for nets and
related these to coordinatization of the net by a Moufang loop. This study was
revived by Funk and Nagy [FuN93] who gave the automorphisms in question the
name Bol reflections. In fact, they are precisely the net automorphisms dual to
central automorphisms of Latin square designs. Accordingly we have the category
BRNet of Bol reflection 3-nets, those 3-nets that admit all possible Bol reflections.
The category isomorphism thus restricts to the appropriate subcategories.

115
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(15.2). Theorem. The categories BRNet and CLSD are isomorphic. 2

It is often convenient to choose a particular point l ∈ S of a Bol net as origin.
The corresponding pointed categories are 3Net? and BRNet?.

(15.3). Theorem.

(a) The categories 3Net? and LSD? are isomorphic.
(b) The categories BRNet? and CLSD? are isomorphic. 2

15.2. Categories of conjugates

Many of the categories C that we have encountered can be meaningfully en-
larged to categories C+ with the same object class but additional morphisms.

The most natural is the category LSD+ enlarging LSD. If (P, S) and (P0, S0) are
two Latin square designs, thus objects of LSD and so also LSD+, then a morphism
ϕ of HomLSD+((P, S), (P0, S0)) is a map ϕ : P −→ P0 such that

` ∈ S =⇒ `ϕ ∈ S0 .

Recall that for such a ϕ to be an LSD-morphism it must additionally have three
parts (α, β, γ) for which

ϕ|PR = α : PR −→ PR
0 , ϕ|PC = β : PC −→ PC

0 , ϕ|PE = γ : PE −→ PE
0 .

As the fibers of (P, S) and (P0, S0) are their equivalence classes under noncollinear-
ity, an arbitrary ϕ must map the fiber set of (P, S) to that of (P0, S0), but in doing
so it may induce a nontrivial permutation on the label set {R,C,E}, whereas a
LSD-morphism is required to act trivially. For instance, taking the transpose of a
Latin square corresponds to an LSD+-isomorphism but not an LSD-morphism.

In particular, we see that AutLSD+(P, S) is the full automorphism group of the
Latin square design, whereas AutLSD(P, S) is a normal subgroup of index d, the
order of the subgroup of Sym(R,C,E) induced by the full automorphism group.
Indeed, LSD+ could be viewed as LSD with the isomorphism class of (P, S) enlarged
to contain 6/d of the LSD-classes. In particular, the isomorphism classes in CLSD
are left unchanged, although central automorphisms are now morphisms in CLSD+,
a full subcategory of LSD+.

Consider next the category TriGrp and the corresponding TriGrp+. Recall
that if (G,D, π) and (G0, D0, π0) are two groups with triality, then a morphism
f : (G,D, π) −→ (G0, D0, π0) is a group homomorphism f : G −→ G0 that addi-
tionally has Df ⊆ D0 and π = fπ0. This last condition says that the following
diagram commutes:

G G0

Sym(3) Sym(3)

f

π π0

IdSym(3)

In TriGrp+ a morphism between these two groups will be a group homomorphism
f : G −→ G0 that has Df ⊆ D0 and for which the following diagram commutes

G G0

Sym(3) Sym(3)

f

π π0

σf
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where σf may be an arbitrary automorphism of Sym(3). As was the case for CLSD+,
isomorphism classes are left unchanged since σ is an inner automorphism and can
always be induced by an element of G. (See related remarks on page 43 in the
context of isogeny.)

It remains to consider the various extensions of Qgp and its subcategories. A
morphism in Qgp+ from (Q, ·) to (R, ◦) is a triple of maps ϕ = (α1, α2, α3) from Q
to R together with a permutation σ ∈ Sym(3) such that

q1 · q2 = q3 =⇒ qα1σ

1σ ◦ q
α2σ

2σ = qα3σ

3σ ,

for q1, q2, q3 ∈ Q. It is easiest to think of this as a two-step process

(Q, ·) ϕ−→ (R, ?)
σ−→ (R, ◦) ,

where ϕ = (α1, α2, α3) is a homotopism from (Q, ·) to (R, ?) (and so a Qgp-
morphism) and the permutation σ is viewed as a special Qgp+-isomorphism given
by

r1 ? r2 = r3 ⇐⇒ r1σ ◦ r2σ = r3σ .

In this case, (R, ?) and (R, ◦) are called conjugates (or parastrophes) of each other.
We already saw a common example of conjugacy on page 21 in Section 3.1. If

σ = (1, 2)(3), then

r1 ? r2 = r3 ⇐⇒ r2 ◦ r1 = r3 ,

and (R, ?) and (R, ◦) are opposite quasigroups.

15.3. Groups enveloping triality

It has become relatively common [GrZ06, Mik93, NVo03] to weaken Doro’s
definition of a group K admitting the triality I by dropping the requirement that
[K, I] = K. This is not a serious change, since in any event [K, I, I] = [K, I] (see
Proposition (15.4)(c) below). Therefore this expanded idea of a group admitting
triality has Doro’s form at its heart.

In the context of our definition of a triality group (G,D, π) (or (G,D, π, I))
the corresponding change is to repeat definition (4.1) nearly as is, dropping only
the requirement that the conjugacy class D generates G. We will say that the
group E envelopes triality if it satisfies this weakened version of (4.1), and we
will write ((E,D, π)) or ((E,D, π, I)) as appropriate. In this event, the normal
subgroup G = 〈D〉 gives rise to groups with triality (G,D, π|G) and (G,D, π|G, I)
as before, since elements of D are conjugate via the various Sym(3) subgroups that
they generate. We say that ((E,D, π)) and ((E,D, π, I)) envelope the groups with
triality (G,D, π|G) and (G,D, π|G, I) or any triality groups isomorphic to them.
Furthermore, if M is a Moufang loop isomorphic to (G,D, π)M or (G,D, π, I)M?

(as appropriate), then we say that ((E,D, π)) and ((E,D, π, I)) envelope M .

(15.4). Proposition. Let ((E,D, πE)) be a group enveloping triality, and set
P = kerπE, G = 〈D〉, and π = πE |G.

(a) (G,D, π) is a group with triality; E = PG; and CE(D) = CP (D) = CE(G) is
a normal subgroup of E with G ∩ CE(D) = Z(G).

(b) πE = π|E is uniquely determined from P and (G,D, π) via (pg)πE = gπE = gπ

for p ∈ P and g ∈ G.
(c) For I a line of (G,D, π), we have E = P o I and kerπ = [P, I] = [P, I, I].
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Proof. All this is evident except for (c). We have kerπ = G ∩ P , hence
E = PG = P o I. As G = 〈IE〉 = 〈IP 〉 = [P, I] o I, we also have kerπ = [P, I].
Furthermore modulo its normal subgroup [P, I, I], G is a group with triality that
is a central extension of [P, I]/[P, I, I] by I ' Sym(3). Thus [P, I]/[P, I, I] is trivial
by Lemma (4.12), and [P, I] = [P, I, I]. 2

We now have the category ETriGrp whose object class consists of all groups
enveloping triality. A morphism f of HomETriGrp(((E,D, π)), ((E0, D0, π0))) is again
a group homomorphism f : E −→ E0 that additionally has Df ⊆ D0 and π = fπ0.
We similarly have the category ETriGrp? with objects ((E,D, π, I)) for I a line
of (〈D〉, D, π|〈D〉). A morphism from (E,D, π, I) to (E0, D0, π0, I0) additionally

satisfies If = I0.
There is virtue in these new definitions. If (G,D, π, I) is a group with triality,

and H is a subgroup of G that contains I, then H still might not be a group with
triality. On the other hand if ((E,D, π, I)) is a group enveloping triality and H
is a subgroup containing I, then ((H,D ∩H,π|H , I)) also envelopes triality. Thus
the new concept can be helpful inductively. On the other hand, we have lost
some control. If ((E,D, π)) is a group enveloping triality and A is any group, then
((A × E, {1A} ×D,π|A×E)) also envelopes triality. In particular, each group with
triality has arbitrarily large enveloping groups. Thus within ETriGrp there is no
obvious counterpart to the subcategory UTriGrp of TriGrp.

There is a counterpart to ATriGrp. We call the group ((E,D, π)) faithful if
CE(D) = 1. Let AETriGrp be the full subcategory of ETriGrp consisting of the
faithful groups enveloping triality. Then by Proposition (15.4) the intersection of
AETriGrp with TriGrp is precisely the adjoint subcategory ATriGrp. There is of
course a corresponding pointed category AETriGrp?.

Grishkov and Zavarnitsine [GrZ06] (following in part Mikheev [Mik93]) noted
the existence of faithful groups enveloping triality and possessing a “universal in-
jective” property:

(15.5). Theorem.

(a) For every adjoint group with triality (G,D, π) there is a faithful enveloping
group ((GAE, DAE, πAE)) with the property:

If ((E0, D0, π0)) faithfully envelopes (G,D, π) via the triality isomor-
phism f of (〈D0〉, D0, π0|〈D0〉) with (G,D, π), then f extends to a
morphism ϕ that is an injection of the faithful group ((E0, D0, π0))
into ((GAE, DAE, πAE)).

(b) For every adjoint group with triality (G,D, π, I) there is a faithful enveloping
group ((GAE, DAE, πAE, IAE)) with the property:

If ((E0, D0, π0, I0)) faithfully envelopes (G,D, π, I) via the triality iso-
morphism f of (〈D0〉, D0, π0|〈D0〉, I0) with (G,D, π, I), then f extends
to a morphism ϕ that is an injection of the group ((E0, D0, π0, I0)) into
((GAE, DAE, πAE, IAE)).

(c) In (a) and (b) we may take GAE to be Aut((G,D, π)C), the full automorphism
group of the Latin square design (G,D, π)C associated with (G,D, π). In this

case DAE = D is the class of central automorphisms, πAE = π|GAE

, IAE = I,
and PAE = AutLSD((G,D, π)C).
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Proof. The first two parts follow from the third. Because of the definition of
the functor C, each transposition d of D plays two roles. It is an element of P(G,D,π),
the point set of (G,D, π)C, but it also acts on D = P(G,D,π) by conjugation as the
central automorphism of (G,D, π)C with center the point d.

Suppose for ((E0, D0, π0, I0)) with G0 = 〈D0〉 there is an isomorphism f of
(G0, D0, π0|〈D0〉, I0) with (G,D, π, I). Then for each g ∈ E0 the map gϕ : d 7→
df
−1gf defines an action of g on D = DAE = P(G,D,π). If d and e are in D with

〈d, e〉 a line of (G,D, π, I), then 〈d, e〉gϕ = 〈dgϕ , egϕ〉 is also a line of (G,D, π, I),

because 〈df−1

, ef
−1〉 and 〈df−1g, ef

−1g〉 are lines of (G0, D0, π0|〈D0〉, I0). Therefore
gϕ takes lines of (G,D, π)C to lines and so is an automorphism of the Latin square
design.

The map ϕ : E −→ Aut((G,D, π)C) given by g 7→ gϕ is then easily a group
homomorphism with Pϕ ≤ AutLSD((G,D, π)C). If gϕ = hϕ, the element (gh−1)ϕ

is trivial on D, and hence (df
−1

)gh
−1

= df
−1

for all d ∈ D. Thus, as f is a bijection,
gh−1 acts trivially by conjugation on D0. That is, gh−1 ∈ CE0

(D0), a trivial group
as ((E0, D0, π0, I0)) is faithful. We conclude that ϕ is an injection.

For each y ∈ G0, x ∈ D0, and xf = a ∈ D,

ay
f

= (xf )y
f

= (xy)f = ((af
−1

)y)f = af
−1yf = ay

ϕ

.

Therefore ϕ|〈D0〉 = f , and ϕ extends f to all of E0. In particular Dϕ
0 = D = DAE,

the class of central automorphisms, and Iϕ0 = If0 = I = IAE (as in (b)).
To complete the proof that ϕ is a morphism, we must show π0 = ϕπAE, knowing

that π0|G0
= fπ. First, for p ∈ P0 = kerπ0 and a ∈ D,

(ap
ϕ

)π = (af
−1pf )π = (af

−1p)fπ = (af
−1p)π0 = ((af

−1

)p)π0 = (af
−1

)π0 = aπ .

That is, Pϕ0 ≤ PAE = kerπAE. Thus for x = pg ∈ E0 with p ∈ P0 and g ∈ G0,

xϕπ
AE

= (pg)ϕπ
AE

= (pϕgϕ)π
AE

= (gϕ)π
AE

= (gf )π
AE

= gfπ = gπ0 = (pg)π0 = xπ0 ,

as desired. 2

Here in the statement “extends” and “injection” are not categorical concepts
(although using arguments similar to ones from earlier chapters we could render
them so).

The work of Grishkov and Zavarnitsine [GrZ06] is phrased in terms of the
expanded version of Doro’s groups admitting triality. Accordingly, if ((E,D, π, I)) is
in ETriGrp?, then we construct the object (P, I, ιI) of the isomorphic category EDoro
with P = kerπ and ιI = π|I . We also have the isomorphic faithful subcategories
AETriGrp? and AEDoro. The corresponding faithful and universally injective object
(PAE, IAE, ιAE

IAE), discussed by Grishkov and Zavarnitsine [GrZ06], then has PAE =

AutLSD((G,D, π)C), the group of LSD-automorphisms of (G,D, π)C, and ιAE
IAE =

πAE|IAE . If (G,D, π)M (isomorphic to (G,D, π)CS) is the Moufang loop M , then
the universal faithful enveloping kernel PAE is in turn isomorphic to the autotopism
group of M , Atp(M) = AutLoop(M). See Section 3.2 above and also [GrZ06,
Hal10].

15.4. Tits’ symmetric T -geometries

This section is based upon §§3-4 of [Tit58]. A T -geometry is a tripartite graph
T with nonempty parts T 1, T 2, T 3 and satisfying, for {i, j, k} = {1, 2, 3}:
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for every nonadjacent pair pi ∈ T i and pj ∈ T j, there is a unique
pk ∈ T k that is adjacent to both pi and pj.

Incidence of pi and pj will be written as pi ∼ pj .
In particular a T -geometry is connected of diameter at most 3. There are many

examples.

(15.6). Example. (Gated T -geometries) Let U be a tripartite graph with
parts U1, U2, and U3 and having the property:

if pi ∼ pj ∼ pk, for pi ∈ Ui, pj ∈ Uj, pk ∈ Uk and {i, j, k} =
{1, 2, 3}, then pi ∼ pk.

This is the case precisely when any connected component that meets each Ul non-
trivially is complete.

For each i let T i = Ui ∪ {∞i}, where ∞i is a new vertex, a “gate.” For
{i, j, k} = {1, 2, 3} let the gate ∞i be adjacent to every vertex of T j and T k. The
tripartite graph T = T 1 ] T 2 ] T 3 is then a T -geometry.

In particular any complete tripartite graph Km,n,p is a T -geometry [Tit58, §4.1].

(15.7). Example. The 6-cycle C6 is a T -geometry, where the T i are the vari-
ous antipodal pairs of vertices.

Among the above examples of T -geometries, the complete tripartite graphs
Km,m,m and the cycle C6 have large automorphism groups.

Specifically, consider the subgroup Sym(3) of Aut(C6) whose three elements of
order 2 are the reflections of the 6-cycle that fix none of its vertices. If a is one
such element, then a fixes T i, switches T j and T k (for an appropriate numbering
of the three parts of C6), and has the following three properties:

(i) for all pj ∈ T j, pj and paj are adjacent;

(ii) if pi ∈ T i is adjacent simultaneously to pj (∈ T j) and paj (∈ T k), then pai = pi;

(iii) a2 = 1.

Of course for C6, the second property holds trivially.
Similarly, consider the complete graph Km,m,m. Here the wreath product

Sym(m)
3oSym(3) acts on the associated T -geometry with each involution a of the

wreathing quotient Sym(3) having the three properties above. In this example, the
first property is essentially trivial but the second is very strong, saying that a fixes
each vertex of the part it leaves invariant.

We call an automorphism a of the T -geometry T acting as in (i)-(iii) above a
symmetry of T . We denote by Di the set of symmetries of T that leave part T i
fixed and switch T j and T k. Further set ∆ = D1∪D2∪D3. In Aut(T ) a conjugate
of a symmetry is again a symmetry, so ∆ is a normal set of elements of order 2.

The automorphisms of Di induce the permutation (i)(j, k) on the parts of T .
Tits [Tit58, §3.2] calls T a symmetric T -geometry provided all permutations of
{1, 2, 3} are induced by Aut(T ). Thus C6 and Km,m,m are symmetric.

We next have Tits’ “Fundamental Lemma” [Tit58, §3.3]:

(15.8). Lemma. Let {i, j, k} = {1, 2, 3}. If a ∈ Di and b ∈ Dj, then

(a) aba = bab ∈ Dk;
(b) (ab)3 = 1.
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Proof. As a conjugate of a symmetry is a symmetry, both a−1ba = aba and
bab are in Dk, inducing the permutation (k)(i, j). It remains to prove

1 = (aba)(bab) = (ab)3 .

First let p ∈ T k. Then p ∼ pb by (i), hence pab ∼ pbab. Similarly pba ∼
(pba)b = pbab as pba ∈ T i. That is,

pab ∼ pbab ∼ pba ,

and by symmetry
pba ∼ paba ∼ pab .

If pab 6∼ pba, then by the defining axiom for T -spaces pbab = paba and p(ab)3 = p.
On the other hand, if pab ∼ pba this would combine with pab ∼ pbab = (pba)b

(from above) to give pab = (pab)b = pa by (ii). That is, paba = p and by symmetry

pbab = p ; again pbab = paba and p(ab)3 = p. Therefore for p ∈ T k we always have

p(ab)3 = p.
This in turn implies that

(pab)(ab)3 = p(ab)4 = (p(ab)3)ab = pab

and
(p(ab)2)(ab)3 = p(ab)5 = (p(ab)3)(ab)2 = p(ab)2 .

We conclude that (ab)3 is trivial on T k and additionally on (T k)ab ∪ (T k)(ab)2 =
T i ∪ T j . That is, (ab)3 = 1, as desired. 2

(15.9). Corollary. Let H ≤ Aut(T ) with D = H ∩∆ meeting at least two
of D1, D2, and D3. Then T is symmetric, and (G,D, π) is a group with triality,
where G = 〈D〉 and π takes each symmetry of Di to the permutation (i)(j, k). 2

The consequences of the previous lemma and corollary for T = Km,m,m, where

the full automorphism group is the wreath product Aut(T ) = Sym(m)
3 o Sym(3),

were detailed by Tits [Tit58, §4.1] and later (and independently) rediscovered by
Doro [Dor78] and Zara [Zar85]. This is the case n = 3 of Theorem (4.6) above.

While symmetric T -geometries give rise to groups with triality, the converse
seems not to hold in general. For many groups with triality there are no obvious T -
geometries upon which they act symmetrically. Nevertheless this approach gives a
nice proof in Theorem (18.13) below that Cartan’s triality group PΩ+

8 (F )oSym(3)
is a group with triality in our sense.

Tits has a second paper [Tit59] also devoted to triality. Although that paper is
probably more famous than [Tit58], it is less central here. It focuses on identifying
all conjugacy classes of elements of order 3 in the outer automorphism groups of
orthogonal groups of dimension 8, not just the special class that we study here.

15.5. Latin chamber systems covered by buildings

The work in this section is motivated by a result of Meierfrankenfeld, Stroth,
and Weiss [MSW13].

Let ∆ = (V,A, ϕ) be a graph with vertex set V and edge set A, additionally
provided with an edge-coloring ϕ : A −→ I.

The graph ∆ is a chamber system provided that, for each color i ∈ I, the
subgraph with vertex set V and edge set ϕ−1(i) is a disjoint union of complete
subgraphs containing at least two vertices each. The connected components of
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these monochromatic subgraphs are the panels of the chamber system. Chamber
systems were introduced by Tits in the fundamental paper [Tit81].

The vertices of the graph are the chambers of the chamber system. A gallery
is a path c0, c1, . . . , cd in the chamber system. The gallery is simple if cj 6= cj+1 for
0 ≤ j < d, in which case d is its length. The type of a gallery is the corresponding
sequence of edge colors ϕ(c0c1), ϕ(c1c2), . . . , ϕ(cjcj+1), . . . , ϕ(cd−1cd).

The number of colors is the rank of the chamber system, and a chamber system
of rank 3 will be called, following [MSW13], a Latin chamber system provided:

any two panels of different colors intersect in a unique chamber.

The color set I will be taken to be {R,C,E}.
We have immediately

(15.10). Lemma.

(a) If (V,A, ϕ) is a Latin chamber system, then (V,N) is a 3-net, where the line
set N is the set of panels and two lines are parallel when they have the same
color.

(b) If (S, P ) is a 3-net, then (S,A, ϕ) is a Latin chamber system, where the edges
of A are given by collinearity in the 3-net, an edge receiving as color the name
of the parallel class of the unique line containing it. 2

The lemma actually describes an isomorphism between the categories 3Net of
3-nets and LCS of Latin chamber systems.

Latin chamber systems occur in [MSW13] as special sorts of chamber systems
with Coxeter diagram A1×A1×A1. A basic question to ask whenever considering
a chamber system with Coxeter diagram is whether or not its universal 2-cover is
a building. Proposition 4.2 of [MSW13] effectively states:

(15.11). Theorem. For a Latin chamber system, the following two statements
are equivalent:

(1) its universal 2-cover is a building;
(2) every loop that coordinatizes it, as 3-net, is a group.

The proof in [MSW13] replaces (1) with the equivalent condition:

(R) whenever two simple galleries of the same reduced type are
homotopic, they coincide.

The equivalence of (1) and (R) for chamber systems with Coxeter diagrams is
Theorem 3 of [Tit81].

The diameter of a Latin chamber system is two. If a pair of galleries share a
panel, then their distance is at most one. If they do not, then any panel on one
intersects a panel on the other, and a minimal length gallery connecting the two
has length two.

In a chamber system with Coxeter diagram, galleries of reduced type are gener-
alizations of minimal galleries. The Coxeter group W with diagram A1 ×A1 ×A1

is elementary abelian of order 8 with presentation

〈R,C,E | R2 = C2 = E2 = 1 , RC = CR, RE = ER, CE = EC 〉 .
The reduced types in this case are the words in the alphabet {R,C,E} that mini-
mally represent elements of the Coxeter group W , that is, that contain no repeated
letter. Thus simple galleries of reduced type have length at most three. The mini-
mal galleries are those with reduced type of length at most two.
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The empty type (word) of length 0 corresponds to the identity element of the
Coxeter group and the length 0 gallery from any chamber to itself. The types of
length 1 are the generators R,C,E of the Coxeter group, and a gallery with one of
these types moves from one chamber of a panel to another.

The six types of length two come in three pairs, corresponding to relations
in the Coxeter group: RC = CR, RE = ER, CE = EC. In a Latin chamber
system, for the gallery c0, c1, c2 of one of these types MN there is a corresponding
and uniquely determined gallery c0, c

′
1, c2 with the same end chambers but of type

NM . For example, if we think of the chambers c0 and c2 as two cells of a Latin
square in different rows and different columns, then we can get from c0 to c2 via
c1, the cell in the row of c0 that is also in the column of c2; this is a gallery of type
RC. But there is also a unique gallery of type CR connecting c0 and c2, namely,
the gallery that travels by way of c′1, the cell in the same column as c0 that is also
in the same row as c2.

Let
c0 −→ · · · cj−1

M−→ cj
N−→ cj+1 · · · −→ cd

be an arbitrary simple gallery whose subgallery cj−1, cj , cj+1 has type MN . The
passage from this gallery to the corresponding gallery

c0 −→ · · · cj−1
N−→ c′j

M−→ cj+1 · · · −→ cd

is called an elementary homotopy. Two galleries are homotopic1 if it is possible to
pass from one to the other by a finite number of elementary homotopies. Homotopy
is then an equivalence relation on the set of all simple galleries. As elementary ho-
motopies only affect chambers in the interior of the gallery, two homotopic galleries
must have the same initial and terminal chambers.

The homotopy class of a gallery of length 0 or 1 contains only that gallery.
The discussion above shows that in Latin chamber systems, the homotopy class of
a gallery of type MN contains only two galleries—the original and the gallery of
type NM that results from an elementary homotopy—since the only elementary
homotopy available for the second gallery is the move back to the first.

Therefore in a Latin chamber system, two simple and homotopic galleries of the
same reduced type of length at most two are in fact the same. That is, condition
(R) is satisfied for the minimal galleries. A proof of Theorem (15.11) will thus
depend upon the analysis of reduced galleries of length three.

1The terminology here should not be confused with the similar sounding but unrelated con-
cept of ‘homotopism’ introduced in Chapter 2.
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Proof of Theorem (15.11).

We shall show that condition (R) is equivalent to the Reidermeister Quadrangle
Condition (QC) of Section 3.4 for the associated 3-net and Latin square. Then
Theorem (3.14) proves the theorem.

Recall from page 25 the Quadrangle Condition, which says that, whenever we
encounter the following pattern in a Latin square, we must have 4 = 5. Theorem
(3.14) states that this is equivalent to the Latin square being the multiplication
table of a group.

u v w x
. . .

. . .
. . .

. . .
. . .

. . .

a . . . 1 . . . 2 . . . . . . . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

b . . . 3 . . . 4 . . . . . . . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

c . . . . . . . . . . . . . . . . . . . . . 1 . . . 2 . . .
. . .

. . .
. . .

. . .
. . .

. . .

d . . . . . . . . . . . . . . . . . . . . . 3 . . . 5 . . .
. . .

. . .
. . .

. . .
. . .

. . .

The Latin square is visually a good representation of the associated 3-net and Latin
chamber system. The cells of Latin square correspond to the points of the 3-net and
to the chambers of the Latin chamber system. The various rows then constitute the
lines of the parallel class labelled R and also the panels with color R. The columns
give the parallel class C and the panels colored C. Finally the entries in the cells
identify the lines of the diagonal parallel class E and the panels colored E.

In aid of our proof we add further labels to our Latin square, letting z be the
column with entry ebz = 5, then 6 the entry eaz, and finally f the row with efx = 6:

u v z w x
. . .

. . .
. . .

. . .
. . .

. . .

a . . . 1 . . . 2 . . . 6 . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

b . . . 3 . . . 4 . . . 5 . . . . . . . . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

f . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 . . .
. . .

. . .
. . .

. . .
. . .

. . .

c . . . . . . . . . . . . . . . . . . . . . 1 . . . 2 . . .
. . .

. . .
. . .

. . .
. . .

. . .

d . . . . . . . . . . . . . . . . . . . . . 3 . . . 5 . . .
. . .

. . .
. . .

. . .
. . .

. . .
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The cells of the Latin square, hence points of the 3-net and chambers of the Latin
chamber system, are identified by triples (r, c, e), where r is the row index, c is the
column index, and e is the entry.

We consider a sequence of elementary homotopies starting with an appropriate
gallery of type REC:

(a, u, 1) (a, v, 2) (c, x, 2) (d, x, 5)

(a, u, 1) (c, w, 1) (c, x, 2) (d, x, 5)

(a, u, 1) (c, w, 1) (d,w, 3) (d, x, 5)

(a, u, 1) (b, u, 3) (d,w, 3) (d, x, 5)

(a, u, 1) (b, u, 3) (b, z, 5) (d, x, 5)

(a, u, 1) (a, z, 6) (b, z, 5) (d, x, 5)

(a, u, 1) (a, z, 6) (f, x, 6) (d, x, 5)

R E C

E R C

E C R

C E R

C R E

R C E

R E C

The first and last are homotopic, simple galleries of reduced type REC from
the chamber (a, u, 1) to (d, x, 5). If we assume condition (R) then they must be
equal. In that case (a, v, 2) = (a, z, 6), which gives v = z and 2 = 6. (Also
(c, x, 2) = (f, x, 6) hence c = f .) Therefore (b, v, 4) = (b, z, 4) = (b, z, 5), and
we conclude that 4 = 5. This shows that the condition (R) indeed implies the
Reidermeister Quadrangle Condition (QC).

Conversely, if we assume (QC), then we must have 4 = 5, hence in turn v = z,
2 = 6, and f = c. Thus the eight cells labelled in the Latin square form the eight
corners of a cube in the 3-net and chamber system. (It is no coincidence that the
cube is exactly the thin chamber system corresponding to the Coxeter diagram
A1 ×A1 ×A1.)

Consider a gallery with initial chamber (a, u, 1) and terminal chamber (d, x, 4) =
(d, x, 5) and having as type one of the six permutations of REC. Any elementary
homotopy leaves us with a gallery all of whose chambers come from the eight of the
cube appearing in the (QC) configuration. That is, we cannot escape this cube
using elementary homotopies. But within it, there is a unique gallery with these
end chambers and having each of the six possible types. This together with the
remarks preceding this proof on minimal galleries shows that (QC) implies (R),
as desired. 2
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Chapter 16
An introduction to concrete triality

There are classical and well-studied relationships among duality of finite di-
mensional vector spaces, order 2 outer automorphisms of the general linear groups
(Lie type An), and algebras with involution.

This chapter is an introduction to Part 4, which is devoted to discussion of
the more specialized relationships among Study’s triality of hyperbolic orthogonal
8-space, Cartan’s order 3 outer automorphisms of orthogonal groups (Lie type D4),
and Moufang’s alternative algebras, such as the octonions of Cayley and Graves
and the split octonions of Zorn. This we have termed classical triality as the topic
is now over a hundred years old. An alternative would be concrete triality, as a
contrast to the abstract triality of Chapter 4.

16.1. Study’s triality

Quadratic forms are meant to model squared-length in Euclidean space. Thus
the map q : V −→ F is a quadratic form on the finite dimensional F -space V
provided

q(αx) = α2q(x) ,

for all α ∈ F and x ∈ V , and the associated form h : V × V −→ F

h(x, y) = q(x+ y)− q(x)− q(y)

is bilinear. An important and motivating example is the vector space Mat2(F ) of
2× 2 matrices over F with q the determinant function.

For W ⊆ V , we define the F -subspace W⊥ = {x ∈ V |h(x,w) = 0, w ∈ W }.
The form q is nondegenerate if V ⊥ = 0. At the other extreme, a subspace is singular
if the restriction of q (and so h) to S is identically 0. In nondegenerate (V, q), the
largest dimension a singular subspace can have is dimV/2. If nondegenerate V has
a singular subspace of exactly this dimension, then (V, q) is a hyperbolic space or
split, Mat2(F ) again providing an example.

Study [Stu12, Stu13] noticed a fascinating property of (real) hyperbolic 8-
space. Let T be the graph whose vertices are the singular 1-spaces and singular
4-spaces. A singular 1-space is adjacent in T to each singular 4-space containing it
and to no other 1-spaces. Two singular 4-spaces are adjacent if their intersection
has dimension 3.
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Study observed (of course, in other terms) that this graph is tripartite (one
part consisting of all the 1-spaces) and that it admits an automorphism of order
3 that permutes the three parts of the graph transitively. This is Study’s triality,
valid over arbitrary fields F .

16.2. Cartan’s triality

Cartan [Car25], motivated by Weinstein’s calculation [Wei23] of the auto-
morphism group of GLn(R), discussed the automorphism groups of arbitrary Lie
groups. He observed that automorphisms are linear in nature unless related to
nontrivial graph automorphisms of the associated Dynkin diagram. (Recall that
Aut(R) = 1.) This brought him to the diagrams Al with l ≥ 2, Dl with l ≥ 4,
and E6. The first case is that handled by Weinstein with nontrivial graph auto-
morphisms induced by correlations of the underlying space, the transpose-inverse
giving an example. Similarly for E6 the outer automorphisms are induced by cor-
relations of the 27-space on which the group acts, preserving a cubic form. For Dl

with l ≥ 5, the nontrivial graph automorphism group has order 2 and is induced
by orthogonal reflections.

This leaves D4. According to Cartan, “Ce cas est le plus interssant.” The
automorphism group of the D4 graph is Sym(3), with orthogonal reflections again
inducing an element of order 2. But Cartan also constructed automorphisms of
D4(R) = PΩ+

8 (R) inducing graph automorphisms of order 3.
In particular, Cartan discussed (rediscovered?) Study’s geometric observation

(without reference) and introduced the term “triality” to describe it (see page iii).
As PΩ+

8 (R) certainly acts on Study’s graph T , the automorphism group of that
graph contains Cartan’s triality group PΩ+

8 (R)oSym(3), which also generalizes to
arbitrary fields F .

16.3. Composition algebras and the octonions

An F -algebra A is a vector space over F that admits a bilinear (but not neces-
sarily associative) multiplication. A composition algebra is an algebra with identity
possessing a nondegenerate quadratic form q admitting composition, which is to
say that

q(mn) = q(m)q(n)

for all m,n ∈ A. In a composition algebra, an element is a unit if and only if q(m)
is nonzero. The units form a loop, and those units u with norm q(u) = 1 give a
normal subloop, as do the scalars. Composition algebras are alternative algebras,
and so their loops of units are Moufang loops.

In the earlier parts of this monograph, we used geometry (central Latin square
designs) to bridge the gap between Moufang loops (algebra) and groups with tri-
ality. In this part, things go a little differently. We use composition algebras,
particularly the split octonions, to connect Study’s geometric triality and Cartan’s
group theoretic triality. Both Study [Stu12, Stu13] and Cartan [Car25] make use
of 8-dimensional algebras, Cartan explicitly referring to Cayley algebras.

Composition algebras of dimension 8 are the Cayley or octonion algebras, which
are of particular interest here. Historically, the first such algebra was that of the
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Cayley-Graves compact real octonions1 [SpV00, p. 23]. For us, the most promi-
nent examples will instead be the split octonions (defined over arbitrary fields), as
exemplified by Zorn’s vector matrices [Zor31]. The Cayley-Graves octonions and
the real split octonions are the two real forms of the complex octonions, which must
be split.

16.4. Freudenthal’s triality

The trialities of Study and Cartan are largely concerned with hyperbolic space;
that is, with the split octonions. A version of algebraic triality that goes back at
least to the famous 1951 Utrecht notes of Freudenthal (finally published in 1985
[Fre51, Vel85]) has the advantage of speaking to all octonion algebras O simulta-
neously.

In Chapter 20 we study Freudenthal’s version, which states that for every sim-
ilarlity g from the general orthogonal group GO(O) there are companions h, k ∈
GO(O) such that, either

xhyk = (xy)g for all x, y ∈ O
or

xhyk = (yx)g for all x, y ∈ O .
Consideration of this version leads to an elementary presentation of the spinor norm
and the associated spin group in the special case of orthogonal spaces that support
octonion algebras.

16.5. Moufang loops from octonion algebras

The study of Moufang loops began with the study of alternative algebras, of
which octonion algebras provide the basic nonassociative examples.

Moufang [Mou33] and M. Hall [Hll43, Hll49] proved that projective planes
in which the Little Theorem of Desargues holds are precisely those coordinatized by
alternative division algebras. Moufang [Mou35] then studied arbitrary alternative
rings, proving among other things that they satisfy the identical relation

(αβ)(γα) = (α((βγ)α)

which we now know as the Moufang identity.
In [Mou35] Moufang initiated the subject of Moufang loops, which she called

“quasigroups,” proving her remarkable theorem that three elements of a Moufang
loop that associate in any order must generate an associative subloop—a group.

In our final Chapter 21 we study the Moufang loops that arise from the unit
loops in octonion algebras. All known simple nonassociative Moufang loops occur
as sections of such unit loops. Of special interest are the Paige loops [Pai56], which
come from the split octonions. By a theorem of Liebeck [Lie87], following on from
Doro’s original work [Dor78], every finite, nonassociative, simple Moufang loop is
a Paige loop.

1In situations such as this, the word “compact” does not refer to algebra itself but to its
automorphism group, which is compact since the invariant form is positive definite.





Chapter 17
Orthogonal Spaces and Groups

Classical, concrete triality lives in the realm of orthogonal 8-space and the
groups and algebras associated with it.

17.1. Orthogonal geometry

Throughout this chapter F will be a commutative field and V will be a finite
dimensional vector space over F . For any subset W of V , we let 〈W 〉 ≤ V be the
F -subspace of V spanned by W .

Let q : V −→ F be a quadratic form on the F -space V . That is,

q(αx) = α2q(x) ,

for all α ∈ F and x ∈ V , and the associated form h = hq : V × V −→ F , given by

h(x, y) = q(x+ y)− q(x)− q(y) ,

is bilinear (and symmetric). For any subspace W of V , the restriction of q to W
is a quadratic form on W . We call (V, q) an orthogonal space or a quadratic space.
The associated bilinear form hq will typically be abbreviated to h.

Always h(x, x) = 2q(x). So in characteristic other than 2, the bilinear form h
determines q. That is not the case in characteristic 2 where h(x, x) is always 0: h
is a symplectic form.

If K is an extension of F , then q extends naturally to a quadratic form q|K on
the tensor product K ⊗F V = V |K . Indeed for any totally ordered set (I,<) and
basis I = {xi | i ∈ I } of the E-space W , any map qI : I −→ E and Gram matrix
{h(xi, xj) ∈ E | i < j } extends by “linearity” to a unique quadratic form qW on
W .

For W ⊆ V , we let W⊥ = {x ∈ V |h(x,w) = 0, w ∈W }, an F -subspace of V .
The form q is nondegenerate if V ⊥ = 0.

(17.1). Lemma. Let q be a quadratic form on the finite dimensional F -space
V with associated bilinear form h.

(a) For each x ∈ V , let λx : V −→ F be given by yλx = h(x, y). Then λ : V −→ V ∗

given by x 7→ λx is an homomorphism of F -vector spaces. It is an isomorphism
if and only if (V, q) is nondegenerate.
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(b) If (V, q) is nondegenerate then dimF U + dimF U
⊥ = dimF V for each subspace

U .
(c) If (V, q) is nondegenerate and U ∩ U⊥ = 0, then V = U ⊕ U⊥ (which we may

write as U ⊥ U⊥).
(d) (V, q) is nondegenerate if and only if (K ⊗F V, q|K) is nondegenerate.

Proof. The first part is routine, given the definitions. The rest then follows
directly. 2

A subset S of V is singular (or sometimes even totally singular) if the restriction
of q to S is identically 0. If U is a singular subspace, then q induces a quadratic
form on the quotient space U⊥/U , nondegenerate if (V, q) is nondegenerate.

A vector that is not singular is nonsingular, and a space (V, q) in which all
nonzero vectors are nonsingular is an asingular space.

Let (V, qV ) and (W, qW ) be quadratic spaces over F . An isometry from (V, qV )
to (W, qW ) is an invertible g ∈ HomF (V,W ) with

qW (vg) = qV (v) , for all v ∈ V .

Thus two quadratic F -spaces are essentially the same precisely when they are iso-
metric.

One dimensional quadratic spaces Fx are easy to describe: for all y = αx ∈ Fx
we have q(y) = dα2 for the constant d = q(x). (Characteristic 2 quadratic 1-spaces
are always degenerate.) The structure of 2-dimensional spaces is crucial.

(17.2). Proposition. Let (V, q) be a quadratic F -space of dimension 2.

(a) If 0 6= x ∈ V is singular with x⊥ = V , then (V, q) is degenerate and, for
y ∈ V \ Fx, we have q(βx+ γy) = eγ2 where e = q(y) is a constant.

(b) If 0 6= x ∈ V is singular with x⊥ 6= V , then (V, q) is nondegenerate and there
are exactly two 1-spaces in V consisting of singular vectors. In this case, we
have a basis of singular vectors x and y with h(x, y) = 1, hence q(βx+γy) = βγ.
Especially, for each α ∈ F there are z ∈ V with q(z) = α.

(c) If all nonzero vectors of V are nonsingular, then there is a quadratic extension
K of F for which the extension q|K of q to K⊗F V = V |K has nonzero singular
vectors and so falls under (a) or (b).

In this case (V, q) is isometric to K (as F -space) provided with the qua-
dratic form qK(κ) = dκκ̄, where the bar denotes Galois conjugation in K over
F and d ∈ F is fixed and nonzero. If K is separable over F then (V, q) is non-
degenerate; if K is inseparable over F (which forces charF = 2) then V = V ⊥.

Proof. (a) This is immediate from the remarks about spaces of dimension 1.
(b) As q(x) = 0, h(x, x) = 0; so for w /∈ 〈x〉 = x⊥ we have h(x,w) 6= 0. If

necessary, replace w by a scalar multiple so that h(x,w) = 1. Consider y = βx+w.
Then

h(x, y) = h(x,w) = 1 , and q(y) = q(βx) + q(w) + h(βx,w) = q(w) + β .

Therefore β = −q(w) gives a second 1-space 〈y〉 of singular vectors and all other
nonzero vectors are nonsingular. Finally

q(βx+ γy) = q(βx) + q(γy) + h(βx, γy) = 0 + 0 + βγ = βγ .

In particular q(αx+ y) = α.
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(c) Choose a basis {u, v} of V with q(u) = d, q(v) = f , and h(u, v) = e. Then
q(βu+γv) = dβ2+eβγ+fγ2. As there are no singular vectors in V , the polynomial
dz2 + ez + f is irreducible of degree 2 in F [z] but has a root α in the quadratic
extension K = F (α) of F .

When we identify V with the F -space K via the linear isomorphism given by
u 7→ 1 and v 7→ −α, so that βu+ γv 7→ β − αγ = κ, we find

qK(κ) = q(βu+ γv) =

dβ2 + eβγ + fγ2 = d(β − αγ)(β − ᾱγ) = d(β − αγ)(β − αγ) = dκκ̄ .

The space (V |K , q|K) contains the singular 1-space spanned by αu+ v and so
comes under (a) or (b). We have V |K = K(αu+v)⊕Kv with h|K(αu+v, αu+v) = 0.
We calculate

h|K(αu+ v,−v) = q|K(αu+ v − v)− q|K(αu+ v)− q|K(−v)

= α2q(u)− 0− q(−v)

= dα2 − f
= dα2 − f − (dα2 + eα+ f)

= −eα− 2f .

As dz2 + ez + f is irreducible of degree 2 in F [z], necessarily d 6= 0 6= f ∈ F . But
α /∈ F , so the quantity −eα− 2f is zero if and only if e = 0 and char(F ) = 2. This
is in turn the case if and only if the polynomial and K are both inseparable over
F .

Thus if K is separable over F then (V |K , q|K) is nondegenerate as in (b), and
(V, q) is also nondegenerate by Lemma (17.1)(d). If K is inseparable over F , then
V |K = K(αu+ v) ⊥ Kv with h|K(v, v) = h(v, v) = 2q(v) = 0. Thus h|K and h as
well are identically 0, and V = V ⊥. 2

In part (b) of the proposition, V is a hyperbolic 2-space. The basis pair {x, y}
of singular vectors x and y with h(x, y) = 1 is a hyperbolic pair. The hyperbolic
pairs in V are precisely the pairs {β−1x, βy} for nonzero β in F .

(17.3). Corollary. If (V, q) is a nondegenerate quadratic space of dimension
2 over the algebraically closed field F , then (V, q) is hyperbolic.

Proof. Nondegeneracy puts us in (b) or (c) of the proposition, while algebraic
closure implies that no quadratic extension K as in (c) exists. 2

(17.4). Corollary. If (V, q) is a nondegenerate quadratic space of dimension
at least 3 over the finite field Fr, then V contains nonzero singular vectors.

Proof. Choose x and y in V with h(x, y) 6= 0, and set H = 〈x, y〉. If
H contains singular vectors, then we are done. Otherwise, by the proposition
nondegenerate H is a copy of Fr2 with quadratic form q(κ) = dκ1+r for nonzero d ∈
Fr. The map κ 7→ κ1+r is a surjective homomorphism from the cyclic multiplicative
subgroup of Fr2 of order r2 − 1 to the order r − 1 multiplicative subgroup of its
subfield Fr. In particular for 0 6= z ∈ H⊥, there is a w ∈ H with q(w) = −q(z); so
w + z is a nonzero singular vector. 2
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17.2. Hyperbolic orthogonal spaces

The orthogonal space (V, q) admits the hyperbolic basis H = {. . . , fi, gi, . . . }
(1 ≤ i ≤ m) provided for all i, j, l:

q(fi) = q(gj) = h(fi, fl) = h(gj , gl) = 0 , h(fi, gj) = δi,j .

Especially the dimension 2m of V is even and q is nondegenerate. The integer m
is the index of the form.

A hyperbolic 2-space of course provides an example, but so does the 4-dimen-
sional F -space Mat2(F ) of 2 × 2 matrices over F with q the determinant function
There the four matrix units form a hyperbolic basis (up to sign).

If (V, q) has a hyperbolic basis, then we say that q and V are split or hyperbolic.

(17.5). Proposition. If q is a nondegenerate quadratic form on the F -space
V of finite dimension, then the following are equivalent:

(1) V has a hyperbolic basis.
(2) V is a perpendicular direct sum of hyperbolic 2-spaces.
(3) Every maximal singular subspace has dimension dimF (V )/2.
(4) There are maximal singular subspaces M and N with V = M ⊕N .
(5) There is a singular subspace of dimension at least dimF (V )/2.
(6) For any basis χ of the totally singular subspace X, V has a hyperbolic basis

containing χ.

Proof. (1) and (2) are clearly equivalent, and both are consequences of (6).
(5) is a consequence of all the others. If the hyperbolic basis of (1) is the one given
above, then the spaces M = 〈. . . , fi . . . 〉 and N = 〈. . . , gi, . . . 〉 are maximal singular
with V = M ⊕N , as in (4).

Also (6) implies (3) as every singular subspace spanned by a subset of a
hyperbolic basis is contained in such a maximal singular subspace of dimension
dimF (V )/2.

It remains to prove that (5) implies (6), which we do by induction on dim(V )
with Proposition (17.2) providing the initial step. (The case of dimension 1 being
trivial since nondegenerate 1-spaces contain no nonzero singular vectors.) If M is
a singular subspace of dimension at least dim(V )/2 and z is singular, then z⊥ ∩M
contains a hyperplane of M and singular 〈z, z⊥ ∩M〉 has dimension at least that
of M . Thus, if necessary replacing M or enlarging χ, we may assume that M ∩ χ
is nonempty. Let x ∈M ∩ χ. Then, for any y in (χ \ {x})⊥ but not its hyperplane
χ⊥, the 2-space 〈x, y〉 is hyperbolic by Proposition (17.2). Nondegenerate 〈x, y〉⊥
contains M ∩ y⊥ and χ \ {x}. By induction χ \ {x} embeds in a hyperbolic basis
of 〈x, y〉⊥, and therefore χ is in a hyperbolic basis of V . 2

(17.6). Corollary. The two finite dimensional hyperbolic spaces (V, qV ) and
(W, qW ) over F are isometric if and only if they have the same dimension.

Proof. Both spaces have hyperbolic bases, and it is possible to map one of
these to the other by an invertible linear transformation if and only if they have
the same cardinality. 2

(17.7). Proposition. If (V, q) is a nondegenerate quadratic space of dimen-
sion 2m over the algebraically closed field F , then (V, q) is hyperbolic and unique
up to isometry (indeed similarity).
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Proof. This follows by induction from the previous corollary and Corollary
(17.3). 2

As arbitrary F can be tensored up to an algebraically closed field, the propo-
sition provides a tool for reducing general questions to the hyperbolic case.

(17.8). Proposition. Let the quadratic form q be hyperbolic on the F -space
V of dimension 2m.

(a) Every singular (m− 1)-space is contained in exactly two singular m-spaces.
(b) Let W be a maximal singular subspace, and let S be a singular subspace not

contained in W . Then for every s ∈ S \W there is a unique maximal singular
subspace T with s ∈ T and W∩T of dimension m−1. The space T is 〈s, s⊥∩W 〉,
and dimF (S ∩ T ) = 1 + dimF (S ∩W ).

Proof. (a) If U has codimension 1 in a maximal singular subspace, then U⊥/U
is a hyperbolic 2-space; so (a) follows from Proposition (17.2).

(b) As s /∈ W , s⊥ ∩ W is a hyperplane of W and T = 〈s, s⊥ ∩ W 〉 is a
singular m-space. It is unique since any T as described must contain s, whence
T ∩W ≤ s⊥ ∩W .

The hyperplane T ∩W = s⊥ ∩W of T contains S ∩W , so the dimension of
S ∩ T is equal to that of S ∩W or exceeds it by 1. But s ∈ T \W . 2

(17.9). Proposition. Let the quadratic form q be hyperbolic on the F -space
V of dimension 2m.

The graph (M,∼) on the set M of maximal singular subspaces, with two such
adjacent when their intersection has codimension 1 in each, is connected and bi-
partite of diameter m. In this graph, the distance between two maximal singular
subspaces M and N equals the codimension of M ∩N in each.

Proof. We first claim that, for all S ∈M and T1 ∼ T2 in M, we have

|dim(S ∩ T1)− dim(S ∩ T2)| = 1 .

Let U = T1 ∩ T2 of codimension 1 in each, and set R = S ∩U . If necessary passing
to R⊥/R, we may assume R = 0 in proving the claim. Then U⊥ has dimension
m+1 and so intersects S nontrivially. Therefore T = 〈U,U⊥∩S〉 is totally singular
of dimension m. By the previous proposition, T is equal to exactly one of T1 or T2.
Thus

{dim(S ∩ T1),dim(S ∩ T2)} = {0, 1} ,
giving the claim.

Let d(M,N) be the distance between M,N in (M,∼). Again by the previous
proposition, d(M,N) ≤ m− dim(M ∩N). In particular the graph is connected.

To prove d(M,N) = m − dim(M ∩ N), we induct on d(M,N). The result is
true by definition for d(M,N) = 0, 1. Suppose d(M,N) = d, and choose a T ∈ M
with T ∼ N and d(T,M) = d − 1. Then by induction d − 1 = m − dim(M ∩ T ).
By the preceding paragraph and the claim d ≤ m− dim(M ∩N) = (d− 1)± 1 ≤ d,
as desired.

It remains to prove (M,∼) bipartite. Otherwise, there is a minimal cycle C of
odd length, say 2k + 1. But for S ∈ C, the two vertices T1 and T2 at distance k
from S in C are adjacent with dim(S ∩ T1) − dim(S ∩ T2) = 0, contradicting the
earlier claim. 2
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17.3. Oriflamme geometries

Let (V, q) be a hyperbolic orthogonal space of dimension 2m. Consider the
graph (Γ, ∼ ) whose vertices are the nonzero singular spaces of V . Two singular
spaces are incident (that is, adjacent in Γ) precisely when

one is properly contained in the other or they both have dimen-
sion m and intersect in a (m− 1)-space.

This graph is (m+1)-partite by Proposition (17.9) above, with the collectionM of
m-spaces falling into two partsMρ andMλ while the remaining singular subspaces
provide a part Sk for each dimension 1 ≤ k ≤ m− 1.

The associated oriflamme geometry or Dm-geometry is this graph with the
part Sm−1 (the vertices of dimension m − 1) removed. We can recover the graph
(Γ, ∼ ) from its oriflamme geometry, since by Proposition (17.8) there is a bijection
between the spaces of Sm−1 and the edges betweenMρ andMλ in which a singular
(m− 1)-space is incident precisely with the endpoints of its edge and the spaces of
smaller dimension incident to both of those endpoints.

By Corollary (17.6) a Dm-geometry over F is uniquely determined up to iso-
morphism by m and F .

17.4. Orthogonal groups

Let q be a quadratic form on V . An isometry of (V, q) is a g ∈ GL(V ) with

q(vg) = q(v) , for all v ∈ V .

The full isometry group of (V, q) is then O(V, q), the orthogonal group. A similarity
of (V, q) is a g ∈ GL(V ) with

q(vg) = µgq(v) , for all v ∈ V ,

for some nonzero constant multiplier µg ∈ F . The full similarity group of (V, q) is
GO(V, q), the general orthogonal group.

An isometry g is precisely a similarity with µg = 1. Indeed the map µ : g 7→ µg
is a homomorphism from GO(V, q) to F with kernel O(V, q). Each nonzero scalar
transformations αI is a similarity with multiplier α2, but only ±I are isometries.
The scalars subgroups are central, and we write PO(V, q) for the projective or-
thogonal group O(V, q)/{±I} and PGO(V, q) for the projective similarity group
GO(V, q)/F×I.

Similarly, a similarity of the associated bilinear form h = hq is a g ∈ GL(V )
with

h(vg, wg) = µgh(v, w) ,

for all v, w ∈ V and some nonzero constant µg ∈ F . An isometry g of h is then a
similarity with µg = 1.

Clearly an isometry (or similarity) of q gives one of h. In characteristic 2 the
converse is not true in general.

For the linear transformation t on V , we set [V, t] = V t−1 and CV (t) = { v ∈
V | vt = v }.

(17.10). Lemma. Let t be an isometry of the nondegenerate quadratic space
(V, q). Then [V, t] = CV (t)⊥.
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Proof. For all v ∈ V and fixed w,

h(vt−1, w) = h(vt, w)− h(v, w)

= h(vt, w)− h(vt, wt)

= h(vt, w1−t) .

As q and h are nondegenerate and t invertible, w ∈ [V, t]⊥ if and only if w ∈ CW (t).
2

(17.11). Proposition. Let (V, q) be a nondegenerate quadratic space over F .

(a) Let t be an isometry with dimF [V, t] = 1. Then there is a nonsingular x ∈ V
with [V, t] = 〈x〉 and

t : v 7→ v − q(x)
−1
h(v, x)x .

(b) Conversely, for every nonsingular x ∈ V the map

sx : v 7→ v − q(x)
−1
h(v, x)x .

is an isometry of order 2 of the quadratic form q on V (and so also of h) with
[V, sx] = 〈x〉. If the characteristic of F is not 2, then the symmetry sx is the
reflection in the hyperplane x⊥ = CV (sx).

(c) sx = sy if and only if y = αx for some nonzero α ∈ F .
(d) If g is an isometry of (V, q), then g−1 sx g = sxg .
(e) For W ≤ V , W sx = W if and only if x ∈W or W ≤ x⊥.

Proof. Consider an arbitrary linear transformation t : V −→ V with [V, t] =
〈x〉, for some nonzero x ∈ V . The kernel of the map v 7→ vt−1 is then CV (t), a
hyperplane of V . The image of v is (vτ )x, for some linear functional τ on V with
ker τ = CV (t).

By the previous lemma, for t to have any chance at all of being an isometry, we
must have CV (t) = x⊥; so we may assume vτ = βh(v, x) for some nonzero constant
β, and

t : v 7→ v + βh(v, x)x .

Now t is an isometry of (V, q) if and only if q(vt) = q(v) for all v ∈ V . We calculate

q(vt)− q(v) = q(v + βh(v, x)x)− q(v)

= q(v) + q(βh(v, x)x) + h(v, βh(v, x)x)− q(v)

= β2h(v, x)2q(x) + βh(v, x)h(v, x)

= βh(v, x)2(βq(x) + 1) .

This is 0 whenever v ∈ x⊥, but for v /∈ x⊥ this is 0 if and only if βq(x)+1 = 0. That
is, t is an isometry if and only if β = −q(x)−1; especially, x must be nonsingular.

We have t = sx, and

xsx = x− q(x)−1h(x, x)x = x− q(x)−1(q(2x)− q(x)− q(x))x

= x− q(x)−1(2q(x))x = −x .
In particular, for arbitrary v ∈ V with γ = vτ ∈ F ,

vs2x−1 = v(sx−1)(sx +1) = (γx)sx +1 = (γx)sx + γx = −(γx) + γx = 0 .

That is, the isometry sx has order 2. Furthermore, we see that in characteristic
other than 2 the element sx is precisely reflection in the hyperplane x⊥.
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If sx = sy, then certainly

Fx = [V, sx] = [V, sy] = Fy

and y = αx, for some constant α, nonzero as sy 6= 1V . On the other hand, if y = αx
then

q(y)−1h(v, y)y = q(αx)−1h(v, αx)αx = α−2α2q(x)−1h(v, x)x

and sx = sy.
For any isometries f and g we have [V, f ]g = [V g, fg] = [V, fg]. If f = sx then

[V, sgx] has dimension 1, and the only possibility is sgx = sxg .
Finally, if sx-invariant W is not in x⊥ = CW (sx), then 0 6= W t−1 ≤ Fx of

dimension 1, hence x ∈W . The converse is easy. 2

The isometry sx is a symmetry of (V, q).

(17.12). Proposition. Let (V, q) be a hyperbolic space over of finite dimen-
sion 2m over F .

(a) The group GO(V, q) induces automorphisms of the bipartite graph (M, ∼ ) (of
Proposition (17.9)) whose vertex set M consists of all singular m-subspaces,
two such adjacent provided their intersection has codimension 1 in each.

(b) If sx is a symmetry of O(V, q) and M ∈ M is a singular m-space, then M ∼
M sx . In particular symmetries switch the two parts, so O(V, q) and GO(V, q)
have normal subgroups of index 2 that globally fix the two parts of the bipartition.

(c) For m ≥ 2, the kernel of the action of GO(V, q) on (M, ∼ ) consists of the
scalars.

Proof. Part (a) is clear. M = M⊥ for every maximal singular space, so
x⊥ ∩M is a hyperplane of M that is equal to M ∩M sx . Thus M ∼ M sx , giving
(b).

For (c) first note that every singular 1-space is the intersection of those singular
m-spaces containing it, so GO(V, q) acts on the set of all singular 1-spaces. The
kernel of the action on (M, ∼ ) then fixes each 1-space. Easy and familiar linear
algebra next says that an element g of this kernel is scalar on each maximal singular
subspace. As m ≥ 2 and (M, ∼ ) is connected, the scalar in question is the same
for all maximal singular subspaces; and g is scalar on all of V . 2

The subgroup of index 2 within O(V, q) found in the theorem will be writ-
ten as SO(V, q) and is the special orthogonal group. At this stage this definition
only applies to hyperbolic spaces (V, q). The groups induced on (M, ∼ ) are the
corresponding matrix groups modulo their scalar subgroups and are the projective
groups, respectively, PGO(V, q) and PO(V, q) (both already seen) and the new pro-
jective special orthogonal group PSO(V, q), which is SO(V, q)/{±I}. Again, this
last is presently only defined in the hyperbolic case.1

As we saw in Corollary (17.6), a finite dimensional hyperbolic space is char-
acterized up to isometry by its dimension 2m and defining field F . Therefore in
the hyperbolic case, the groups defined above may be, and often will be, written
as GO+

2m(F ), O+
2m(F ), SO+

2m(F ), PGO+
2m(F ), PO+

2m(F ), and PSO+
2m(F ), these

parameters determining the groups up to isomorphism.

1But see Section 20.2.
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17.5. Chevalley groups Dn(F )

In the previous section we investigated isometries t with [V, t] = V (t − 1) of
dimension 1, because they are “small”—they are close to being the identity. Propo-
sition (17.12) showcases one difficulty with the resulting orthogonal symmetries—
they are not in the derived subgroup of the group they generate. Especially they
do not sit as “low down” in the group as they might. A related issue is that they
are associated with the nonsingular parts of the associated geometry whereas the
oriflamme Dm-geometry is constructed out of singular pieces. These failings were
forced on us by our quest for an isometry t with [V, t] of dimension 1.

We now investigate isometries g with L = [V, g] of dimension 2. There are
three cases to consider, depending upon the dimension of the intersection of L with
L⊥ = CV (g) (by Lemma (17.10)). If that dimension is 0, then L is nondegenerate,
V = L⊕ L⊥, and the appropriate isometries are those from O(L, q|L) extended to
all of V by Id |L⊥ .

In the remaining two cases, there is (at least) a 1-space 〈u〉 ≤ L ∩ L⊥. Then g
must globally stabilize the series 〈u〉 ≤ 〈u〉⊥ ≤ L, acting trivially on the 1-spaces
〈u〉 and L/〈u〉⊥. For singular u, the isometries g that additionally are trivial on the
quotient 〈u〉⊥/〈u〉 are the Siegel elements of O(V, q). These are the correct “low,
small” elements to study [Tay92] when investigating the normal structure of the
orthogonal group in the presence of nonzero singular vectors.2

In the happiest situation, when L is totally singular (and, in particular, con-
tained in L⊥), there is a basis u, v of L with

g : x 7→ x+ h(x, v)u− h(x, v)v .

This element g is a long root element of O(V, q).
Elementary calculation shows that long root elements enjoy, and indeed are

characterized by, the following properties:

(17.13). Proposition. Consider the nondegenerate quadratic space (V, q).

(a) The isometry g is a long root element if and only if V (g − 1) = L is totally
singular of dimension 2 and V (g − 1)2 = 0.

(b) The set RL of all long root elements g with [V, g] = L together with the identity
is a subgroup of O(V, q) isomorphic to (F,+).

(c) The elements of RL act trivially on L⊥. For each singular x ∈ V \L⊥, there is
a unique 1-space 〈y〉 in x⊥∩L, and RL stabilizes and is regular on the 1-spaces
of 〈x, y〉 \ 〈y〉. 2

The subgroups RL are the long root subgroups. For hyperbolic forms (at least)
they sit in SO(V, q) by the last part of the lemma. We also use the language
of long root elements and long root subgroups for their (isomorphic) images in
the corresponding projective groups. Especially, within the projective hyperbolic
orthogonal groups PSO+

2m(F ) the subgroup generated by all long root subgroups
is the Chevalley group Dm(F ), and we take this as our definition of Dm(F ) (see
[Ree57]).

2The asingular case is much more varied and difficult.
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17.6. Orthogonal groups in dimension 8

We present some important results about orthogonal groups and geometries in
dimension 8, the proofs of which we either postpone or do not provide at all.

(17.14). Theorem. (Cartan) Let (V, q) be a nondegenerate, finite dimen-
sional quadratic space that is asingular. Then O(V, q) is generated by its symme-
tries. 2

This result has a famous extension, the Cartan-Dieudonné Theorem, which says
that almost all orthogonal groups are generated by their symmetries; see [Asc00,
(22.7)] and [Tay92, Cor. 11.42]. We need one further special case:

(17.15). Theorem. Let (V, q) be hyperbolic of dimension 8. Then O(V, q) =
O+

8 (F ) is generated by its symmetries. 2

The spinor norm on SO+
8 (F ) is the homomorphism with image F×/(F×)2 that

is given by ∏
i

sxi 7→
∏
i

q(xi)(F
×)2 .

By Theorem (17.15), every element of SO+
8 (F ) can be factored as

∏
i sxi . Such

factorizations will not be unique, so it is unclear whether or not the spinor norm as
described is a well-defined homomorphism. This is the case even more generally. A
proof requires work and will be given later (Theorem (20.9)) in the cases of interest
to us.

The group Ω+
8 (F ) is defined to be the kernel of the spinor norm, with central

quotient PΩ+
8 (F ). But for the moment3 the first part of the next theorem can be

thought of as giving the definition of Ω+
8 (F ).

(17.16). Theorem.

(a) Ω+
8 (F ) = O+

8 (F )′, the derived subgroup, which is perfect.
(b) PΩ+

8 (F ) = PSO+
8 (F )′ is simple.

(c) PΩ+
8 (F ) = D4(F ), the subgroup generated by the long root subgroups.

Proof. (a) Taylor [Tay92, 11.51] proves that the kernel of the spinor norm
on SO+

8 (F ) is equal to the derived group O+
8 (F )′. He also shows in [Tay92, 11.47]

that this derived group is perfect.
(b) The group PO+

8 (F )′ = PΩ+
8 (F ) is simple by [Tay92, Theorem 11.48].

(c) By [Tay92, Theorem 11.46] the derived group O+
8 (F )′ is generated by the

Siegel elements of O+
8 (F ). In particular, the group D4(F ), generated by the long

root subgroups, is a nontrivial normal subgroup of PO+
8 (F ) contained in PO+

8 (F )′.
As this latter group is simple we must have PΩ+

8 (F ) = PO+
8 (F )′ = D4(F ). (Ree

[Ree57, §6] proved D4(F ) = PO+
8 (F )′ in the Chevalley context.) 2

3and often in the literature: [Asc00, p. 89], [Tay92, p. 136]



Chapter 18
Study’s and Cartan’s Triality

Study’s triality [Stu12, Stu13] is that of hyperbolic 8-space; see Theorem
(18.5) below. Cartan’s triality group [Car25] is then the corresponding group

PΩ+
8 (F ) o Sym(3) = D4(F ) o Sym(3) ;

see Theorem (18.13) below.
We will use the approach of Tits [Tit58] to prove that Cartan’s triality group

is a group with triality in our sense. This group was the motivating example for
Doro [Dor78] in introducing this terminology.

18.1. Triality geometries and Study’s triality

Let (V, q) be a hyperbolic quadratic space of dimension 8 over the field F .
Recall from Section 17.3 that the associated oriflamme D4-geometry is the 4-

partite graph D4 with parts the singular 1-spaces S1, the singular 2-spaces S2, and
the two classes Mλ and Mρ of singular 4-spaces (as in Proposition (17.9)), with
adjacency being given by containment except that M ∈Mλ is adjacent to N ∈Mρ

precisely when M ∩N has dimension 3.
The associated triality graph T (V, q) is the induced tripartite subgraph T =

T 1 ∪ T 2 ∪ T 3 of D4, with parts T 1 = S1, T 2 =Mλ, and T 3 =Mρ.

(18.1). Theorem. Let {i, j, k} = {1, 2, 3}. For every nonincident pair pi ∈ T i
and pj ∈ T j, there is a unique pk ∈ T k that is incident to both pi and pj.

Proof. There are two distinct cases: {i, j} = {1, 2} and {i, j} = {2, 3}.
The case {i, j} = {1, 2} is contained in Proposition (17.8)(b) with p1 = S,

p2 = U , and p3 = T = 〈S, S⊥ ∩ U〉.
The case {i, j} = {2, 3} comes from Proposition (17.9): as p2 and p3 are not

incident, their intersection must have dimension 1—the unique singular 1-space
p1 = p2 ∩ p3 ∈ T 1 incident to both p2 and p3. 2

(18.2). Corollary. The graph T is a T -geometry in the sense of Section
15.4.

Proof. This is immediate from Theorem (18.1). 2

We shall see in Theorem (18.7) below that T is furthermore a symmetric T -
geometry, again in the sense of Section 15.4.

143
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We first observe that, as with the associated oriflamme D4-geometry, the triality
graph is determined uniquely up to isomorphism by F , again by Corollary (17.6).

(18.3). Lemma.

(a) For each singular 2-space L ∈ S2, let TL be the subgraph of T of those singular
1-spaces and 4-spaces incident to L. Then TL is a complete tripartite subgraph
of T , with each part of cardinality |K|+ 1 (a projective line).

(b) If T is a complete tripartite (or bipartite) subgraph of T meeting at least two
parts of T in at least two vertices, then there is a unique singular 2-space L ∈ S2

with T ⊆ TL.

Proof. The singular 1-spaces incident to L are certainly incident to any
singular subspace containing it. Now let M ∈ TL ∩ T 2 and N ∈ TL ∩ T 3. M ∩N
has odd codimension in each (see Proposition (17.9)(b)) and dimension at least 2.
Thus dim(M ∩ N) = 3, and M and N are incident in T . This proves TL to be
complete tripartite. For (a) it remains to show that each TL ∩ T i (for i = 1, 2, 3)
has the structure of a projective line over K. This is clear for i = 0. Consider
a singular 3-space H containing L. This represents an arbitrary singular 1-space
in the quotient orthogonal geometry L⊥/L, split of dimension 4. By Proposition
(17.9)(a), this is contained in exactly two maximal 4-spaces, one in T 2 and the
other in T 3. Thus each TL ∩ T i, for i = 2, 3, induces a partition of the singular
1-spaces of the geometry L⊥/L into singular 2-spaces. As M/L runs through the
1-spaces of (TL ∩ T 2)/L, the 2-space N/L ∈ (TL ∩ T 3)/L meets each in exactly
one singular 1-space. Projectively, we have the two transverse rulings of the Klein
quadric associated with L⊥/L.

For (b), first suppose distinct 〈x〉, 〈y〉 ∈ T ∩ T 1 and distinct M,M ′ ∈ T ∩ T 2.
Then 〈x〉, 〈y〉 are contained in M ; so they span a singular 2-space L, which in turn
is incident to any 4-space incident to both 〈x〉 and 〈y〉, including all those of T . By
the previous paragraph M ∩M ′ = L; so any singular 1-space of T , being incident
to both M and M ′, must also belong to L. Thus T ⊆ TL, as desired. The case in
which T is known to meet both T 2 and T 3 in sets of size at least 2 is similar. This
completes (b). 2

(18.4). Proposition.

(a) Define a new set of vertices, L, whose elements are the maximal complete tri-
partite subgraphs TL of T , and connect each new vertex TL to the vertices of TL
in T . Then the new 4-partite graph T ∪ L is isomorphic to D4 via the identity
on T and the correspondence L↔ TL.

(b) The automorphism groups of the 4-partite graph D4 and the tripartite graph T
leave the various parts fixed globally and are isomorphic under the restriction
of an automorphism of D4 to the vertices of its subgraph T .

Proof. Part (a) is immediate from the lemma.
(b) First consider T and Aut(T ). If two distinct vertices of T i are collinear

(that is, both adjacent in D4 to a vertex L of S2), then as in Lemma (18.3) they lie
in the complete tripartite subgraph TL of T . If two distinct vertices of T i are not
collinear, then they have no common neighbors in T (indeed in D4). On the other
hand, two nonadjacent vertices of T not together in one of the T i have exactly one
common neighbor by Theorem (18.1). Therefore Aut(T ) respects the tripartition
of T into the T i. By (a) each automorphism of T extends to an automorphism of
D4.
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Now examine D4 and Aut(D4). For every vertex L ∈ S2, the neighborhood
of L in D4 is the complete tripartite graph TL. No vertex of D4 not in S2 has a
complete multipartite neighborhood in D4 (for instance, because its neighborhood
in S2 is very large). Therefore Aut(D4) globally fixes the part S2, and thus every
automorphism of D4 acts on T = D4 \ S2. If two automorphisms g and h of D4

have the same restriction to T , then gh−1 fixes each vertex of each T i. In this case,
every maximal tripartite subgraph of T is fixed, hence every subgraph TL is fixed
and so every vertex of S2 is fixed. That is, gh−1 = 1 and g = h. 2

In the next chapter we extensively study the algebra of the octonions. During
this, an algebraic proof of the following Theorem (18.5)(b) will emerge and be
stated as Theorem (19.29). Thus here we sketch a geometric proof of the equivalent
Theorem (18.5)(a). This proof is due to Cameron [Cam92] with modifications due
to Shult (personal communication).

(18.5). Theorem.

(a) (Study’s triality) The automorphism group of the oriflamme D4-geometry
permutes the three parts S1, Mρ, and Mλ transitively.

(b) The automorphism group of the graph T permutes the three parts T 1, T 2, and
T 3 transitively.

Proof. These two statements are equivalent by Proposition (18.4). We pro-
ceed in a series of steps.

(i) For each i ∈ {1, 2, 3}, the vertices of T i will be called i-points. For each
L ∈ S2 let the i-line Li be TL ∩T i, and set Li = {Li | L ∈ L}. Then (T i,Li)
is a partial linear space (as defined in Section 3.1). We say that two i-points
are collinear if they are together in an i-line. That is, two distinct i-points
are collinear when they are in a common singular 2-space for i = 1 and when
they intersect in a singular 2-space for i ∈ {2, 3}.

Proof. The only thing that needs proving is that (T i,Li) is a partial
linear space. For i = 1 this is clear, since Li consists precisely of the |F | + 1
singular 1-spaces of the singular 2-space L. For i = 2, 3, this is also true as
then Li consists of the |F |+1 singular 4-spaces from T i that pairwise intersect
in the singular 2-space L. 2

(ii) There is no i-point collinear with all other i-points. For each i-line Li, the
i-point p is collinear either with all i-points of Li or with a unique i-point of
Li. That is, each partial linear space (T i,Li) is a nondegenerate polar space.
(See [Shu11, p. 168].)

Proof. As (V, q) is nondegenerate and hyperbolic, the first sentence is
immediate. When i=1 the second sentence is also clear, as the singular 2-space
L is either inside the hyperplane p⊥ or intersects it in a singular 1-space.

Now suppose i ∈ {2, 3} so that p is a singular 4-space and Li is the
set of all singular 4-spaces that contain the singular 2-space L and meet p
in a subspace of dimension 0, 2, or 4. Choose a q in Li that meets p in a
subspace of minimum dimension. If this dimension is anything but 0, then p
is collinear with all the i-points of Li, as desired. Assume then that p and q
intersect trivially, and so V = p ⊕ q with L ≤ q ≤ L⊥. Thus L⊥ ∩ p = M , a
second singular 2-space. Therefore r = M ⊕ L is the unique singular 4-space
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containing L and meeting p in a subspace of dimension 2. That is, r is the
unique i-point of Li that is collinear with p. 2

(iii) The residue in D4 of each i-point p (that is, the neighborhood of p) is isomor-
phic to A3,2(F ), the A3-incidence geometry of 1-spaces, 2-spaces, and 3-spaces
of F 4, with the 2-spaces of F 4 being in bijection with Lp (the neighborhood of
p in L). The 1-spaces and 3-spaces are in bijection with those maximal linear
subspaces of (T i,Li) on p.

Proof. This is clear for i ∈ {2, 3}. For i = 1 the residue is a D3-
oriflamme geometry. The graphs A3 and D3 are the same, and in this case
the result is well-known. 2

(iv) With {1, 2, 3} = {i, j, k}, the partial linear spaces (T i,Li) and (T j ,Lj) are
isomorphic.

Proof. This is the heart of the argument. By (iii) each polar space
(T i,Li) is “hyperbolic of rank 4 over the field F .” As such, it is uniquely
determined up to isomorphism, this being a special case of a far-reaching
theorem of Tits on buildings. We sketch direct arguments of Cameron and
Shult that handle the specific case of interest here.

By symmetry we may assume i = 1, j = 2, and k = 3.
Cameron [Cam92, Prop. 7.4.2 and 8.5.1] sketches an argument based

upon the following simple observation: for two singular 4-spaces A and B in
T k with trivial intersection, we have V = A⊕B. The geometries (T i,Li) and
(T j ,Lj) can then be identified relative to this sum.

For the i-point a within A the space 〈a, a⊥ ∩ B〉 is a j-point incident to
B. Conversely, any j-point meeting B in a 3-space must meet A in a 1-space
or 3-space, hence a 1-space—an i-point. Similarly there is a bijection between
i-points incident to B and j-points incident to A.

On the other hand, any j-point not incident to A or B must meet both
in 1-spaces, that is, i-points a0 and b0, say. Then the i-line L = 〈a0, b0〉 is
incident to a0 and b0 and the |F |−1 distinct i-points of L not incident to A or
B. But L is also a j-line and in (T j ,Lj) is incident to the j-points 〈L,L⊥∩A〉
and 〈L,L⊥ ∩ B〉 and to |F | − 1 additional j-points incident to neither A nor
B. At this stage we have seen all i-points and all j-points and have come
close (up to factors |F | − 1) to establishing a bijection between them. Using
(ii) and (iii) we can define this bijection precisely and then recognize it as the
desired isomorphism of (T i,Li) and (T j ,Lj).

Of course, the preceding paragraphs present a sketch of a sketch within
our sketch, and some readers may feel unsatisfied! We can alternatively quote
a Theorem of Tits—proven by elementary methods relatively early (Theorem
7.5.13) in Shult’s delightful book [Shu11]—that says two nondegenerate polar
spaces of rank at least 3 with isomorphic point cones are isomorphic via a map
that takes the chosen point of the first to that of the second. By definition, in
a polar space the cone of a point is the subspace of all points collinear with it.
Therefore the isomorphism of i-cones and j-cones is a refinement of (iii); and,
after verification of the isomorphism, Tits’ theorem applies to give us (iv). 2
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(v) There is an automorphism of D4 that takes T i to T j. That is, the automor-
phism group is transitive on the set {T 1, T 2, T 3}, as desired for the theorem.

Proof. This is similar to Proposition (18.4). For {a, b, c} = {1, 2, 3},
Step (iii) allows us to reconstruct from the polar space (T c,Lc) the two classes
of maximal linear, indeed projective, subspaces T a and T b (equivalence de-
termined by even intersection codimension) and their incidences in a unique
fashion.

Therefore the isomorphism of (T i,Li) and (T j ,Lj) from the previous step
extends to an automorphism of D4. 2

In Theorem (19.29) and Proposition (19.30) below we shall construct a sub-
group of the automorphism group of the oriflamme geometry and the graph T that
is isomorphic to Sym(3) and acts as such on the set {T 1, T 2, T 3}. The existence
of such subgroups is also an easy consequence of the fact that T is a symmetric
T -geometry, proven in Theorem (18.7).

(18.6). Theorem. Let i = 1 and {j, k} = {2, 3}. For each nonsingular n, the
automorphism g induced by the symmetry sn of O(V, q) has the following properties.

(a) g fixes T i and and each pj of T j is incident to pgj , which belongs to T k.

(b) If pi ∈ T i is incident to both pj ∈ T j and pgj ∈ T k, then pgi = pi.

(c) g2 = 1.

Proof. Part (a) is contained in Proposition (17.12). Part (c) holds as all
symmetries have order 2 by Proposition (17.11).

For (b), if the singular 1-space p1 is incident to the incident pair of singular
4-spaces p2 and p3 = psx

2 , then it is in the hyperplane p2∩p3 of each. But p2∩p3 =
p2 ∩ n⊥ = p3 ∩ n⊥, so p1 ≤ n⊥ is fixed by g = sn. 2

(18.7). Theorem. The graph T is a symmetric T -geometry in the sense of
Section 15.4. Let D be the conjugacy class of Aut(T ) that contains the symmetries
sn of Theorem (18.6), and set G = 〈D〉. Let π be the homomorphism from G to
the group Sym(3) induced on the three parts of T and taking each symmetry of Di

to the permutation (i)(j, k). Then the triple (G,D, π) is a group with triality.

Proof. This follows from Corollary (15.9) and results of this section, specifi-
cally Corollary (18.2), Theorem (18.5), and Theorem (18.6). 2

18.2. Cartan’s triality

As in the previous section, (V, q) is a hyperbolic quadratic space of dimension
8 over the field F . Its tripartite triality graph T = T (V, q) has parts T 1 = S1,
T 2 =Mλ, and T 3 =Mρ. The associated D4-graph is D4 = T ∪ S2.

As the isomorphism type of T (V, q) is uniquely determined by the field, we may
write T (F ) in its place.

(18.8). Theorem. D4(F ) ≤ PGO+
8 (F ) ≤ Aut(T (F )) ≤ Aut(D4(F )).

A large part of the theorem comes quickly. As seen in Proposition (17.12), the
group GO(V, q) acts on T (F ), permuting the singular 1-spaces of T 1 = S1 and the
maximal singular 4-spaces of T 2 ∪ T 3, preserving adjacency with kernel consisting
of the scalars. Thus PGO+

8 (F ) ≤ Aut(T (F )), and PGO+
8 (F ) contains the normal

subgroup D4(F ) generated by long root subgroups. To prove the remainder of the
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theorem, we show that D4(F ) is normal in Aut(T (F )) with trivial centralizer. In
doing this, we will make use of the isomorphism of Proposition (18.4)(a), identifying
the graph D4 = T ∪S2 with the graph T ∪L, where L is the set of maximal tripartite
subgraphs of T (with at least two parts of size greater than 1), L being in bijection
with S2 via TL ↔ L.

In fact, Aut(T (F )) and Aut(D4(F )) are always equal. All we lack for a proof
is that Aut(D4(F )) stabilizes the class of long root subgroups in D4(F ). To prove
this would take us a bit far afield. One proof makes use of Chow and Dieudonné’s
[Cho49, Die51] determination of the automorphism group of the polar space
(T 1,L1) from our proof of Theorem (18.5).

Let T ∈ L be a maximal complete tripartite subgraph of T . For each vertex
x of T , let x+ denote the set of all vertices adjacent to x. Then T+ is the union
of all t+ for t ∈ T . Especially T ⊆ T+. An element of Aut(T (F )) will be called a
root element for T if it fixes each vertex of T+. For fixed T , the root elements for
T form a subgroup, the root subgroup, RT of Aut(T (F )).

We have immediately:

(18.9). Lemma. Let T ∈ L.

(a) If S ∈ L with RS = RT then S = T .
(b) As T meets each of T i nontrivially, RT fixes each of the parts T i globally.
(c) For each g ∈ Aut(T (F )) we have RgT = RT g . Especially 〈RT | T ∈ L 〉 is a

normal subgroup of Aut(T (F )). 2

(18.10). Proposition. Let T ∈ L.

(a) For each v ∈ T i \ T+ There is a unique vertex t = tv ∈ T i ∩ T at distance 2
from v, and there is a unique member S = Sv of L containing v and t.

(b) Let v ∈ T 1 \ T+, and let t = tv ∈ T 1 and S = Sv ∈ L be as found in (a). The
root group RT fixes (S ∩ T 1) \ {t} globally.

Proof. We often do calculations in the orthogonal space (V, q).1

(a) Let L ∈ S2 with T = TL. First take v ∈ T 1 \ T+. If v were perpendicular
to all L, then 〈v, L〉 would be in one of the 4-spaces of T , hence v would be in T+,
against assumption. Therefore the hyperplane v⊥ of V meets L in a unique 1-space
t. Especially U = 〈v, t〉 ∈ S2, and S = TU is the unique member of L containing v
and t.

If instead v is a 4-space in T i, for i 6= 1, then v /∈ T+ is equivalent to v∩L = 0.
Thus K = L⊥ ∩ v is a 2-space and t = K ⊕ L ∈ T i ∩ T with S = TK .

(b) Let M and N be two distinct 4-spaces of S ∩ T 2. As t ∈ U = M ∩ N we
have M,N ∈ T+, so M and N are fixed by each g ∈ RT . But then

vg ∈ (M ∩N)g = M ∩N = U ,

hence vg ∈ (S ∩ T 1) \ {t}, as claimed. 2

(18.11). Proposition. For each T ∈ L, the root group RT is semiregular on
T 1 \ T+.

Proof. As in the previous proposition, let v ∈ T 1 \ T+. There are a unique
t ∈ T 1 ∩T at distance 2 from v and a unique S ∈ L containing v and t. Let L ∈ S2

with T = TL.

1This is why we focus on the easily accessible T 1, even though by Study’s Triality all the T i
are equivalent.
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Let g ∈ RT with vg = v. We must prove that g is the identity.
We first claim that g fixes each vertex of v+. Let M ∈ T i∩v+. If M ∈ T+, then

g fixes it by the definition of the root subgroup RT . So we may assume M /∈ T+.
Choose r ∈ T ∩ T 1 with r 6= t. Then r and v are not perpendicular, so M = v ⊕Q
for Q = r⊥ ∩M . The singular 4-space N = r ⊕ Q ∈ T 3−i is thus adjacent to M
(as they meet in Q), in T+ (as it contains r), and not adjacent to v (again, as it
contains r). Therefore M is the unique vertex of the T -geometry T adjacent to
both v and N . As g fixes v and N ∈ T+, it also fixes M . This gives the claim.

As every singular 2-space is the intersection of all the singular 4-spaces con-
taining it, for any singular 2-space U on v, the root element g fixes U \{v} globally.

We next show that g fixes each vertex of T 1. This is the case for T 1 ∩ T+ by
definition. Suppose that p ∈ T 1 \ T+ with v and p perpendicular, but U = 〈v, p〉
not containing t. Then U is fixed globally by g as is 〈p, tp〉 ∩ T 1 = Sp ∩ T 1 (by
the previous proposition), so g fixes p = U ∩ (Sp ∩ T 1). Especially, when p and
t = tp are perpendicular (which does happen), the element g fixes each vertex of
〈p, t〉 = Sp ∩ T 1. Reversing the roles of v and p, we also see from this case that
each vertex of S ∩T 1 is fixed by g. Every vertex of T 1 \ T+ not perpendicular to t
is perpendicular to one of the vertices of (S ∩ T 1) \ {t}, so all such are fixed by g.
Exchanging t for another element of T ∩T 1, we find that g is trivial on all T 1 \T+

and so on T 1.
Next, if M ∈ T 2 ∪ T 3, then

(Mg)+ ∩ T 1 = (M+)g ∩ T 1 = (M+ ∩ T 1)g = M+ ∩ T 1 ,

hence Mg = M . That is, g trivial on all T , and g = 1 as desired. 2

(18.12). Lemma. For T ∈ L, let L ∈ S2 be given by T = TL. Then RT =
RL ≤ PGO+

8 (F ), the long root subgroup for L.

Proof. By Proposition (17.13)(c), the long root subgroup RL induces a sub-
group of the root group RT that is transitive on (Sv∩T 1)\{tv} for each v ∈ T 1\T+.

Let h ∈ RT , then for v ∈ T 1 \ T+ we have w = vh ∈ Sv \ {tv} by Proposition
(18.10)(b). Choose r ∈ RL with vr = w, and set g = hr−1 ∈ RT . Then

vg = vhr
−1

= wr
−1

= v .

By Proposition (18.11) we find g = 1 hence h = r. 2

Proof of Theorem (18.8).
As discussed directly after the statement of the theorem, here we need only

prove that D4(F ) is normal in Aut(T (F )) with trivial centralizer.
By Lemmas (18.9) and (18.12) the group

〈RT | T ∈ L 〉 = 〈RL | L ∈ S2 〉 = D4(F )

is normal in Aut(T (F )).
If z centralizes this subgroup, then for all T ∈ L we have RT = RzT = RT z .

Therefore T = T z for all T ∈ L, and z is trivial on L. But every vertex of T is the
intersection of the members of L containing it, so z is trivial on T . That is, z = 1.

2

(18.13). Theorem. (Cartan’s triality) For the field F , the group D4(F ) =
PΩ+

8 (F ) admits as outer automorphism the group Sym(3) with its elements of order
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3 not induced by semilinear automorphisms of F 8. The split extension

PΩ+
8 (F ) o Sym(3) = D4(F ) o Sym(3)

is a group with triality, with π equal to projection onto Sym(3) and D the conjugacy
class containing the transpositions of Sym(3).

Proof. Following Theorem (18.7), let E be the conjugacy class of Aut(T (F ))
containing those automorphisms induced by the symmetries sn of O(V, q). Set
G = 〈E〉, and let π be the homomorphism from G to the group Sym(3) induced on
the three parts of T (F ), so that the triple (G,E, π) is a group with triality, as in
Theorem (18.7).

For d, e ∈ E with
S = 〈d, e〉 ' 〈d, e〉π = Sym(3) ,

by Theorem (18.8) in Aut(T (F )) the group S normalizes simple D4(F ) = PΩ+
8 (F )

(using Theorem (17.16)). The element de of order 3 takes S1 = T 1 to either T 2 or
T 3, in both cases consisting of totally singular 4-spaces, and so is not induced by a
semilinear automorphism of the underlying space F 8.

The subset D of E that is the conjugacy class of d and e in the semidirect
product remains a class of 3-transpositions with projection map the restriction of
the original π. As D4(F ) = PΩ+

8 (F ) is simple, the class generates the full semidirect
product, which is thus a group with triality. 2



Chapter 19
Composition Algebras

Composition algebras are beautiful objects whose loops of units provide im-
portant examples of Moufang loops. They also form a bridge between Study’s and
Cartan’s triality. In particular a central motivation for this chapter is Theorem
(19.29), which provides our algebraic proof of of Study’s triality—Theorem (18.5).

Here we are mainly interested in properties of the composition algebras of di-
mension 8, the octonion algebras, although a short detour in our arguments provides
a proof of Hurwitz’ Theorem on the dimensions of arbitrary composition algebras.

Much of the material in this chapter comes from [Hal00]. Those notes were
motivated by and drew a great deal from an early version [BuC97] of Chapter 5 of
[Coh13]. In turn, the final version of that chapter incorporates material that was
introduced in the notes.

19.1. Composition algebras

An algebra over the field F is a F -vector space A combined with a bilinear
product π : A × A −→ A. The algebra admits composition with respect to the
quadratic form q : A −→ F provided

q(x)q(y) = q(xy) ,

for all x, y ∈ A. A composition algebra is an algebra admitting composition with
respect to a nondegenerate quadratic form q. We follow [SpV00] in requiring our
composition algebras A to have a multiplicative identity element 1 = 1A. In this
case q(1) = q(1)2 = 1 since q is nondegenerate. The opposite of a composition is
also a composition algebra.

An immediate consequence of the composition law is that an invertible element
of A, a unit of A, must be by nonsingular. In composition algebras the converse
is also true (see Corollary (19.8) below). Therefore if all nonzero elements of a
composition algebra A are nonsingular, then all nonzero elements are invertible and
A is a division algebra. If A is not a division algebra, then q is actually hyperbolic
(Lemma (19.11)). In this case, the composition algebra is called split.

151
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Moufang [Mou35] studied alternative algebras, of which composition algebras
are examples. She proved (see Theorem (19.23) below) that alternative hence com-
position algebras satisfy the Moufang identities. Therefore their loops of units
provide interesting examples of Moufang loops.

We now give some examples of composition algebras. (Indeed, in the split case,
these are the only examples; see Theorems (19.21) and (19.22) below.)

19.1.1. Composition algebras of dimension 1, 2, and 4. A composition
algebra of dimension 1 is just a field with q(x) = x2 and is not split. (As q is
required to be nondegenerate, the field cannot have characteristic 2.)

A composition algebra of dimension 4 is usually called a quaternion algebra.
The canonical example of a split composition F -algebra of dimension 4 is the asso-
ciative algebra Mat2(F ) of all 2× 2 matrices over F with q(x) = det(x):

det

[
a b
c d

]
= ab− cd .

The diagonal matrices of Mat2(F ) give a nondegenerate split subalgebra of
dimension 2. This is of course isomorphic to F ⊕ F with (a, d)(x,w) = (ax, dw)
and q((a, d)) = ad. (An example of a nonsplit composition algebra of dimension 2
over F is a separable quadratic extensions K of F proved with the Galois norm:
q(α) = αᾱ; see Theorem (19.21).)

Additionally the scalar matrices give a subalgebra F1 of dimension 1.

19.1.2. Spilt composition algebras of dimension 8. Composition alge-
bras of dimension 8 are called octonion algebras.1 The originals is the real, compact
algebra O due to Graves (1843, unpublished) and Cayley (1845) [SpV00, p. 23].
A version of its construction can be found at the end of Section 19.4.

A specific split octonion algebra Oct+(F ) is provided by Zorn’s vector matrices
[Zor31]

m =

[
a ~b
~c d

]
with a, d ∈ F and ~b,~c ∈ F 3. Multiplication is given by[

a ~b
~c d

] [
x ~y
~z w

]
=

[
ax+~b · ~z a~y + w~b
x~c+ d~z ~c · ~y + dw

]
+

[
0 ~c× ~z

−~b× ~y 0

]
using the standard dot (inner) and cross (outer, exterior, vector) products of 3-
vectors. The associated quadratic form is the norm (or determinant)

q(m) = ad−~b · ~c .

For any ~v with ~v · ~v = k 6= 0 the subalgebra of all

m =

[
a b~v

ck−1~v d

]
is a copy of the quaternion algebra Mat2(F ).

Zorn (and others) gave a slightly different version of these matrices, replac-
ing the entry ~c with its negative. This gives the more symmetrical norm form

1With this terminology we follow [SpV00]. Composition algebras with an identity element
and having dimension 8 are often called Cayley algebras.
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q(m) = ad + ~b · ~c but makes the connection with standard matrix multiplication
and determinants less clear.

(19.1). Theorem. Oct+(F ) with the notation and operations defined above is
a split octonion algebra.

Proof. The set is closed under addition and multiplication with identity
element [

1 0
0 1

]
.

The dot and cross products are bilinear, so we do have an F -algebra. The map q
is a quadratic form on the F -space Oct+(F ), easily seen to be nondegenerate (for
instance, only 0 is perpendicular to each of the eight matrix units) and so hyperbolic
since, for instance, the elements

m =

[
a ~0
~c 0

]
form a singular 4-space.

It remains to check (following [BuC97, Coh13]) that the form admits com-
position. This is not difficult and depends upon certain identities involving the dot
and cross products:

Let ~a,~b,~c, ~d ∈ F 3. Then

(i) ~a ·~b = ~b · ~a.

(ii) ~a×~b = −(~b× ~a) and ~a× ~a = 0.

(iii) ~a · (~a×~b) = 0.

(iv) (~a×~b) · (~c× ~d) = (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c). 2

Especially, as found in Theorem (19.23) below, the loop of units of Oct+(F ) is
a Moufang loop.

19.2. General structure

Essentially by definition, for an arbitrary F -algebra A the translation maps

L(a) : x 7→ ax and R(a) : x 7→ xa

yield linear transformations—the left and right adjoint maps. When a ∈ F , the
maps L(a) and R(a) are just scalar multiplication by a on the F -space A.

For the rest of this section we will assume that A is a composition F -algebra
with associated norm q : A −→ F . In this case, the translations have additional
structure.

(19.2). Lemma. For all a, x ∈ A, the composition law can be written as

q(xL(a)) = q(a)q(x) = q(xR(a)) .

Especially, in the language of Section 17.4, for nonsingular a the invertible trans-
lation maps L(a) and R(a) are similarities g with scaling factor µg = q(a). 2

The remarks of the lemma extend to the associated bilinear form h(·, ·).

(19.3). Lemma. For all a, x, y ∈ A,

(a) h(xa, ya) = h(ax, ay) = q(a)h(x, y).
(b) h(x, y)h(w, z) = h(xz, yw) + h(xw, yz).



154 19. COMPOSITION ALGEBRAS

Proof. (a)

h(ax, ay) = q(ax+ ay)− q(ax)− q(ay)

= q(a)q(x+ y)− q(a)q(x)− q(a)q(y)

= q(a)h(x, y) .

(b) We use the previous part in calculating

0 = q(x+ y)q(w + z)− q((x+ y)(w + z))

= h(x, y)h(w, z)− h(xz, yw) + h(xw, yz) . 2

(19.4). Lemma. If K is an extension field for F , then the algebra K ⊗F A
also is a composition algebra with respect to the induced quadratic form.

Proof. The multiplication and forms on A admit unique extension to K⊗F A
by bilinearity. To show that the induced form admits composition, we must prove
the extended law

q(
∑m
i=1 αixi)q(

∑m
j=1 αjzj) = q((

∑m
i=1 αixi)(

∑m
j=1 αjzj)) ,

where the αi form an F -basis for K and xi, zj ∈ A.
Consider first the situation with only two summands:

q(αx+ βy)q(αw + βz) = q((αx+ βy)(αw + βz)) ,

for all x, y, w, z ∈ A and α, β ∈ K. By the composition law and the previous lemma,
we have

q(αx+ βy)q(αw + βz)− q((αx+ βy)(αw + βz))

= αβ(h(x, y)h(w, z)− h(xz, yw)− h(xw, yz)) .

By Lemma (19.3) the righthand side is 0, and we have the desired composition law
in this special case.2

The general case then takes a similiar shape and follows from composition and
multiple applications of Lemma (19.3). 2

As an immediate corollary of Proposition (17.2) and Lemma (19.4), we have

(19.5). Corollary. If A has dimension at least 2 over F then, by tensoring
with an appropriate separable quadratic extension K, we get a composition algebra
K ⊗F A containing nonzero singular elements. 2

We define the operation of conjugation on A by

x 7→= −xs1 = −x+ h(x, 1)1 ,

where s1 is a symmetry of the quadratic F -space (A, q), as found in Proposition
(17.11).

For instance, in the split quaternion algebra of 2 × 2 matrices we have the
familiar [

α β
γ δ

]
=

[
δ −β
−γ α

]
.

This formula then carries over to Zorn’s representation of the split octonions.

2The most important case of the lemma is that where K is a quadratic extension of F and
the special case of composition is all that is needed.
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(19.6). Lemma.

(a) ¯̄x = x
(b) q(x) = q(x̄) and h(x, y) = h(x̄, ȳ)

Proof. These are direct consequences of x̄ = −xs1 . 2

(19.7). Proposition.

(a) x̄(xy) = q(x)y = (yx)x̄. In particular x̄x = q(x)1 = xx̄.
(b) x̄(yz) + ȳ(xz) = h(x, y)z and (zy)x̄+ (zx)ȳ = h(x, y)z.
(c) x̄y + ȳx = h(x, y)1 and yx̄+ xȳ = h(x, y)1.
(d) h(x, v̄y) = h(vx, y) and h(x, yv̄) = h(xv, y).

Proof. In each case, we only prove the first identity. We first prove (d):

h(x, v̄y) = h(x, (h(1, v)− v)y)
= h(x, y)h(1, v)− h(x, vy)
= h(x, y)(q(1 + v)− q(1)− q(v))− h(x, vy)
= h((1 + v)x, (1 + v)y)− h(x, y)− h(vx, vy)− h(x, vy)
= h(vx, y) .

Next, from (d)

h(x̄(xy), z) = h(xy, xz)
= q(x)h(y, z)
= h(q(x)y, z) ,

for all z. Therefore by nondegeneracy x̄(xy) = q(x)y, giving (a).
We linearize (a) to get (b):

(x̄+ ȳ)((x+ y)z) = q(x+ y)z
x̄(xz) + ȳ(yz) + x̄(yz) + ȳ(xz) = q(x)z + q(y)z + h(x, y)z

x̄(yz) + ȳ(xz) = h(x, y)z .

Part (c) is the special case z = 1 of (b). 2

The first part of the proposition immediately gives:

(19.8). Corollary. The following are equivalent:

(1) x is nonsingular.
(2) x is invertible.
(3) x has inverse q(x)−1x̄.
(4) R(x) is invertible.
(5) L(x) is invertible.

When all these hold, q(x)−1x̄ is a 2-sided inverse and we have the “inverse property”
identities:

x−1(xy) = x(x−1y) = y = (yx)x−1 = (yx−1)x

for all y. 2

(19.9). Corollary.

(a) x2 − h(x, 1)x+ q(x) = 0.
(b) xy = ȳx̄.
(c) (Alternative Law) x(xy) = x2y and (xy)y = xy2.
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Proof. By definition x̄x = (−x + h(x, 1)1)x = −x2 + h(x, 1)x, so (a) follows
directly from Proposition (19.7)(a).

For (b), we use Proposition (19.7)(d) many times:

h(xy, z) = h(1, (xy)z) = h(z̄, xy)
= h(z̄ȳ, x) = h(ȳ, zx)
= h(ȳx̄, z)

for all z. Therefore, by nondegeneracy, xy = ȳx̄.
(c) By Proposition (19.7)

x̄(xy) = q(x)y

(−x+ h(x, 1))(xy) = q(x)y

−x(xy) = q(x)y − h(x, 1)xy

−x(xy) = (q(x)− h(x, 1)x)y

−x(xy) = (−x2)y .

So we have the right alternative identity x(xy) = x2y, and the left alternative
identity follows in the opposite algebra. 2

(19.10). Corollary. For nonscalar x, the 2-space F1 ⊕ Fx is always a
commutative and associative subalgebra. Especially it is a composition subalgebra
of dimension 2 when nondegenerate. 2

19.3. Hurwitz’ Theorem in a restricted version

We now additionally assume that A is a finite dimensional composition algebra
over F with respect to nondegenerate q.

(19.11). Lemma. If x is a nonzero singular vector in A, then there exist
singular vectors y with h(x, y) 6= 0. Furthermore, for any such pair {x, y}, always
A = xA ⊕ yA = Ax ⊕ Ay with each xA and Ax maximal singular. In particular,
(A, q) is hyperbolic.

Proof. For all singular x, the subspaces xA and Ax are both singular since
q(xA) = 0 = q(Ax).

By Proposition (17.2) any nondegenerate 2-subspace containing x contains a
hyperbolic pair {x, y}. Especially x+ y is nonsingular. Thus by Corollary (19.8)

A = AL(x+y) = (x+ y)A ≤ xA+ yA ≤ A .
That is, A = xA+ yA . As q is nondegenerate xA∩ yA = 0, and both are maximal
singular. Therefore A = xA⊕ yA, and q is hyperbolic by Proposition (17.5).

A similar argument proves the claims for Ax and Ay. (Here and elsewhere,
lefthanded and righthanded versions of a result can be proven by similar arguments
or seen to be equivalent using Corollary (19.9)(b). Equally well, the opposite of
a composition algebra is again a composition algebra. In any event, we may only
give one version.) 2

From now on we will assume that the set S of nonzero singular vectors is not
empty. By the lemma (A, q) is hyperbolic. As before S1 is the set of singular 1-
spaces of A, and M is the set of all maximal singular subspaces of A. Let m be
the dimension of each member of M, so that A has F -dimension 2m.
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(19.12). Lemma.

(a) If x ∈ S, then the image of L(x) is xA and its kernel is x̄A.
(b) If x ∈ S, then the image of R(x) is Ax and its kernel is Ax̄.

Proof. Certainly the image of L(x) is xA. By Proposition (19.7)(a) the m-
space x̄A is contained in the kernel of L(x), which has dimension 2m −m = m.
2

(19.13). Lemma. Assume m ≥ 2. Let x, y ∈ S.

(a) If xy = 0, then xA ∩Ay = x(y⊥) = (x⊥)y of codimension 1 in each.
(b) xA 6= Ay.

Proof. By Proposition (19.7)(b), for all a ∈ A,

x̄(ay) + ā(xy) = h(x, a)y ,

and by Lemma (19.12)
xA ∩Ay = ker L(x̄) ∩Ay .

(a) If xy = 0 then x̄(ay) = h(x, a)y. Thus xA ∩ Ay = (x⊥)y and also x⊥ ≥
ker R(y) = Aȳ. As x⊥ has codimension 1 in A, the codimension of (x⊥)y in Ay =
im R(y) is 1.

(b) If xA = Ay then ā(xy) = h(x, a)y, so A(xy) ≤ 〈y〉 has dimension at most
1. By Corollary (19.8) and Lemma (19.12), for nonzero w the linear transformation
R(w) has rank m or 2m. As we are assuming m ≥ 2, this forces xy = 0 and so
contradicts (a). 2

(19.14). Lemma. Assume m ≥ 2.

(a) Let x be singular and U a maximal singular subspace with xA∩U of codimension
1 in each. Then there is a singular y with xy = 0, U = Ay, and xA ∩ U =
xA ∩Ay = x(y⊥) = (x⊥)y.

(b) Let x be singular and U a maximal singular subspace with Ax∩U of codimension
1 in each. Then there is a singular y with yx = 0, U = yA, and Ax ∩ U =
yA ∩Ax = y(x⊥) = (y⊥)x.

Proof. We only prove (a). Let U0 = U ∩ xA, of codimension 1 in each. Let
W be the preimage of U0 under L(x), so that W has codimension 1 in A. By
Lemma (19.12), ker(L(x)) = x̄A is contained in W . As W has codimension 1 in
A, there is a y, uniquely determined up to scalar multiple, with W = y⊥, hence
U0 = WL(x) = xW = x(y⊥). Furthermore, 〈y〉 = W⊥ ⊆ (x̄A)⊥ = x̄A, hence y ∈ S.
Also 0 = xy ∈ x(x̄A), by Proposition (19.7) or Lemma (19.12).

By the previous paragraph and Lemma (19.13), we have

xA ∩Ay = x(y⊥) = U0 = xA ∩ U .
Therefore Ay = U by Proposition (17.8)(a). 2

(19.15). Proposition. Assume m ≥ 2. For every maximal singular subspace
U , there is a singular x with U equal to one of xA or Ax. The two parts of the
incidence graph (M, ∼ ) on the set M of maximal singular subspaces are Mρ =
{Ax |x ∈ S} and Mλ = {xA |x ∈ S}.

Proof. Consider the two sets of maximal singular subspaces {Ax |x ∈ S}
and {xA |x ∈ S}. They are disjoint by Lemma (19.13). By Lemma (19.14) every
edge on yA in the incidence graph (M, ∼ ) goes to {Ax |x ∈ S}, and every edge



158 19. COMPOSITION ALGEBRAS

of (M, ∼ ) on Ay goes to {xA |x ∈ S}. By Proposition (17.9) (M, ∼ ) is bipartite
and connected, so these sets are the two parts of the bipartition. 2

(19.16). Lemma. Assume m ≥ 3. Let x, y ∈ S be with 〈x〉 6= 〈y〉.
(a) If h(x, y) = 0 then xA ∩ yA has codimension 2 in each and Ax ∩ Ay has

codimension 2 in each.
(b) xA 6= yA and Ax 6= Ay.

Proof. Let U0 be singular of dimension m− 1 (≥ 2) and containing 〈x, y〉. By
Lemma (19.14) and Proposition (19.15), there are w, z ∈ S with U0 = wA ∩ Az.
As 〈x, y〉 ⊆ Az, we have xz̄ = yz̄ = 0 by Lemma (19.12). Therefore xA ∩ Az̄ and
yA∩Az̄ both have dimension m− 1 by Lemma (19.13). This implies that xA∩ yA
has dimension at least m − 2. The dimension of xA ∩ yA cannot be m − 1 by
Lemmas (19.13) and (19.14), so (a) will follow from (b).

If xA = yA, then h(x, y) = 0; so in proving (b) we may make use of the previous
paragraph. By Lemma (19.13) again xA ∩ Az̄ = yA ∩ Az̄ equals the m − 1 space
(x⊥)z̄ = (y⊥)z̄. Its preimage under R(z̄) is then x⊥ = y⊥. This forces 〈x〉 = 〈y〉,
which is not the case.

Starting again with w̄x = w̄y = 0, we find the rest of the lemma. 2

(19.17). Corollary. Assume m ≥ 3. Then the map 〈x〉 7→ Ax gives a
bijection of S1 and Mρ and 〈x〉 7→ xA gives a bijection of S1 and Mλ.

Proof. This follows from Lemmas (19.13) and (19.16) and Proposition (19.15).
2

We now can prove Hurwitz’ Theorem (in the split, finite dimensional case).

(19.18). Theorem. (Hurwitz’ Theorem—restricted version) A finite
dimensional, split composition algebra A has dimension 2, 4, or 8.

Proof. Since q is hyperbolic, the dimension 2m is even. We must prove that
m is 1, 2, or 4. Assume that m is at least 3. Consider the partMλ = {xA |x ∈ S}
of the graph (M, ∼ ) and distances within it.

By Propositions (17.9) and (19.15), the distance from xA to yA in (M, ∼ ) is
even and equal to the codimension of xA ∩ yA in each. Every even number in the
range 0 to m must be realized, since (M, ∼ ) is connected of diameter m. But by
Lemmas (19.11) and (19.16), the only distances realized withinMλ = {xA |x ∈ S}
are 0 (when 〈x〉 = 〈y〉), 2 (when h(x, y) = 0 but 〈x〉 6= 〈y〉), and m (when h(x, y) 6=
0). This forces m to be even and 2 ≥ m− 2 (≥ 1). That is, m = 4. 2

19.4. Doubling and Hurwitz’ Theorem in its general version

The fundamental result is

(19.19). Proposition. Let B be a composition subalgebra of a composition
algebra. Choose t ∈ B⊥ with q(t) = −γ 6= 0. Then A = B+Bt = B⊕Bt = B ⊥ Bt
is a composition subalgebra of dimension twice that of B and with multiplication
given by

(u+ vt)(x+ yt) = (ux+ γȳv) + (yu+ vx̄)t ,

for u, v, x, y ∈ B. If B is split, then A is split.
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Proof. See Springer and Veldkamp [SpV00, Proposition 1.5.1].
For w, z ∈ B, we have by Proposition (19.7)(d), h(w, zt) = h(w̄z, t) = 0.

Therefore A = B+Bt is the perpendicular direct sum of nondegenerate B and Bt.
As γ 6= 0, Bt has dimension equal to that of B (by Corollary (19.8)) and is itself
nondegenerate by similarity. Therefore A is nondegenerate.

It remains to prove that A satisfies the stated multiplication rule. For w, z ∈ B
and r, s ∈ Bt, we have the fundamental identities:

(i) r = −r̄ ;
(ii) zr = rz̄ ;
(iii) (wz)r = z(wr) ;
(iv) (wr)s = (rs)w .

The first is clear, since h(r, 1) = 0. For the second, we start with Proposition
(19.7)(b):

(wz)r + (wr̄)z̄ = h(r̄, z)w = 0

hence (wz)r = −(wr̄)z̄ = (wr)z̄ by (i). Specializing to w = 1 gives (ii). We then
in turn have (wz)r = (wr)z̄ = z(wr) by (ii), and this is (iii).

For (iv), we again use Proposition (19.7)(b):

(rs)w + (rw̄)s̄ = h(w̄, s)r = 0

Hence (rs)w = −(rw̄)s̄ = (rw̄)s = (wr)s by (i) and (ii).
Therefore

(u+ vt)(x+ yt) = ux+ u(yt) + (vt)x+ (vt)(yt) ;
= ux+ (yu)t+ x̄(vt) + (t(yt))v by (iii), (ii), (iv) ;
= ux+ (yu)t+ (vx̄)t− (t̄(tȳ))v by (iii), (i), (ii) ;
= ux+ (yu)t+ (vx̄)t− (q(t)ȳ)v by (19.7)(a) ;
= (ux+ γȳv) + (yu+ vx̄)t ;

as desired. 2

(19.20). Corollary. Let β be an automorphism of B, and let t1 and t2 in
B⊥ with q(t1) = q(t2) 6= 0. Then there is a unique automorphism α of A with
α|B = β and α(t1) = t2. 2

(19.21). Theorem. Let C be a composition algebra over F .

(a) If dimF C = 1 then C = F with q(u) = u2.
(b) If dimF C > 1 then C contains composition subalgebras of dimension 2, which

can be chosen split if C is split.
(c) If C is split of dimension 2, then C is isomorphic to the commutative, associa-

tive algebra F ⊕ F with hyperbolic form q((u, v)) = uv.
(d) If C is nonsplit of dimension 2, then there is a separable quadratic extension

K of F and C is isomorphic, as F -composition algebra, to K provided with the
quadratic form q(a) = aā, where the bar denotes Galois conjugation in K over
F .

(e) If C is split of dimension 4 over F , then it is isomorphic to the associative
algebra Mat2(F ) with q the usual determinant function.

(f) If C is split of dimension 8 over F , then it is unique up to isomorphism and
contains split composition subalgebras of dimension 4.

Proof. The first part is clear. For C of dimension greater than 1 each 2-
subspace F ⊕ Fx is a subalgebra by Corollary (19.10). If C is split, then there are
singular x in C \1⊥. For each of these, F1⊕Fx is a split composition subalgebra by
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Proposition (17.2)(b). If C is nonsplit, then by Proposition (17.2)(c) the subalgebra
F1⊕ Fx is nondegenerate for all nonscalar x ∈ C \ 1⊥.

Let C have dimension 2. By Corollary (19.9) for b ∈ C \ F1 we have C =
F [b] ' F [z]/(z2 − h(b, 1)z+ q(b)). Therefore as F -algebra C can be identified with
F ⊕ F or K = F (b), a quadratic field extension of F . In the second case C = K is
a nonsplit division algebra.

If C is F ⊕ F , then (1, 0)(0, 1) = 0; so C is split and the two summands are
singular 1-spaces in C. As (1, 0) + (0, 1) = (1, 1) = 1,

h((1, 0), (0, 1)) = q((1, 1))− q((1, 0))− q((0, 1)) = 1− 0− 0 = 1 .

That is, x = (1, 0) and y = (0, 1) form a hyperbolic pair in C. Furthermore

q((u, v)) = q((u, 0)) + q((0, v)) + h((u, 0), (0, v)) = 0 + 0 + uv1 = uv .

In particular split C of dimension 2 is uniquely determined up to isomorphism, as
described under (c).

Next suppose nonsplit C is K = F (b), a quadratic field extension of F . As C is
nondegenerate, the polynomial z2 − h(b, 1)z + q(b) and field K are both separable
over F by Proposition (17.2). In particular a 6= ā and conjugation in the compo-
sition algebra C induces the nonidentity element of the Galois group of K over F .
By Proposition (19.7)(a) we have aā = q(a) for all a ∈ C.

Let C be split of dimension 4 or 8. By (b) it contains a hyperbolic subalge-
bra H = F1⊕Fx. As C itself is split hyperbolic, H⊥ contains nonsingular vectors
with all possible values by Proposition (17.2). Therefore by Proposition (19.19) and
Corollary (19.20) it has a 4-dimensional split subalgebra C4, unique up to isomor-
phism. As Mat2(F ) with q the determinant function is visibly a split composition
algebra of dimension 4, we are done with (e).

If C has dimension 8, then again C⊥4 contains nonsingular vectors with all
possible values. Proposition (19.19) and Corollary (19.20) tell us that the algebra
C = C8 is uniquely determined up to isomorphism. 2

We now prove the general version of Hurwitz’ theorem.

(19.22). Theorem. (Hurwitz’ Theorem—general version) A compo-
sition algebra has dimension 1, 2, 4, or 8 over the field F .

Proof. Assume C does not have dimension 1, 2, 4, or 8. By Corollary (19.5)
and Lemma (19.11) we may assume that the composition algebra is split (if neces-
sary, replacing F by a quadratic extension).

By Proposition (19.19) and Theorem (19.21) the algebra C contains a composi-
tion subalgebra of dimension 8 that is proper and split. Then one more application
of Proposition (19.19) yields a split composition (sub)algebra of dimension 16. This
contradicts our restricted version of Hurwitz’ Theorem, Theorem (19.18). 2

Proposition (19.19) has an important converse: “Dickson’s doubling construc-
tion.” If B is an arbitrary F -algebra with identity and admitting composition with
respect to the form qB , and if γ is a arbitrary nonzero element of F , then this for-
mula turns A = B⊕Bt into a F -algebra with identity that may admit composition
with respect to the quadratic form qA(x + yt) = qB(x) − γqB(y). Conjugation is
given by x+ yt = x̄− yt.
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For a split composition algebra, every possible value γ is attained by q on
each nondegenerate split subspace. A standard uniqueness, existence, nonexistence
proof for split composition algebras uses this construction:

(1) start from F = A1 itself, commutative and associative with the conjuga-
tion map trivial (in characteristic 2, must start with A2);

(2) the double of A1 is A2, a uniquely determined composition algebra of
dimension 2, which is commutative and associative but has nontrivial
conjugation;

(3) A2 has unique double A4, a composition algebra of dimension 4, associa-
tive but no longer commutative;

(4) A4 doubles to a unique algebra A8 of dimension 8, which still admits
composition but is now neither commutative nor associative;

(5) finally, from A8 the double A16 of dimension 16 no longer admits compo-
sition.

We have all that is needed for a formal proof, but see Springer and Veldkamp
[SpV00, Proposition 1.5.3] for the details.

The doubling construction can be expressed nicely in 2× 2 matrix form:[
u v
γv̄ ū

] [
x y
γȳ x̄

]
=

[
ux+ γȳv yu+ vx̄
γxv̄ + γūȳ γv̄y + x̄ū

]
.

The selection γ = −1 then gives the usual matrix construction of the complex
numbers C from the reals R and Hamilton’s quaternion division algebra H from the
complexes, finishing with the Cayley-Graves division algebra O of real, compact
octonions.

On the other hand, starting again with A = R but instead choosing γ = 1 leads
us to the unique real, split composition algebras R⊕ R, Mat2(R), and Oct+(R).

From the matrix version, we easily see that when the algebra B is commutative
and conjugation is trivial, the resulting A is commutative. As long as B is commu-
tative, the product on A is just the regular matrix product and so is associative.
Less obvious but still true is that for associative B admitting composition, the
algebra A admits composition with respect to the “determinant” form xx̄− γȳy.

19.5. Commuting and associating

Hamilton found that a crucial step in going from the complex numbers to the
quaternions was giving up on commutativity. Similarly Graves (and Cayley) real-
ized that moving to the next level, the octonions, required sacrificing associativity.
To what extent are these higher dimensional composition algebras commutative
and associative?

By Corollary (19.9)(c) a composition algebra is an alternative algebra, so the
following is contained in results of Moufang [Mou35]. In all composition algebras
the Moufang identities are easy to verify and hold for all elements, not just the
units of the algebra.

(19.23). Theorem. In the composition algebra C, we have the Moufang
identities

(xa)(bx) = (x(ab))x , ((xa)x)b = x(a(xb)) , ((ax)b)x = a(x(bx)) ,
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for all a, b, x ∈ C. Especially, by setting a = 1 in either the first or third of the
Moufang identities, we get the flexible identity

(xb)x = x(bx) .

Proof. We only prove the first Moufang identity; the others follow similarly.
Our proof follows [SpV00, Prop. 1.4.1]. For arbitrary z ∈ V , we use parts of
Lemma (19.3) and Proposition (19.7) to calculate

h((x(ab))x−(xa)(bx), z) = h((x(ab))x, z)− h((xa)(bx), z)

= h(x(ab), zx̄)− h(xa, z(x̄b̄))

= h(x, z)h(ab, x̄)− h(xx̄, z(ab))− (h(x, z)h(a, x̄b̄)− h(x(x̄b̄), za))

= h(x(x̄b̄), za)− h(xx̄, z(ab))

= q(x)(h(b̄, za)− h(z̄, ab))

= q(x)(h(z̄b̄, a)− h(z̄b̄, a))

= 0

As q and h are nondegenerate, this gives (x(ab))x = (xa)(bx), as desired. 2

At times we use the flexible identity implicitly to write xbx in place of (xb)x
or x(bx).

In sympathy with our definitions for quasigroups and loops (on page 85), we
define nuclei for composition algebras. Given subsets S and T of the algebra C,
the right associator for S in T , written NucρT (S), is the set of all z ∈ T with

(ab)z = a(bz) for all a, b ∈ S .

For instance, with M the Moufang loop of units in C, we have NucρM (M) =
Nucρ(M), the right nucleus of the loop M . The right nucleus of the algebra C
is NucρC(C) = Nucρ(C), the right associator for C in C.

Similarly the left associator for S in T is the set NucλT (S) of all x ∈ T with

(xb)c = x(bc) for all b, c ∈ S ,

The left nucleus of C is then NucλC(C) = Nucλ(C). Also the middle associator for
S in T is the set NucµT (S) of all y ∈ T with

(ay)c = a(yc) for all a, c ∈ S ,

the middle nucleus being NucµC(C) = Nucµ(C). The associator for S in T is then

NucT (S) = NucλT (S) ∩NucµT (S) ∩NucρT (S)

with the nucleus of C being NucC(C) = Nuc(C).
In a similar vein, the centralizer of S in T , written CT (S) consists of all t ∈ T

with

st = ts for all s ∈ S .
The centralizer of C is then CC(C) = C(C). Finally, the center of C is the inter-
section of its centralizer and nucleus: Z(C) = C(C) ∩Nuc(C).

(19.24). Proposition. Let C be a composition algebra over F .

(a) The centralizer C(C) of C is an F -subspace of C.
(b) The various nuclei Nuc∗(C) and center Z(C) of C are F -subalgebras of C.
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(c) If K is an extension field of F , then C(C) = C ∩ C(C|K) and Nuc∗(C) =
C ∩Nuc∗(C|K).

Proof. Commutativity is tested by the commutator c(x, y) = xy − yx and
associativity by the associator a(x, y, z) = (xy)z−x(yz), both F -multilinear. Thus
the centralizer and nuclei can be characterized in terms of these vanishing appro-
priately on an F -basis. In particular the centralizer C(C) and nuclei Nuc∗(C) are
F -subspaces of C and sit within those of C|K = K ⊗F C, for all extensions K of
F .

We must check that the nuclei are closed under multiplication and so are sub-
algebras. Consider, for instance u, v ∈ Nucµ(C). We have, for all a, c ∈ C:

(a(uv))c = ((au)v)c as u ∈ Nucµ(C) ;

= (au)(vc) as v ∈ Nucµ(C) ;

= a(u(vc)) as u ∈ Nucµ(C) ;

= a((uv)c) as v ∈ Nucµ(C) .

That is, uv ∈ Nucµ(C), as desired. Within the associative subalgebra Nuc(C), a
product of centralizing elements is centralizing. 2

(19.25). Proposition.

(a) A composition algebra of dimension 1 or 2 is always commutative and associa-
tive.

(b) A composition algebra C of dimension 4 over F is always associative and its
center Z(C) is its subalgebra F1.

Proof. The first part is clear from Theorem (19.21).
Assume C has dimension 4. By Corollary (19.5) and the previous proposition,

there is an extension K of F (separable of degree at most 2) with the nucleus and
center of C inside the nucleus and center, respectively, of the split algebra C|K .
By Theorem (19.21) this algebra is isomorphic to Mat2(K), associative with center
equal to its dimension 1 subalgebra of scalar matrices. 2

(19.26). Proposition. In the octonion algebra O the F -subspace

M = {m ∈ O | x(my)− (xm)y ∈ F1 , for all x, y ∈ O }
is equal to F1, the subspace of central scalars.

Proof. The set M is an F -subspace of O and contains F1. As in the previous
proposition, Corollary (19.5) and Proposition (19.24) allow us to reduce to the case
of split octonions. We need only consider Zorn’s vector matrices[

a ~b
~c d

]
with a, d ∈ F and ~b,~c ∈ F 3; see Section 19.1.2.

It is enough to show that if the vector matrix

m =

[
f ~b
~c 0

]
=

[
a ~b
~c d

]
−
[
d ~0
~0 d

]
belongs to M , then m = 0. Let

~e1 = (1, 0, 0) , ~e2 = (0, 1, 0) , ~e3 = (0, 0, 1) , ~b = (b1, b2, b3) , ~c = (c1, c2, c3) .
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For {i, j, k} = {1, 2, 3}[
0 ~ei
~0 0

]([
f ~b
~c 0

] [
0 ~ej
~0 0

])
−([

0 ~ei
~0 0

] [
f ~b
~c 0

])[
0 ~ej
~0 0

]
=

[
bk cj~ei − ci~ej
±f~ek bk

]
.

Assuming m ∈M , we must have f = 0 and ~c = ~0. Furthermore[
0 ~0
~ei 0

]([
0 ~b
~0 0

] [
0 ~0
~ej 0

])
−([

0 ~0
~ei 0

] [
0 ~b
~0 0

])[
0 ~0
~ej 0

]
=

[
0 ~0

bj~ei − bi~ej 0

]
,

and ~b = ~0 as well. Thus m = 0, as desired. 2

(19.27). Theorem. An octonion algebra O over F has C(O) = Z(O) =
Nucµ(C) = Nuc(O) = F1.

Proof. Again, using Corollary (19.5) and Proposition (19.24) we reduce to
the case of split octonions, realized as vector matrices as before.

The only vector matrices that commute with all diagonal matrices are the
diagonal matrices themselves. Of these, the only ones that commute with the
matrices [

0 ~e
~0 0

]
are the scalar matrices, which commute with everything. We conclude C(O) = F1.

The middle nucleus of O is contained in the subspace M of the previous propo-
sition. Therefore by that proposition the middle nucleus and the nucleus are equal
to F1. Then also Z(O) = C(O) ∩Nuc(O) = F1. 2

It is no surprise that additional calculation along the same lines shows that
Z(O) is equal to each of the nuclei of O.

19.6. Algebraic triality for the split octonions

We return to the notation of Section 19.3, although here we restrict our at-
tention to the triality case of the split octonions A with 2m = 8. The associated
triality graph is T = T 1 ] T 2 ] T 3 where T 1 = S1, T 2 =Mλ, and T 3 =Mρ. By
Corollary (18.2) this is a T -geometry.

(19.28). Lemma. For 〈x〉, 〈y〉 ∈ T 1, the following are equivalent:
(1) xy = 0;
(2) 〈y〉 ∼ x̄A;
(3) 〈x〉 ∼ Aȳ;
(4) 〈ȳ〉 ∼ Ax;
(5) 〈x̄〉 ∼ yA;
(6) xA ∼ Ay;
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(7) ȳA ∼ Ax̄.

Proof. By Lemma (19.12), x̄A is the kernel of L(x), so y ∈ x̄A if and only if
xy = 0. Similarly 〈x〉 ∈ Aȳ = ker(R(y)) if and only if xy = 0. Also 〈ȳ〉 ∈ Ax if
and only if ȳx̄ = 0 if and only if xy = 0 by Corollary (19.9)(b), and similarly for
〈x̄〉 ∈ yA.

By Lemmas (19.13), (19.14), and (19.16) the intersection xA ∩ Ay has codi-
mension 1 in each if and only if xy = 0, and similarly ȳA ∩ Ax̄ has codimension 1
in each if and only if ȳx̄ = 0. 2

Define on T the map τ , for all 〈x〉 ∈ T 1:

〈x〉 τ−→ x̄A
τ−→ Ax̄

τ−→ 〈x〉 .
The map τ is well-defined by Corollary (19.17). The following theorem gives us the
promised algebraic proof of Theorem (18.5)(b).

(19.29). Theorem. The map τ is an automorphism of T of order 3, a triality
automorphism—transitive on the set {T 1, T 2, T 3}.

Proof. We have τ acting on pairs:

(〈y〉, x̄A)
τ−→ (ȳA,Ax̄)

τ−→ (Aȳ, 〈x〉) τ−→ (〈y〉, x̄A) .

By the lemma, any one of these is an edge of T if and only if xy = 0, in which case
they are all edges. Therefore τ is an automorphism of the graph T . 2

Let κ be the permutation of T determined by the conjugation map in A:

κ(〈x〉) = 〈x̄〉; κ(xA) = Ax̄; κ(Ax) = x̄A .

(19.30). Proposition. κ is an automorphism of T of order 2 that inverts
the triality automorphism τ .

Proof. We have on pairs

(〈y〉, x̄A)
κ←→ (〈ȳ〉, Ax) and (ȳA,Ax̄)

κ←→ (Ay, xA) .

Again by Lemma (19.28), any of these pairs is an edge if and only if xy = 0, in
which case all are edges. Furthermore

〈x〉 κ−→ 〈x̄〉 τ−→ xA
κ−→ Ax̄ ,

and so forth, leading to

〈x〉 κτκ−→ Ax̄
κτκ−→ x̄A

κτκ−→ 〈x〉 .
Therefore κτκ = τ−1, as claimed. 2

By Proposition (17.11) the map κ arises naturally, induced by the negative of
the orthogonal symmetry s1 on A.

The following will be of use later.

(19.31). Proposition. Let X ∈ T i and z be an invertible (that is, nonsingu-
lar) element of A. Then both Xz = XR(z) and zX = XL(z) belong to T i.

Proof. Let y be singular. Then q(yz) = q(zy) = q(y)q(z) = 0, so the result
holds for i = 1.

We need only consider the case i = 2. As y is singular and z is invertible, both
(yA)z and z(yA) are singular 4-spaces. We must determine their classes. Let a
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be arbitrary in A so that (ya)z is an arbitrary element of (yA)z. We make use of
Proposition (19.7):

(ya)z = −(yz̄)ā+ h(z̄, a)y

= −(yz̄)ā+ h(z̄, a)q(z)−1q(z)y

= −(yz̄)ā+ h(z̄, a)q(z)−1(yz̄)z

= (yz̄)(−ā+ h(z̄, a)q(z)−1z) .

That is, (yA)z = (yz̄)A ∈ T 2. Similarly

z(ya) = −ȳ(z̄a) + h(z̄, y)a

= −ȳ(z̄a) + h(z̄, y)q(z)−1q(z)a

= −ȳ(z̄a) + h(z̄, y)q(z)−1z(z̄a)

= (−ȳ + q(z)−1h(z̄, y)z)(z̄a) ,

whence z(yA) = wA ∈ T 2 for singular

w = −ȳ + q(z)−1h(z̄, y)z = −ȳsz

by Proposition (17.11). 2



Chapter 20
Freudenthal’s Triality

One common version of triality for the octonion algebra O goes back at least
to Freudenthal [Fre51]. It states that for each g ∈ GO(O) there are h, k ∈ GO(O)
such that either

xhyk = (xy)g for all x, y ∈ O
or

xhyk = (yx)g for all x, y ∈ O .
In Theorem (20.5) we present this as a statement about the existence of certain
autotopisms and anti-autotopisms.

One good aspect of this treatment is that the split and division octonion alge-
bras are handled simultaneously. Tits [Tit58, §4.3] also discusses descent and the
division algebras as forms of the split algebras.

20.1. Some calculations

It is reasonably clear that the concepts of autotopism and anti-autotopism,
defined initially for quasigroups Q in Section 2.2, have natural interpretations for
A any algebra. The triple of permutations (c+, c−, c0)+ ∈ Sym(A)

3
is an autotopism

of A provided

xc+yc− = (xy)c0 for all x, y ∈ A
and (c+, c−, c0)− is an anti-autotopism of A provided

xc+yc− = (yx)c0 for all x, y ∈ A

These again form a group AAtp(A) under the multiplication

(a+, a−, a0)α · (b+, b−, b0)β = (aβb+, a−βb−, a0b0)αβ ,

within which the autotopisms form a normal subgroup Atp(A) of index at most 2.

The following lemma will be used without reference.

(20.1). Lemma. Let (A, q) be a composition algebra. If (g+, g−, g)ε ∈ AAtp(A)
and α, β, γ ∈ F× with αβ = γ, then (αg+, βg−, γg)ε ∈ AAtp(A). 2

Recall from Theorem (19.23) that the flexible identity (ab)a = a(ba) allows us
to write aba unambiguously in the next lemma.

167
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(20.2). Lemma. Let a be a nonsingular element of the composition algebra
(A, q). For each x ∈ O:

(a) xsa = −q(a)−1ax̄a. Especially xs1 = −x̄.
(b) xs1 sa = q(a)−1axa.

Proof. Part (a) immediately gives (b). By Proposition (19.7)(c)

xsa = x− q(a)−1h(x, a)a

= x− q(a)−1(xā+ ax̄)a

= x− q(a)−1(xā)a− q(a)−1(ax̄)a

= x− q(a)−1q(a)x− q(a)−1(ax̄)a

= −q(a)−1ax̄a . 2

(20.3). Proposition. Let a be a nonsingular element of the composition
algebra (A, q).

(a) (−q(a)−1 s1 L(a) , s1 R(a) , sa)− ∈ AAtp(A)\Atp(A). Especially (− s1, s1, s1)− ∈
AAtp(A) \Atp(A).

(b) (q(a)−1 L(a) , R(a) , s1 sa) ∈ Atp(A).
(c) (L(a) R(a) , L(a)−1, L(a)) ∈ Atp(A).
(d) (R(a)−1, R(a) L(a) , R(a)) ∈ Atp(A).

Proof. (a) By the previous lemma and the Moufang identity

(xy)sa = −q(a)−1axya

= −q(a)−1a(ȳx̄)a

= −q(a)−1(aȳ)(x̄a)

= −q(a)−1(ys1 L(a))(xs1 R(a)) .

(b) (q(a)−1 L(a),R(a), s1 sa)+

= (−1,−1, 1)+(− s1, s1, s1)−(−q(a)−1 s1 L(a), s1 R(a), sa)− .

(c) By Corollary (19.8) and a Moufang identity from Theorem (19.23) with
z = a−1y:

((ax)a)z = a(x(az))

((ax)a)(a−1y) = a(x(a(a−1y))

((ax)a)(a−1y) = a(xy)

xL(a) R(a)yL(a)−1

= (xy)L(a) ,

and (d) is (c) in the opposite algebra Aop. 2

20.2. Freudenthal’s triality

For the octonion algebra O we denote its loop of units GOct(O), the general
octonion loop. By Corollary (19.8) it consists of the nonsingular vectors in O and
is a Moufang loop by Theorem (19.23).

Recall from Lemma (19.2) that for a ∈ GOct(O) the linear transformations
L(a) and R(a) are similarities of the octonion algebra (O, q) with multiplier q(a).

(20.4). Proposition. Let O be an octonion algebra.
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(a) O(O) = 〈 sb | b ∈ GOct(O) 〉.
(b) GO(O) = 〈L(a), sb | a, b ∈ GOct(O) 〉 = 〈R(a), sb | a, b ∈ GOct(O) 〉.
(c) The image of the homomorphism µ : GO(O) −→ F× given by g 7→ µg is q(O)×,

the multiplicative group of all nonzero values taken by the form q.

Proof. (a) As O is a composition algebra, it is either asingular or split by
Lemma (19.11)). Therefore by the Cartan-Dieudonné Theorem, in one of the ver-
sions (17.14) and (17.15), we have O(O) = 〈 sb | b ∈ GOct(O) 〉.

(b) Let g ∈ GO(O) and set 1g = a−1 ∈ GOct(O). Then also gR(a), g L(a) ∈
GO(O) with

1gR(a) = (a−1)R(a) = a−1a = 1

and

1g L(a) = (a−1)L(a) = aa−1 = 1 ,

so in fact gR(a), g L(a) ∈ O(O). As g was chosen arbitrarily in GO(O), (a) yields

GO(O) = 〈L(a), sb | a, b ∈ GOct(O) 〉 = 〈R(a), sb | a, b ∈ GOct(O) 〉 .
(c) follows immediately from (b). 2

The next theorem presents the fundamental existence and uniqueness properties
that constitute Freudenthal’s version of triality.

(20.5). Theorem. (Freudenthal’s triality) Let O be an octonion algebra
and g ∈ GO(O).

(a) There exist a sign ε ∈ {±} and permutations g+, g− from Sym(O) such that
(g+, g−, g)ε is in AAtp(O).

(b) If (g+, g−, g)ε and (h+, h−, g)δ both belong to AAtp(O), then δ = ε = εg is
uniquely determined. Furthermore g+, g− ∈ GO(O), and there is a scalar β ∈
F× with h+ = β−1 g+ and h− = βg−.

Proof. (a) By Proposition (20.4)(b)

GO(O) = 〈L(a), sb | a, b ∈ GOct(O) 〉 = 〈R(a), sb | a, b ∈ GOct(O) 〉 .
Part (a) then follows by Proposition (20.3)(a,c,d). Note that the permutations g+

and g− given by the proposition belong to GO(O).

(b) As just observed, there are examples with g+, g− ∈ GO(O); so we only need
to prove the uniqueness claims.

Suppose that (g+, g−, g)ε and (h+, h−, g)δ are both in AAtp(O). Then AAtp(O)
also contains

(g+, g−, g)−1
ε (h+, h−, g)δ = (k+, k−, 1)εδ ,

for appropriate k+, k− ∈ Sym(O). That is, for all x, y ∈ O

xk+yk− equals xy if εδ = + and yx if εδ = − .
Set a = 1k+ and b = 1k− . Then

1 = 1 · 1 = 1k+1k− = ab ,

hence a, b ∈ GOct(O) with a−1 = b. Also

x = xk+1k− = xk+b and y = 1k+yk− = ayk− ,

so that k+ = R(b)−1 = R(b−1) and k− = L(a)−1 = L(a−1) (where we have used
Corollary (19.8)).
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That is,

(xb−1)(by) equals xy always or yx always, as appropriate.

First suppose εδ = −, so that (xb−1)(by) = yx always. With x = b this says that
yb = by for all y ∈ O, so b is in the centralizer of O. By Theorem (19.27) the
element b is a central scalar in O. But then xy = (xb−1)(by) = yx always, and O is
commutative, a contradiction. We conclude that the case εδ = −, which is to say
ε 6= δ, does not occur. Therefore δ = ε = εg is uniquely determined by g.

When εδ = +, set z = xb−1 so that zb = x. For all z, y we have

z(by) = ((zb)b−1)(by) = (zb)y .

That is, b is in the middle nucleus of O, which is the set of central scalars again by
Theorem (19.27). Thus b = β ∈ F× and a = β−1, as claimed. 2

Similar arguments extend the uniqueness property to say that if any one of the
entries in (h, k, g)ε ∈ AAtp(O) belongs ot GO(O) then the other two do as well and
are determined up to appropriate scalars.

Let the special general orthogonal group SGO(O) be the normal subgroup of
GO(O) consisting of all all g ∈ GO(O) with εg = +. Additionally let the special
orthogonal group1 SO(O) be the intersection O(O) ∩ SGO(O).

(20.6). Proposition.

(a) SGO(O) = 〈L(a), s1 sb | a, b ∈ GOct(O) 〉 = 〈R(a), s1 sb | a, b ∈ GOct(O) 〉 has
index 2 in GO(O) with GO(O) = 〈sb〉SGO(O) for each b ∈ GOct(O).

(b) SGO(O) = 〈L(a),R(a) | a ∈ GOct(O) 〉.
(c) SO(O) = 〈 s1 sb | b ∈ GOct(O) 〉 has index 2 in O(O) with O(O) = 〈sb〉SO(O)

for each b ∈ GOct(O).
(d) For (g+, g−, g)ε ∈ AAtp(O) with g ∈ SGO(O), we have εg = + and g+, g− ∈

SGO(O).

Proof. (a) By the previous theorem, the map g 7→ εg1 is a well-defined homo-
morphism from GO(O) to the cyclic group of order 2. By Proposition (20.3)(a) the
anti-autotopism (−q(a)−1 s1 L(a) , s1 R(a) , sa)− is in AAtp(A) \ Atp(A). There-
fore this homomorphism is surjective with kernel SGO(O) of index 2 in GO(O),
and GO(O) = 〈sb〉SGO(O) for each b ∈ GOct(O). Part (a) then follows from
Propositions (20.3)(c,d) and (20.4)(b) as sa sb = (s1 sa)−1(s1 sb).

(b) By Lemma (20.2)(b)

s1 sa = q(a)−1 L(a) R(a) = L(q(a)−1) L(a) R(a) ,

so this follows from (a).

1Up to now we have only defined the special orthogonal group SO(V, q) for hyperbolic spaces.
Again here we only define it under specialized circumstances—there is a supported octonion

algebra. General definitions do exist. In characteristic other than 2 it can be (and often is)

defined as the group of orthogonal transformations having determinant 1. Every orthogonal
transformation has determinant ±1, and symmetries have determinant −1.

Every nondegenerate quadratic space can be embedded in a hyperbolic space, so the products
of even numbers of symmetries always form a normal subgroup of index 2 in the group generated by
all symmetries (even in characteristic 2). By the Cartan-Dieudonné Theorem in its full generality,

this group is almost always the full orthogonal group; so SO(V, q) = 〈 sa sb | q(a) 6= 0 6= q(b) 〉,
as in the third part of the proposition, is a reasonable definition that can also be found in the
literature.
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(c) Propositions (20.4)(a) gives O(O) = 〈 sb | b ∈ GOct(O) 〉, hence SO(O) =
〈 s1 sb | b ∈ GOct(O) 〉 has index 2.

(d) By Proposition (20.3)(b-d) this holds for g ∈ {s1 sb , L(a) , R(a)}. Therefore
by (a) it holds for all SGO(O). 2

Define the Freudenthal group of O to be

Frd(O) = { (g+, g−, g)ε ∈ AAtp(O) | g ∈ GO(O) } ,
as in the theorem. We then have the special Freudenthal group

SFrd(O) = { (g+, g−, g)+ ∈ Atp(O) | g ∈ SGO(O) } = Frd(O) ∩ SGO(O)3 .

The results in this section and projection onto the final coordinate then immediately
yield two short exact sequences for group central extensions:

(20.7). Theorem.

(a) 1 F× Frd(O) GO(O) 1 .

(b) 1 F× SFrd(O) SGO(O) 1 . 2

20.3. The spin kernel and spin group

The spinor norm and spin group can be defined for any (nondegenerate) orthog-
onal space, but this would necessitate the introduction of the Clifford algebra (as
in [Asc00]) or other machinery (for instance, as in [Tay92]) which we otherwise do
not need. Here we only treat the spaces and groups associated with octonion alge-
bras, making heavy use of the composition algebra structure. For us this treatment
is sufficient, convenient, and elegant.

(20.8). Proposition. Let O be an octonion algebra. For each g ∈ SGO(O)
choose (g+, g−, g) ∈ SFrd(O). Then for each ε ∈ {±} the map σε : SGO(O) −→
F×/(F×)2 given by

σε(g) = µgε(F
×)2

is well-defined and gives a homomorphism from SGO(O) to the elementary abelian
2-group F×/(F×)2.

The image of σε is q(O)×(F×)2. Especially σε is surjective if O is split.

Proof. By Theorem (20.5) the elements gε are well-defined up to a scalar βε.
But if q(xgε) = µgεq(v) for all x ∈ O, then

q(xβεgε) = q(βεx
gε) = β2

ε q(x
gε) = β2

εµgεq(v)

for all x ∈ O. Thus µβεgε = β2
εµgε and σε(βεgε) = σε(gε); as a map, σε is well-

defined.
Consider (g+, g−, g)+, (h+, h−, h)+ ∈ SFrd(O) with product

(g+h+, g−h−, gh)+ = ((gh)+, (gh)−, gh)+ ∈ Atp(O) .

Because µ is a homomorphism,

σε(gh) = µ(gh)ε(F
×)2

= µgεµhε(F
×)2

= µgε(F
×)2 µhε(F

×)2

= σε(g)σε(h) .



172 20. FREUDENTHAL’S TRIALITY

Therefore σε is indeed a homomorphism.
By Proposition (20.4) its image is q(O)×(F×)2. As hyperbolic forms realize all

possible values (by Proposition (17.2)(b)), this is surjective for split O. 2

We defined the spinor norm for hyperbolic 8-space in Section 17.6, although
we did not verify our claims about it. Now we both define it for arbitrary octonion
algebras and prove that it has the desired properties.

(20.9). Theorem. Let O be an octonion algebra. On the group SO(O) =
〈 s1 sb | b ∈ GOct(O) 〉, the spinor norm σ given by

σ :
∏
i

sxi 7→
∏
i

q(xi)(F
×)2 ,

is a well-defined homomorphism from SO(O) to F×/(F×)2. Indeed, σ is the restric-
tion to SO(O) of both of the homomorphisms σ+ and σ− from Proposition (20.8).
The image of σ is q(O)×(F×)2. Especially, σ is surjective if O is split.

Proof. From Proposition (20.3)(b), for nonsingular x ∈ O
(q(x)−1 L(x) , R(x) , s1 sx) ∈ Atp(O) .

Therefore
σ+(s1 sx) = σ−(s1 sx) = σ(s1 sx) = q(x)(F×)2 ,

as required.
Let g ∈ SO(O) and let g =

∏m
i=1 sxi be one of its factorizations. Here m = 2k

is even by Proposition (20.6)(a,c), so we have

g =

k∏
j=1

(s1 sx2j−1
)−1(s1 sx2j

)

and then

σε(g) = σε

( k∏
j=1

(s1 sx2j−1
)−1(s1 sx2j

)

)

=

k∏
j=1

σε(s1 sx2j−1)−1σε(s1 sx2j )

=

k∏
j=1

q(x2j−1)(F×)2q(x2j)(F
×)2

=

m∏
i=1

q(xi)(F
×)2 = σ(g) .

We conclude that σ is well-defined since σ+ and σ− are. Furthermore, for g, h ∈
SO(O),

σ(gh) = σε(gh) = σε(g)σε(h) = σ(g)σ(h) ,

and σ is a homomorphism.
Finally σ(s1 sx) = q(x)(F×)2, so the image of σ is q(O)×(F×)2. This is all of

F×/(F×)2 for split and hyperbolic (O, q), again by Proposition (17.2)(b). 2

The spin kernel (or reduced orthogonal group) is Ω(O), the kernel of the spinor
norm on SO(O). When O is split, the isomorphism class is uniquely determined
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by the field F and we may write Ω+(O) or even Ω+
8 (F ) (as seen in Section 17.6).

The center is {± Id} (see below) and the corresponding central quotients are the
respective projective groups PΩ(O), PΩ+(O), and PΩ+

8 (F ) (= D4(F ) ).

For g ∈ Ω(O), consider a corresponding (g+, g−, g)+ ∈ Atp(O). Then by
Theorem (20.5) in fact (g+, g−, g)+ belongs to SFrd(O) and

µg+µg− = µg = 1 and µgε(F
×)2 = σ(g) = (F×)2 .

Therefore there is a β ∈ F with µg+ = β−2 and µg− = β2. For h+ = βg+ and
h− = β−1g− we find

(h+, h−, g) ∈ Atp(O) ∩ SO(O)
3

= SFrd(O) ∩ SO(O)
3
.

Define the spin group Spin(O) to be the group SFrd(O) ∩ SO(O)
3

(= Atp(O) ∩
SO(O)

3
). In the split case, this is Spin8(F ).

(20.10). Theorem. Let O be an octonion algebra. Then the projection π onto
the third coordinate gives an exact sequence

1 {± Id} Spin(O) Ω(O) 1 .π

This is a central extension. More precisely 〈(− Id,− Id, Id), (− Id, Id,− Id)〉 is the
center of Spin(O) with image the center {± Id} of Ω(O).

Proof. Above we saw that for every g ∈ Ω(O) there is an (h+, h−, g) ∈
Spin(O). On the other hand, if (h+, h−, g) ∈ Spin(O), then σ(g) = σε(hε) is trivial;
so g ∈ Ω(O). Therefore projection is a surjective homomorphism. The kernel
consists of all (k+, k−, Id) with kε ∈ SO(O). By Theorem (20.5) this is precisely
the central subgroup {±(− Id,− Id, Id)}. The central subgroup {±(− Id, Id,− Id)}
of Spin(F ) then has image the scalar subgroup {± Id} of Ω(O). Indeed, this is its
full center (say, by Proposition (21.3)(a) below). 2

Some care must be take with context for the spin group. In the literature one
can find statements to the effect that the spin group is a double cover of the special
orthogonal group. As the theorem suggests, this holds only when the spinor norm
is the trivial map. This is often not the case (for instance, when F is a finite field
of odd characteristic) but does occur in certain important circumstances. If the
field F is algebraically closed, as in the context of algebraic groups, then F 2 = F
and the spinor norm must be trivial. Similarly, in the theory of Lie groups we may
implicitly be restricted to the real field R and the standard Euclidean form, where
the nonzero value set is equal to R+ = (R×)2 and the spinor norm is again trivial.





Chapter 21
The Loop of Units in an Octonion Algebra

In the matrix algebra Mat2(F ) the group of units is GL2(F ). It has scalar
center F×I and dually a determinant homomorphism with kernel SL2(F ). The
determinant of the scalars gives all squares, and the center meets SL2(F ) in {±I}.
We have the projective quotients PGL2(F ) and PSL2(F ), the latter almost always
simple. In view of Zorn’s vector matrices, an octonion algebra O, particularly if
split, might be viewed as a generalization of Mat2(F ). Various similar loop sections
exist within the Moufang loop of units of O. In the split case their analysis goes
well. But just as the division rings that are forms of Mat2(F ) are more exotic, so
the structure and properties of division algebras O are more elusive.

21.1. Loop sections of octonion algebras

We discuss the appropriate generalizations of the center and the determinant.
The composition algebra (A, q) over the field F will usually be written A with

the form q and field F implicit. An octonion algebra O over F may at times be
denoted Oct(F ). Especially Oct+(F ) is a split octonion algebra over F . Theorem
(19.21) tells us that an algebra Oct+(F ) is uniquely determined up to isomorphism.
A particular model for Oct+(F ) is that of Zorn’s vector matrices, discussed at length
in Section 19.1.2.

By Corollary (19.8) an element m of Oct(F ) is invertible if and only if q(m) 6=
0. Recall that the corresponding loop of units, the general octonion loop or unit
octonion loop, is denoted GOct(O) or GOct(F ) and is a nonassociative Moufang
loop by Theorem (19.23). In the split case we write GOct+(F ) for the loop of units
in Oct+(F ). In the nonsplit case GOct(O) = O\{0}, so that O is a division algebra.

Since q admits composition, it is a loop homomorphism from GOct(O) to F×.
Its kernel, denoted SOct(O) or SOct(F ), is the normal subloop consisting of all
units having norm 1. This is the special octonion loop or norm 1 octonion loop.
In the split case GOct+(F ) this is SOct+(F ) and the map to F× is surjective by
Proposition (17.2)(b).

The utility of results like the following was first observed by P. Vojtěchovský;
see [NVo03, Theorem 7.1].
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(21.1). Proposition. The composition algebra A is spanned by its subloop
of elements with norm 1 unless it is isomorphic to one of the split algebras F2⊕F2

or F3 ⊕ F3.

Proof. This is trivial if the dimension is 1.
Consider the split case. For F ⊕F with form q((a, b)) = ab, the norm 1 loop is

the subgroup S = { (a, a−1) | a ∈ F× }. It contains 1 = (1, 1), so S spans A unless
F× = { a ∈ F | a = a−1 }, that is, unless F is F2 or F3. In those two cases the full
algebra is not spanned by S.

In dimension 4, the split algebra Mat2(F ) is always spanned by the four norm
1 matrices [

1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 −1
1 1

]
.

In dimension 8, the split algebra A is Mat2(F ) ⊥ Mat2(F )t as in Proposition
(19.19). We may choose t with q(t) = 1 by Proposition (17.2), as q is hyperbolic
on A. Since Mat2(F ) is spanned by elements of norm 1, so is Mat2(F )t and finally
A as well.

We may now assume that our composition algebra A is nonsplit; that is, is
a division algebra. In particular, for every nonscalar x ∈ A \ 1⊥, the subspace
F1⊕ Fx is a nonsplit composition subalgebra by Proposition (17.2) and Corollary
(19.10). All such subalgebras generate A, so we are reduced to consideration of
2-dimensional nonsplit composition algebras.

By Theorem (19.21) there is a separable quadratic extension K of F such
A is isomorphic as composition algebra to K provided with the quadratic norm
q(a) = aaγ , where γ acts as Galois conjugation in K over F . As 1 · 1γ = 1, the
claim that K is spanned by its norm 1 elements is equivalent to the claim that
not all norm 1 elements are in the fixed subfield F . Assume the opposite, for a
contradiction.

For a ∈ K× the commutator a−1aγ has norm 1 and so belongs to F× by
assumption. Each norm aaγ is fixed by γ and so also belongs to F . We conclude
that all (nonzero) squares a2 = aaγ(a−1aγ)−1 belong to F . Let a ∈ K \ F . We
then have b = a2 ∈ F and also (a + 1)2 = a2 + 2a + 1 ∈ F . Therefore 2a ∈ F .
As a /∈ F , this can only happen in characteristic 2. In that case, a is a root of the
inseparable polynomial z2 + b ∈ F [z]. This is a contradiction, since K is separable
over F . 2

For each (g+, g−, g0)ε ∈ Frd(O), the permutations gδ from Sym(O) in fact
belong to GO(O) by Theorem (20.5). In particular for nonsingular a the image
agδ is also nonsingular. That is, the elements of Frd(O) in their action on O3

leave GOct(O)3 invariant and indeed induce autotopisms or anti-autotopisms of
GOct(O). We can therefore consider the homomorphism given by restriction from
O to the invariant GOct(O). The proposition immediately gives:

(21.2). Corollary. The restriction map Frd(O) −→ AAtp(GO(O)) is an
injective homomorphism. 2

(21.3). Proposition. Let O be an octonion algebra over F .

(a) If g ∈ SO(O) takes each x ∈ SOct(O) to ±x, then g is a scalar from {± Id}.
(b) If g ∈ GO(O) leaves invariant each 1-space Fx with q(x) 6= 0, then g is a scalar

from F× Id.
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Proof. As O is spanned by SOct(O) (Proposition (21.1)), it is enough in
both parts to prove that the function α : SOct(O) −→ F , given by xg = αxx, is a
constant function αx = α. For F = F2 we must have αx = 1, and g is the identity;
we are done. For F = F3, the only possible scalars αx are ±1, so the element g
has order 2 (or 1), and the hypotheses say that every x ∈ SOct(O) is in one of
the eigenspaces CO(g) and [O, g]. But |SOct(O)| = 2160 while 36 − 1 = 728 and
37 − 1 = 2186, so easily the only possibilities are O = CO(g) or O = [O, g]; that is,
g is a scalar as claimed. Thus in proving (a) and (b) we may assume |F | ≥ 4.

(a) Here αx = ±1. In particular we may assume that charF 6= 2.
By Lemma (17.10) the space O is the perpendicular direct sum of its two

eigenspaces CO(g) and [O, g]. By hypothesis every element of SOct(O) belongs to
one or the other eigenspace. We may assume (for a contradiction) that both are
nontrivial.

By Proposition (21.1) there are x ∈ CO(g) and y ∈ [O, g] with q(x) = q(y) = 1.
Choose nonzero a, b ∈ F with a2 = 1 + b2 (always possible as |F | ≥ 4). Then
v = x+ by has q(v) = 1 + b2 = a2. Thus a−1v is in SOct(O) but in neither of the
eigenspaces CO(g) and [O, g], the desired contradiction.

(b) As before α from GOct(O) to F× is given by xg = αxx. By Proposition
(17.2), if a 2-subspace of O contains nonsingular vectors then it has at most two
singular 1-spaces, so it contains a basis x, y of nonsingular vectors such that x+ y
is also nonsingular (as |F | ≥ 4). But then

xg + yg = (x+ y)g =⇒ αxx+ αyy = αx+y(x+ y) = αx+yx+ αx+yy ,

so αx = αx+y = αy. Thus α is constant on each 2-space containing nonsingular
vectors. Applied to the subalgebras F1 ⊕ Fx, this shows that the map α is a
constant on GOct(O). Therefore g is a scalar linear transformation by Proposition
(21.1). 2

(21.4). Theorem.

(a) Nuc(GOct(F )) = C(GOct(F )) = Z(GOct(F )) = F×1.
(b) Nuc(SOct(F )) = C(SOct(F )) = Z(SOct(F )) = {±1}.

Proof. By Proposition (21.1) the nucleus of GOct(F ) and that of SOct(F )
are nuclear in Oct(F ), so they consist of central scalars by Theorem (19.27). This is
similarly true for the centralizer of GOct(F ). In particular the nonzero scalar sub-
group F×1 of GOct(F ) is equal to the normal central subgroup Nuc(GOct(F )) =
C(GOct(F )) = Z(GOct(F )).

For the scalar b we have q(b) = b2q(1) = b2. Especially the only scalars of norm
1 are ±1, and thus Nuc(SOct(F )) = C(SOct(F )) = Z(SOct(F )) is the normal,
central, scalar subgroup {±1} of order 1 or 2. 2

The quotient loop GOct(F ))/F×1 is PGOct(F ), the projective general octonion
loop, especially PGOct+(F ) in the split case. Similarly the quotient SOct(F )/{±1}
is the projective special octonion loop PSOct(F ). In particular we have PSOct+(F ),
usually called a Paige loop since Paige [Pai56] first studied these loops carefully,
proving that they are simple Moufang loops.1 Alternative notation is PGOct(O)
and PSOct(O).

1Notation for the Paige loops varies. For instance, they are M(F ) in [Dor78], M∗(F ) in
[NVo03], and PSLL(F ) in [Gag06].
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(21.5). Theorem. The loops PGOct(F ) and PSOct(F ) have trivial nucleus.

Proof. Let n be a preimage in GOct(O) of an element of the nucleus of L,
one of these loops. Then by Proposition (21.1) it belongs to the subspace

M = {m ∈ O | x(my)− (xm)y ∈ F1 , for all x, y ∈ O }

of Proposition (19.26). By that proposition n is a central scalar and so has trivial
image in the loop L. 2

(21.6). Theorem. The norm map q : GOct(O) −→ F× is a surjective homo-
morphism in Loop?. Therefore there is a surjective homomorphisms in TriGrp? from
the universal group with triality GOct(O)G = GGOct(O) to (F× × F×) o Sym(3).

Proof. By Lemma (11.2) the universal group with triality G = GGOct(O) has

as quotient in TriGrp? the universal group H = GF× for the Mouf?-image F×. By
Corollary (4.7) this last group has quotient (F× × F×) o Sym(3). 2

21.2. Octonion multiplication and triality groups

Let O be an octonion algebra over F . In this section for the loops L among
GOct(O), PGOct(O), SOct(O), and PSOct(O) we approach the multiplication
group Mlt(L) and the associated universal group with triality GL. The results
are not definitive. Especially, the identification of the center Z(GL) is difficult for
any Moufang loop; we do not address that here. We would be happy to find each
corresponding adjoint group with triality TAtp(L), defined by

TAtp(L) = GL /Z(GL) = LTA = SAtp(L) o Sym(3)

or its base, the special autotopism group SAtp(L). Even with that we are not
entirely successful.

There is, however, some good news. By Theorem (12.15) the multiplication
group Mlt(L) is a quotient of SAtp(L) by an A isomorphic to a subgroup of the
nucleus of L. In the previous section we have proven that each L has a relatively
elementary nucleus. Indeed PGOct(O) and PSOct(O) have trivial nuclei, so for
these two loops Mlt(L) = SAtp(L).

(21.7). Theorem. For the octonion algebra O, the multiplication group of its
loop of units GOct(O) is the special general orthogonal group SGO(O).

Proof. We found in Proposition (20.6)(b) that within GO(O) the linear trans-
formation group 〈L(a),R(a) | a ∈ GOct(O) 〉 is SGO(O). By Proposition (21.1) this
action is faithful when restricted to GOct(O). We conclude that Mlt(O) = SGO(O).

2

(21.8). Corollary. Mlt(PGOct(F )) = SAtp(PGOct(F )) = PSGO(O).

Proof. As PGOct(F ) has trivial nucleus (by Theorem (21.5)) we have

Mlt(PGOct(F )) = SAtp(PGOct(F ))

by Theorem (12.15). Let N = F×1, the nucleus of GOct(F ). Each translation
L(x) and R(y) of Mlt(GOct(F )) induces the translation L(Nx) and R(Ny) on
PGOct(F ) = GOct(F )/N . Accordingly

L(x) 7→ L(Nx) R(y) 7→ R(Ny)
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gives a surjective homomorphism from Mlt(GOct(F )) onto Mlt(PGOct(F )). The
kernel of this homomorphism is induced by linear transformations from SGO(O) =
Mlt(GOct(F )) that leave each 1-space of GOct(F ) invariant. Therefore by Propo-
sition (21.3)(b) the kernel consists of the scalar subgroup F×1 and

Mlt(PGOct(F )) = SGO(O)/F×1 = PSGO(O) ,

as claimed. 2

(21.9). Theorem. The group admitting triality SAtp(GOct(O)) is equal to
SFrd(O), identified with its image in Atp(GOct(O)) via Corollary (21.2). Especially
there is a short exact sequence

1 F× SAtp(GOct(O)) SGO(O) 1 .

Proof. By the previous theorem and Proposition (12.11)

SAtp(GOct(O)) ≤ { (g+, g−, g) ∈ Atp(GOct(O)) | g ∈ SGO(O) } = SFrd(O),

with both SAtp(GOct(O)) and SFrd(O) projecting in the last coordinate to Mlt(O) =
SGO(O). Therefore

SFrd(O) = SAtp(GOct(O))M ,

where M = { (f, f−1, Id) | f ∈ F× } is the kernel of projection in SFrd(O) onto its
third coordinate. Indeed it is that same kernel in all Atp(O) by Theorem (20.5).
Now within Atp(GOct(O)) we see that M ≤ SAtp(F×1) ≤ SAtp(GOct(O)). Thus
SFrd(O) = SAtp(GOct(O)) and the short exact sequence

1 F× SFrd(O) SGO(O) 1 .

of Theorem (20.7) becomes that of the theorem. 2

In view of Theorem (21.9), it is tempting to think that for the subloop SOct(O)

the corresponding group admitting triality is Atp(SOct(O))∩SO(O)
3

= Spin(O) so
that the multiplication group would be Ω(O). We shall see in the next section that
this does happen in the split case, but we cannot prove it in general. The difficulty
arises because earlier we were able to use the Cartan-Dieudonné Theorem to prove
〈 s1 sa | q(a) 6= 0 〉 = SO(O) hence 〈L(a),R(a) | q(a) 6= 0 〉 = SGO(O), whereas now
we only have 〈 s1 sa | q(a) = 1 〉 ≤ 〈L(a),R(a) | q(a) = 1 〉 ≤ Ω(O).

Define the normal subgroup Ω1(O) of O(O) to be the subgroup generated by all
products s1 sa for q(a) = 1, equivalently q(a) ∈ (F×)2. The spinor norm is trivial
on each element s1 sa, so we have Ω1(O) ≤ Ω(O).

(21.10). Theorem. Let O be an octonion algebra. The multiplication group
of SOct(O) is is a nonscalar normal subgroup of Ω(O) that contains Ω1(O).

Proof. By Proposition (21.1), the embedding of

Mlt(SOct(O)) = 〈L(a),R(a) | q(a) = 1 〉
in Mlt(GOct(O)) and Mlt(O) is an injection.

The similarities L(a) and R(a) are isometries when q(a) = 1 and so belong to
SO(O) = O(O)∩ SGO(O) by Proposition (20.6). Therefore by Proposition (12.11)

SAtp(SOct(O)) ≤ Atp(O) ∩ SO(O)
3

which is Spin(O) (Theorem (20.10)). From
the third coordinate of this, we learn that Mlt(SOct(O)) is a normal subgroup of
Ω(O), clearly nonscalar by Proposition (21.1).
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By Lemma (20.2)(b), for all x ∈ O and q(a) = 1

xs1 sa = q(a)−1axa = axa = xL(a) R(a) ,

so the normal subgroup Ω1(O) of O(O) is contained in Mlt(SOct(O)). 2

By Theorem (21.4)(b) the loop SOct(O) has nucleus {±1}, and the subgroup
{± Id} of scalars in Ω(O) is in the kernel of the natural map from Mlt(SOct(O)) to
Mlt(PSOct(O)). Indeed by Proposition (21.3)(a) it is equal to that kernel and to
the center of Ω(O) (see Theorem (20.10)).

Let PΩ(O) and PΩ1(O) be the images of Ω(O) and Ω1(O) in PSO(O). The
remarks of the previous paragraph give

(21.11). Corollary. Let O be an octonion algebra. Then Mlt(PSOct(O)) =
SAtp(PSO(O)) is a nontrivial normal subgroup of PΩ(O) that contains PΩ1(O).
2

21.3. The split octonions

In the case of the split octonions O over F we can provide complete results in
the cases that were not resolved in the previous section. It is no surprise that we
encounter Cartan’s group with triality again.

Nagy and Vojtěchovský [NVo03] calculated the multiplication groups of the
special split octonion loops SOct+(F ) and the Paige loops PSOct+(F ). They ob-
served that these results are “folklore” but are rarely (if ever, before [NVo03])
provided with a complete proof. At least for finite Paige loops, the results are
already implicit in Doro’s paper [Dor78].

(21.12). Theorem.

(a) Mlt(SOct+(F )) = Ω+
8 (F ).

(b) SAtp(SOct+(F )) = Spin8(F ).
(c) TAtp(SOct+(F )) = Spin8(F ) o Sym(3).

Proof. From Theorem (21.10) we have the nonscalar subgroup Ω1(O) con-
tained in Mlt(SOct(O)), both normal in Ω(O) = Ω+

8 (F ). By Theorem (17.16) this
last group is quasisimple. Therefore

Ω1(O) = Mlt(SOct(O)) = Ω+
8 (F ) ,

as claimed under (a).
As in proof of Theorem (21.10), Proposition (12.11) yields

SAtp(SOct+(O)) ≤ Atp(O) ∩ SO(O)
3

= Spin8(F )

with the projection of SAtp(SOct+(O)) onto each coordinate equal to Ω+
8 (F ) =

Mlt(SOct+(F )) by (a). Especially (− Id,− Id, Id) ∈ SAtp(SOct+(O)), so

SAtp(SOct+(O)) = 〈(− Id,− Id, Id)〉SAtp(SOct+(O)) = Spin8(F ) ,

as in (b). Part (c) follows directly. 2

(21.13). Theorem.

(a) Mlt(PSOct+(F )) = SAtp(PSOct+(F )) = PΩ+
8 (F ).

(b) TAtp(PSOct+(F )) = PΩ+
8 (F ) o Sym(3).

Proof. From Theorem (21.11) we have the nontrivial subgroup PΩ1(O) con-
tained in Mlt(PSOct(O)), both normal in PΩ(O) = PΩ+

8 (F ). By Theorem (17.16)
this last group is simple. 2
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21.4. Simple Moufang loops

It is fitting that we finish this lengthy monograph by returning to Paige’s early
and fundamental paper [Pai56]. Its main result is:

(21.14). Theorem. For every field F , the Moufang loop PSOct+(F ) is simple.

Proof. By Theorem (21.13) Mlt(PSOct+(F )) = PΩ+
8 (F ), which is simple by

Theorem (17.16). The result follows from Corollary (14.6). 2

A converse to Paige’s theorem has been conjectured, namely that all nonas-
sociative simple Moufang loops are isomorphic to PSOct(O) for some octonion
algebra O. Liebeck [Lie87] proved this for finite Moufang loops and Hall [Hal07b]
for locally finite Moufang loops (that is, Moufang loops in which every finite sub-
set generates a finite subloop). Under these hypotheses only the split case occurs
(Corollary (17.4)), so the nonassociative simple Moufang loops encountered are
Paige loops.

(21.15). Theorem. (Liebeck [Lie87] (Hall [Hal07b])) A (locally) finite
simple Moufang loop is either associative—and so is a simple group—or is isomor-
phic to a Paige loop PSOct+(F ) over a (locally) finite field F . 2

Following Doro’s plan [Dor78] and Theorem (14.5)(3), Liebeck searched the list
of nonabelian finite simple groups H, looking for triality simple groups HoSym(3).
He proved that the only examples are PΩ+

8 (F )oSym(3) over finite fields F . The
associated loops are then the Paige loops PSOct+(F ).

Two additional observations of Paige [Pai56] are consequences of Corollary
(14.6). They point up the distinction between the uniformity of the split case, as
seen in Paige’s Theorem (21.14), and the sensitivity of the nonsplit case to the
arithmetic of the underlying field.

(21.16). Corollary.

(a) Let O be the real compact octonions (the original Cayley-Graves octonions).
Then Mlt(PSOct(O)) = PΩ(O) = PSO(O) is simple (as is well-known), and
in particular PSOct(O) is simple.

(b) Let Ot denote the real compact octonions tensored up to the field R((t)) of
Laurent series. Then Mlt(PSOct(Ot)) is not simple [Die48], and in particular
PSOct(Ot) is not simple. 2
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[Car25] É. Cartan, Le principe de dualité et la théorie des groupes simples et semi-simple,

Bull. Sc. Math., 49 (1925), 361–374.
[Che74] O. Chein, Moufang loops of small order. I, Trans. Amer. Math. Soc., 188 (1974),

31–51.
[Che78] O. Chein, Moufang loops of small order, Mem. Amer. Math. Soc., 13 (1978), no. 197.

[ChP71] O. Chein and H. Pflugfelder, The smallest Moufang loop, Arch. Math. (Basel), 22

(1971), 573–576.
[Cho49] W.L. Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. (Series

2), 50 (1949), 32–67.
[Coh13] A.M. Cohen, “Diagram Geometry,” draft, 23 August 2013.
[Cur07] R.T. Curtis, Construction of a family of Moufang loops, Math. Proc. Cambridge Phi-

los. Soc., 142 (2007), 233–237.
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