
Chapter 9

Weight and Distance
Enumeration

The weight and distance enumerators record the weight and distance informa-
tion for the code. In turn they can be analyzed to reveal properties of the code.
The most important result is MacWilliams’ Theorem, which we prove several
times. We also prove the related Delsarte Bound and Lloyd’s Theorem.

9.1 Basics

The basic definitions are:

Definition. Let code C ⊆ Fn (F a field) contain ci codewords of weight i,
for i = 1, . . . n. Then the weight enumerator is weight enumerator

WC(z) =
∑
c∈C

zwH(c) =
n∑

i=0

ciz
i ∈ Z[z] .

The homogeneous weight enumerator is homogeneous weight
enumerator

WC(x, y) = xnWC(y/x) =
n∑

i=0

cix
n−iyi ∈ Z[x, y] .

Actually these definitions make sense whenever the alphabet admits addition,
an example of interest being F = Zs.

Definition. The distance enumerator of the code A is given by distance enumerator

WA(z) = |A|−1
∑

c,d∈A

zdH(c,d) ∈ Q[z] .

This can be defined for any alphabet. The notation does not greatly conflict with
that above, since the distance enumerator of A equals the weight enumerator
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126 CHAPTER 9. WEIGHT AND DISTANCE ENUMERATION

of A when A is linear. (Indeed, for a code defined over an alphabet admitting
addition, we can translate each codeword to the 0-word and get an associated
weight enumerator. The distance enumerator is then the average of these weight
enumerators.) One could also define a homogeneous distance enumerator.

The basic results are that of MacWilliams:

(9.1.1) Theorem. (MacWilliams’ Theorem.) Let C be a [n, k] linear
code over Fs. Set

WC(z) =
n∑

i=0

ci z
i and WC⊥(z) =

n∑
i=0

c⊥i z
i .

Then
(1) WC(z) = |C⊥|−1

∑n
i=0 c

⊥
i (1 + (s− 1)z)n−i(1− z)i , and

(2) WC(x, y) = |C⊥|−1WC⊥(x+ (s− 1)y, x− y) .

and its nonlinear relative due to Delsarte:

(9.1.2) Theorem. (Delsarte’s Theorem.) Let A be a code in Fn with
distance enumerator WA(z) =

∑n
i=0 aiz

i. Define the rational numbers bm by

|A|−1
n∑

i=0

ai(1 + (s− 1)z)n−i(1− z)i =
n∑

m=0

bmz
m .

Then bm ≥ 0, for all m.

These two results are related to Lloyd’s Theorem 9.4.9, which states that cer-
tain polynomials associated with perfect codes must have integral roots. Lloyd’s
Theorem is the most powerful tool available for proving nonexistence results for
perfect codes.

9.2 MacWilliams’ Theorem and performance

In this section we relate weight enumerators to code performance. This leads to
a first proof of MacWilliams’ Theorem. For easy of exposition, we shall restrict
ourselves to the consideration of binary linear codes on the BSC(p) throughout
this section. Let C be a binary [n, k] linear code. (See Theorem 9.4.8 below for
the general case of MacWilliams’ Theorem 9.1.1.)

We begin with performance analysis for the binary linear code C on the
BSC(p) under the basic error detection algorithm SS0 = D:

Algorithm D:
receive r;
if r ∈ C, then decode to r;
otherwise decode to ∞.
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As before, we view the received vector r as being the sum of the transmitted
codeword c and an error word e, that is, r = c + e. There are three things that
can happen:

correct decoding (error vector e = 0),
error detected (error vector e 6∈ C),
and false decoding (error vector e ∈ C, e 6= 0).

The probability of correct decoding is qn (where q = 1− p). The probability of
the other two events can be calculated using the weight enumerator of C. We
calculate them in terms of the probability that decoding results in a guess at a
codeword, whether or not that guess is correct.

(9.2.1) Proposition. Let PD be the probability of detecting an error, PE the
probability of false decoding, and PR the probability of getting a decoding result.

(1) PR = qn + PE.
(2) PR + PD = 1.
(3) PR =

∑n
i=0 ci q

n−ipi = WC(q, p).

Proof. The first two parts are clear. For the third, observe that we have a
decoding result precisely when the error word is a codeword. The chance of a
given word of weight w occuring as an error word is qn−wpw. 2

Next we use the dual code C⊥ to calculate PR in a different way. MacWilliams’
Theorem results from equating the two probabilities. (This proof of MacWilliams’
Theorem follows Chang and Wolf, 1980.)

Set M = 2n−k, and let C⊥ = {h1,h2, . . . ,hj , . . . ,hM}. For any r ∈ Fn
2 , we

let sj(r) = hj · r and

S(r) = (s1(r), s2(r), . . . , sj(r), . . . , sM (r)) ∈ FM
2 ,

the “total syndrome” of r. We have

r gives a result ⇐⇒ r ∈ C ⇐⇒ e ∈ C
⇐⇒ S(r) = 0 ⇐⇒ S(e) = 0

and

r gives a detected error ⇐⇒ r 6∈ C ⇐⇒ e 6∈ C
⇐⇒ S(r) 6= 0 ⇐⇒ S(e) 6= 0
⇐⇒ sj(r) 6= 0, some j ⇐⇒ sj(e) 6= 0, some j .

Of course, for a fixed e and j, the probability that S(e) 6= 0 or that sj(e) 6= 0
is either 0 or 1. Indeed

(9.2.2) Lemma.

Prob(S(e) 6= 0 | e) = Prob(sj(e) 6= 0, some j | e)

=
1

2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | e, j) .
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Proof. The sum is exactly the weight of S(e). The number of entries 0 in
S(e) is the cardinality of e⊥ ∩ C⊥, and so is M = 2n−k if e ∈ C and is M/2 =
2n−k−1 if e 6∈ C. Therefore wH(S(e)) 6= 0 if and only if wH(S(e)) = 2n−k−1. 2

From the lemma we get

PD = Prob(S(e) 6= 0)

=
∑
e∈Fn

2

Prob(e)Prob(S(e) 6= 0 | e)

=
∑
e∈Fn

2

Prob(e)
1

2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | e, j)

=
1

2n−k−1

M∑
j=1

∑
e∈Fn

2

Prob(e)Prob(sj(e) 6= 0 | e, j)

=
1

2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | j)

Therefore of interest is

(9.2.3) Lemma. For wH(hj) = wj,

Prob(sj(e) 6= 0 | j) =
wj∑
odd
i=0

(
wj

i

)
qwj−ipi

= (1− (q − p)wj )/2 .

Proof. Let l1, . . . , lwj
be the nonzero coordinate positions of hj . Then

sj(e) = hj · e 6= 0 if and only if there are an odd number of 1’s among the
positions eli for i = 1, . . . , wj . This gives the first equality. The rest follows
from Lemma 9.2.4 below, as q + p = 1. 2

(9.2.4) Lemma. (1)
∑w

i=0

(
w
i

)
aw−ibi = (a+ b)w .

(2)
∑w

i=0

(
w
i

)
(−1)iaw−ibi = (a− b)w .

(3)
∑w

odd i=0

(
w
i

)
aw−ibi = ((a+ b)w − (a− b)w)/2 . 2



9.2. MACWILLIAMS’ THEOREM AND PERFORMANCE 129

Lemma 9.2.3 and the previous calculation now give

PR = 1− PD

= 1−

 1
2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | j)


= 1−

 1
2n−k−1

M∑
j=1

(1− (q − p)wj )/2


= 1−

 1
2n−k

M∑
j=1

(1− (q − p)wj )


= 1− 1

2n−k

M∑
j=1

1 +
1

2n−k

M∑
j=1

(q − p)wj

=
1

2n−k

M∑
j=1

(q − p)wj

=
1

2n−k

n∑
i=0

c⊥i (q − p)i ,

where
∑n

i=0 c
⊥
i z

i = WC⊥(z).

Comparing this with Proposition 9.2.1, we obtain

(9.2.5) Proposition.
∑n

i=0 ci q
n−ipi = PR = 1

2n−k

∑n
i=0 c

⊥
i (q − p)i. 2

Proof of MacWilliams’ Theorem 9.1.1 (Binary Case):
In the equation of the proposition, replace p by z

1+z and q = 1 − p by 1
1+z to

get

n∑
i=0

ci

(
1

1 + z

)n−i(
z

1 + z

)i

=
1

(1 + z)n

n∑
i=0

ci z
i 1
2n−k

n∑
i=0

c⊥i

(
1− z
1 + z

)i

,

hence
n∑

i=0

ci z
i =

1
2n−k

n∑
i=0

c⊥i (1 + z)n−i(1− z)i .

These two polynomial functions are equal when evaluated at any 0 ≤ p < 1,
hence for all z ≥ 0. We conclude that the equality is still valid in the polynomial
ring Q[z]. This gives a first proof of MacWilliams’ Theorem 9.1.1 in the binary
case. 2

Remark. The full version of MacWilliams’ Theorem 9.1.1 for linear codes
over Fs can be proven with exactly the same approach, evaluating in two ways
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the performance of error detection on the sSC(p). A proof of MacWilliams’
Theorem in full generality is given below in Theorem 9.4.8(2).

Next we consider performance at the other end of the decoding spectrum—
maximum likelihood decoding for error correction. The weight enumerator of
a linear code can still be used to help us bound the probability of decoding
falsehood PE = PC(MLD).

(9.2.6) Theorem. When decoding the binary linear code C on the BSC(p)
(with p ≤ 1

2) under MLD, we have

PC(MLD) ≤
n∑

w=1

cw Ew ,

where

Ew =
w∑

i=dw/2e

(
w

i

)
pi(1− p)w−i .

In particular
PC(MLD) ≤WC

(
2
√
p(1− p)

)
− 1 .

Proof. For a given nonzero codeword x of weight w, Ew is the probability
that the error vector e is at least as close to x as it is to 0. This must be the
case if, when decoding r = c + e, MLD incorrectly prefers c + x to c + 0 = c.
This gives the first bound on PC(MLD). (It is very unlikely to be tight, since
a given e might be closer to several codewords than it is to 0.)

As p ≤ 1
2 , we have

Ew =
w∑

i=dw/2e

(
w

i

)
pi(1− p)w−i ≤ pw/2(1− p)w/2

w∑
i=dw/2e

(
w

i

)

≤ pw/2(1− p)w/2
w∑

i=1

(
w

i

)
= pw/2(1− p)w/22w

=
(

2
√
p(1− p)

)w

.

Therefore

PC(MLD) ≤
n∑

w=1

cw Ew ≤
n∑

w=1

cw

(
2
√
p(1− p)

)w

= WC

(
2
√
p(1− p)

)
− 1,

as desired. 2

This theorem is an example of the Union Bound, and our treatment follows
McEliece and Van Tilborg.
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9.3 Delsarte’s Theorem and bounds

We use a version of the Plotkin Bound to prove a “nonlinear MacWilliams’
Theorem,” due originally to Delsarte. Delsarte’s Theorem (9.1.2, 9.3.5, 9.4.8(1))
then leads to other important bounds.

For integers m,n, s with 0 ≤ m ≤ n and s ≥ 2, define the s-ary Krawtchouk
polynomial Krawtchouk polynomial

Km(x;n, s) =
m∑

j=0

(−1)j

(
x

j

)(
n− x
m− j

)
(s− 1)m−j ,

where, by definition, (
x

j

)
=
x(x− 1) · · · (x− j + 1)

j!
,

for x ∈ R. For fixed m,n, s, the Krawtchouk polynomial Km(x;n, s) has degree
(at most) m in x. In particular, it is uniquely determined (using, say, Lagrange
interpolation) by its values at the integers i ∈ {0, 1, . . . , n}. Indeed its degree
in x is exactly m, since the coefficient of xm is

m∑
j=0

(−1)j 1j

j!
(−1)m−j

(m− j)!
(s− 1)m−j =

(−1)m

m!

m∑
j=0

(
m

j

)
(s− 1)m−j =

(−s)m

m!
.

For us, the point of introduction to these interesting polynomials is

(9.3.1) Proposition. The Krawtchouk polynomial Km(x;n, s) has degree m
in x. For i ∈ {0, 1, . . . , n}, Km(i;n, s) is the coefficient of zm in

(1 + (s− 1)z)n−i(1− z)i .

Proof. The first remark was proven above. Calculating the convolution,
we see that the coefficient of zm in this product is

m∑
j=0

((
n− i
m− j

)
(s− 1)m−jzm−j

)((
i

j

)
(−1)jzj

)
. 2

(9.3.2) Corollary. (1) K0(i;n, s) = 1.
(2) K1(i;n, s) = (n− i)(s− 1)− i = (s− 1)n− si.
(3) Km(0;n, s) = (s− 1)n

(
n
m

)
. 2

These could also be calculated directly.

(9.3.3) Corollary. For 1 ≤ m ≤ n and 1 ≤ i ≤ n, we have the recursion

Km(i;n, s) = Km(i− 1;n, s)−Km−1(i− 1;n, s)− (s− 1)Km−1(i;n, s) .
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Proof. If we evaluate the coefficient of zm on both sides of

((1+(s−1)z)n−i(1−z)i)(1+(s−1)z) = ((1+(s−1)z)n−(i−1)(1−z)i−1)(1−z) ,

then we find

Km(i;n, s) + (s− 1)Km−1(i;n, s) = Km(i− 1;n, s)−Km−1(i− 1;n, s) . 2

Corollary 9.3.3 gives an easy recursive method for calculating the Krawtchouk
coefficients, with Corollary 9.3.2(1) and (3) providing initialization.

The proposition allows us to reformulate MacWilliams’ Theorem as

(9.3.4) Theorem. (MacWilliams’ Theorem in Krawtchouk form.)
Let A and B be Fs-linear codes of length n with B = A⊥. Set WA(z) =∑n

i=0 ai z
i and WB(z) =

∑n
i=0 bi z

i. Then

|A|−1
n∑

i=0

Km(i;n, s)ai = bm .

Proof. Set A = C⊥ and B = C in MacWilliams’ Theorem 9.1.1. Then bm
is the coefficient of zm in

WB(z) = |A|−1
n∑

i=0

ai(1 + (s− 1)z)n−i(1− z)i ,

and the result follows from Proposition 9.3.1. 2

We will prove Delsarte’s Theorem 9.1.2 in its Krawtchouk form:

(9.3.5) Theorem. (Delsarte’s Theorem in Krawtchouk form.) Let
A be a code of length n over an alphabet of size s, and set WA(z) =

∑n
i=0 ai z

i.
Then, for 0 ≤ m ≤ n,

n∑
i=0

Km(i;n, s) ai ≥ 0 .

In view of Theorem 9.3.4, Delsarte’s Theorem can be thought of as a “nonlinear”
version of MacWilliams’ Theorem. Our proof here of Delsarte’s Theorem follows
Simonis and DeVroedt (1991). For linear codes A we also recover MacWilliams’
Theorem (in its Krawtchouk form, Theorem 9.3.4) in the process, giving us a
second proof of that result.

Let A be a code of length n with size |A| = M , and let WA(z) =
∑n

i=0 ai z
i

be its distance enumerator. In the next lemma s is arbitrary, but after that
we will restrict our attention again to the binary case s = 2. As before, this
restriction is only for the sake of clarity. The arguments readily extend to larger
alphabets. (See Theorem 9.4.8(1) below for the general case.)

(9.3.6) Lemma. (1)
∑n

i=0 ai = M .

(2) M
∑n

i=0 i ai =
∑

c,d∈A dH(c,d) .
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Proof. We have

WA(z) = M−1
∑

c,d∈A

zdH(c,d) =
n∑

i=0

ai z
i ;

so

WA(1) = M−1
∑

c,d∈A

1dH(c,d) =
n∑

i=0

ai ,

giving (1). Similarly

WA(1)′ = M−1
∑

c,d∈A

dH(c,d) 1dH(c,d)−1 =
n∑

i=0

i ai ,

giving (2). 2

Again direct arguments are available. The given proof of the lemma illustrates
how standard generating function methods can be used with weight and distance
enumerators.

Lemma 9.3.6(1) is a strong form of the 0’th Delsarte inequality:

n∑
i=0

K0(i;n, s) ai =
n∑

i=0

1 · ai = M ≥ 0 .

For linear A, this could be phrased as
∑n

i=0 K0(i;n, s) ai = Mb0, where b0 = 1
is the number of words of weight 0 in A⊥.

At this point, we assume additionally that A is a binary code.

(9.3.7) Lemma. (First binary Delsarte inequality.) We have

n∑
i=0

K1(i;n, 2) ai =
n∑

i=0

(n− 2i)ai ≥ 0 .

Indeed, if A is binary and linear, then this sum is Mb1, where b1 is the number
of words of weight 1 in A⊥.

Proof. Let G be an M ×n matrix whose rows are the codewords of A, and
let wj be the weight of the j’th column of G. In Lemma 9.3.6

M

n∑
i=0

i ai =
∑

c,d∈A

dH(c,d)

effectively counts pairwise distances in A by examining G row-by-row. To count
instead by columns, observe that in column j a 0 of row x and 1 of row y
contribute twice to the sum, once for each of dH(x,y) and dH(y,x). Thus∑

c,d∈A

dH(c,d) = 2
n∑

j=1

wj(M − wj) .
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Therefore

n∑
i=0

i ai = 2M−1
n∑

j=1

wj(M − wj)

≤ 2M−1
n∑

j=1

M2

4

=
n

2
M

=
n

2

n∑
i=0

ai ,

and so

0 ≤ 2

(
n

2

n∑
i=0

ai −
n∑

i=0

i ai

)

=
n∑

i=0

(n− 2i)ai .

This proves the first Delsarte inequality.

If A is linear, then the various wj are either 0 or M/2. Indeed wj is 0 only
when there is in A⊥ a word of weight 1 whose nonzero entry is at position j,
the number of such positions being b1. Therefore

n∑
i=0

i ai = 2M−1
n∑

j=1

wj(M − wj)

= (n− b1)M/2

and

n∑
i=0

(n− 2i)ai = nM − (n− b1)M = b1M . 2

(9.3.8) Corollary. (Binary Plotkin bound.) If A is a binary code with
minimum distance d and length n < 2d, then

|A| ≤ 2d
2d− n

.
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Proof. The first Delsarte inequality yields

0 ≤
n∑

i=0

(n− 2i)ai

= n+
n∑

i=d

(n− 2i)ai

≤ n+ (n− 2d)
n∑

i=d

ai

= n+ (n− 2d)(|A| − 1)
= n− (n− 2d) + (n− 2d)|A|
= 2d+ (n− 2d)|A| .

This implies (2d− n)|A| ≤ 2d and so proves the Plotkin bound. 2

In Lemmas 9.3.6(1) and 9.3.7 we have the Delsarte inequalities for m = 0, 1
(and the corresponding linear interpretation). We next attack the m’th Delsarte
inequality.

For a fixed m, consider a new code A[m] = { c[m] | c ∈ C } of length N =
(

n
m

)
.

Starting with a codeword c ∈ A, we construct the codeword c[m] ∈ A[m], whose
entries c[m]

J are indexed by the m-subsets of {1, . . . , n}, and are given by

c
[m]
J =

∑
j∈J

cj ,

for each m-subset J .

(9.3.9) Lemma.

(1) If x + y = z, then x[m] + y[m] = z[m].
(2) If wH(x) = i, then wH(x[m]) =

∑
jodd

(
i
j

)(
n−i
m−j

)
.

Proof. The first part is immediate. For the second part, let I be the subset
of {1, . . . , n} whose positions hold the 1’s of x. Then the entry x

[m]
J is 0 or 1

as |I ∩ J | = j is even or odd. For a fixed j, there are
(

i
j

)
choices for I ∩ J and(

n−i
m−j

)
ways of completing this choice to an appropriate m-subset of {1, . . . , n}.

2

A particular consequence of Lemma 9.3.9 is that A[m] has the same number
of codewords as A. The weight in (2) depends only on the original weight i, so
we can define

w[m](i) =
m∑

odd
j=0

(
i

j

)(
n− i
m− j

)
.
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If dH(x,y) = i, then dH(x[m],y[m]) = w[m](i). Therefore, for WA[m](z) =∑
r a

[m]
r zr, we have

a[m]
r =

∑
w[m](i)=r

ai .

The definition of w[m](i) is to be compared with the well-known binomial
identity (

n

m

)
=

m∑
j=0

(
i

j

)(
n− i
m− j

)
,

proved by counting m-subsets of a two-colored n set according to how many
elements of each color have been selected.

Proof of Delsarte’s Theorem 9.3.5 (Binary Case):
By the first Delsarte inequality for A[m], we have

0 ≤
N∑

r=0

(N − 2r)a[m]
r

=
N∑

r=0

(N − 2r)
∑

w[m](i)=r

ai

=
N∑

r=0

∑
w[m](i)=r

(N − 2w[m](i))ai

=
n∑

i=0

((
n

m

)
− 2w[m](i)

)
ai

=
n∑

i=0


 m∑

j=0

(
i

j

)(
n− i
m− j

)− 2

 m∑
odd
j=0

(
i

j

)(
n− i
m− j

)
 ai

=
n∑

i=0

 m∑
j=0

(−1)j

(
i

j

)(
n− i
m− j

) ai

=
n∑

i=0

Km(i;n, 2) ai . 2

In the case that A is linear, A[m] is also linear by Lemma 9.3.9(1). The sum
counts |A[m]| = |A| times the number of weight 1 words in A[m]⊥. Let x be
a word of weight 1 in FN

2 , and suppose its unique nonzero entry is in position
J , where J is an m-subset of {1, . . . , n}. Then x will be in A[m]⊥ when all
codewords of A[m] have J-entry 0. This happens when every codeword c of A
has an even number of 1’s in the positions of J . That is, when the word of Fn

2

with 1’s in the positions of J belongs to A⊥. Therefore words of weight 1 in
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A[m]⊥ correspond exactly to words of weight m in A⊥, and we have recovered
MacWilliams’ Theorem in its Krawtchouk form 9.3.4.

(9.3.10) Theorem. (Linear Programming Bound.) Let A be a code of
length n over an alphabet of size s with dmin(A) ≥ d. Then

|A| ≤ max

{
n∑

i=0

Ai

∣∣∣∣∣ A0 = 1, Ai = 0, 1 ≤ i ≤ d,

Am ≥ 0 ,
n∑

i=0

AiKm(i;n, s) ≥ 0, 1 ≤ m ≤ n

}
.

If s = 2 and d is even, then we can also assume that Ai = 0, for all odd i.

Proof. For WA(z) =
∑n

i=0 ai z
i, the choice Ai = ai solves all the inequali-

ties by Delsarte’s Theorem 9.3.5. It has
∑n

i=0Ai = |A|, by Lemma 9.3.6(1).
If s = 2 and d is even, then when we first puncture and then extend A, the

resulting code A∗ (even in the nonlinear case) has |A∗| = |A| and dmin(A∗) ≥ d.
Furthermore, the coefficients a∗i of WA∗(z) satisfy the same inequalities as the
ai and additionally have a∗i = 0, for odd i. 2

As our proof of the Plotkin bound in Corollary 9.3.8 suggests, these methods
can be used to find general bounds; but new bounds of this type are very difficult
to prove. On the other hand, the linear programming bound is remarkably
effective in specific cases, as the following example suggests.

Example. Let C be a binary linear code of length 8 with dmin(C) ≥
4. We prove that |C| ≤ 16 (the extended Hamming code providing an
example that has exactly 16 codewords).

We have A0 = 1, A2 = A3 = A5 = A7 = 0, and also A4 ≥ 0, A6 ≥ 0,
and A8 ≥ 0. The Delsarte inequalities for m and 8 −m are equal under
these circumstances, so only m = 1, 2, 3, 4 can be of help. In fact, those
for m = 1 and m = 2 are all we need. We have (using Corollaries 9.3.2
and 9.3.3)

0 ≤
8X

i=0

AiK1(i; n, s) = 8 + 0A4 − 4A6 − 8A8 ;

0 ≤
8X

i=0

AiK2(i; n, s) = 28− 4A4 + 4A6 + 28A8 .

The first inequality gives

A6 ≤ 2− 2A8,

so that in particular A8 ≤ 1. Adding the two inequalities produces

A4 ≤ 9 + 5A8 .
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Therefore

|C| ≤
8X

i=0

A8

= A0 + A4 + A6 + A8

≤ 1 + (9 + 5A8) + (2− 2A8) + A8

= 12 + 4A8

≤ 16 ,

as claimed. Indeed, in order for the sum to be 16 we must have A8 = 1,
in which case 0 ≤ A6 ≤ 2− 2A8 yields A6 = 0. Also A4 ≤ 9 + 5A8 = 14.
As

8X
i=0

A8 = A0 + A4 + A6 + A8

≤ 1 + 14 + 0 + 1

≤ 16 ,

there is a unique solution to the linear programming problem, namely

A0 = 1, A1 = A2 = A3 = A5 = A6 = A7 = 0, A4 = 14, A8 = 1 .

This corresponds to the weight enumerator 1 + 14z4 + z8 for the extended
binary Hamming code of length 8.

Of course this toy example could also be handled by more combinatorial meth-
ods, but the linear programming approach has better scaling properties. For
instance, codes with lengths in the teens can still be handled very easily, while
combinatorial approaches can already at that point require extensive case-by-
case analysis.

9.4 Lloyd’s theorem and perfect codes

We present MacWilliams’ theorem a third time, Delsarte’s theorem a second
time, and Lloyd’s theorem a first time.

In this section, we will be concerned with codes defined over a finite alphabet
F that has the structure of a commutative ring with a multiplicative identity 1.
Our main examples are fields Fs and rings of modular integers Zs = Z (mod s).
It is important to realize that any code over a finite alphabet of s letters can be
viewed as a code over Zs (merely by assigning each letter a unique value from
Zs). In particular, our proof here of Delsarte’s Theorem in Theorem 9.4.8(1)
does not suffer any loss of generality by restricting attention to codes over Zs.

In this situation we have an additive structure on Fn with identity element
0, and we have natural scalar multiplication given by

r(a1, . . . , aj , . . . , an) = (ra1, . . . , raj , . . . , ran) ,

for arbitrary r ∈ F . Therefore we can still talk about ra + tb, c ·d, wH(e), and
so forth.
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An F -linear code of length n will be, as before, any nonempty subset C ofF -linear code

Fn that is closed under addition and scalar multiplication. The code C⊥ dual
to C is also defined as before:

C⊥ = {v ∈ Fn | v · c = 0, for all c ∈ C } ,

and is F -linear even if C is not.
A linear character χ of (F,+) is a map χ : F −→ C∗ with linear character

χ(a+ b) = χ(a)χ(b) for all a, b ∈ F .

For finite F the image of χ will be in the roots of unity, and we must have

χ(0) = 1 and χ(−a) = χ(a)−1 = χ(a) .

A basic example is the trivial character 1F (a) = 1, for all a ∈ F . Later we will
make a specific choice for χ, but for the moment χ can be any linear character
of (F,+).

We next define, for u,v ∈ V = Fn, the related notation

χ(u|v) = χ(u · v) = χ

(
n∑

i=1

uivi

)
=

n∏
i=1

χ(uivi) .

For n = 1, χ(u|v) = χ(uv); and the first two parts of the next lemma are con-
sequences of the commutativity of F , while the third part is just a restatement
of the defining property for a character. The general case follows directly.

(9.4.1) Lemma. (1) χ(u|v) = χ(v|u);
(2) for a ∈ F , χ(u|av) = χ(au|v) = χ(a|u · v);
(3) χ(a + b|v) = χ(a|v)χ(b|v). 2

We thus see that χ(·|·) is symmetric and biadditive on Fn.
More generally, for subsets A,B of V , we define

χ(A|B) =
∑

a∈A,b∈B

χ(a|b) .

We have before encountered the notation

A+B = {a + b | a ∈ A ,b ∈ B } ,

and we further write A ⊕ B for A + B if every element of A + B has a unique
expression as a + b, for a ∈ A and b ∈ B.

The defining property of a character χ and biadditivity then extend to

(9.4.2) Lemma. χ(A⊕B|v) = χ(A|v)χ(B|v)
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Proof.

χ(A⊕B|v) =
∑

a∈A,b∈B

χ(a + b|v)

=
∑

a∈A,b∈B

χ(a|v)χ(b|v)

=
∑
a∈A

χ(a|v)
∑
b∈B

χ(b|v)

= χ(A|v)χ(B|v) 2

Remark. The lemma and proof remain valid for all A and B if we view
A+B as a multiset, keeping track of the number of different ways each element
can be written as a + b. This is the “group algebra” approach, which can be
very effective.

The next two lemmas are elementary but fundamental for what we are doing
in this section.

(9.4.3) Lemma. Consider the property:

(ND) F is a commutative ring with identity, and (F,+) possesses
a linear character χ such that, for each 0 6= v ∈ F , there is an
av ∈ F with χ(avv) 6= 1.

Then Fs and Zs both have the property (ND).

Proof. For F = Zs, let ζ be a primitive s’th root of 1 in C. (That is,
ζs = 1 but ζi 6= 1, for 0 < i < s.) Then χ(i) = ζi has the desired properties
with respect to av = 1, for all v 6= 0.

Let F = Fs with s = pd, a power of the prime p. In fact, every nontrivial
linear character χ has the desired property. We give a concrete construction. Let
ζ be a primitive p’th root of 1. Realize F as Fp[x] (mod m(x)) for an irreducible
polynomial m(x) of degree d in Fp[x]. Each element of F is represented by a
unique polynomial f(x) ∈ Fp[x] of degree less than d. Then χ(f(x)) = ζf(0) has
the desired properties. (Each f(0) is in Fp = Zp and can be thought of as an
integer.) For each v 6= 0, we can choose av = v−1. 2

If we view χ(·|·) as a symmetric, biadditive form on Fn, then Property (ND)
of the lemma says that, at least for F 1, the form is nondegenerate:

0 = { v ∈ F 1 | χ(a|v) = 1, for all a ∈ F 1 } .

The next lemma continues this line of thought.
From now on we will assume that the alphabet F has a character χ of (F,+)

satisfying Property (ND) of Lemma 9.4.3. We choose and fix such a character
χ. Our main examples remain Zs and Fs.
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(9.4.4) Lemma. Let v ∈ V .
(1) Always

χ(V |v) = |V | if v = 0
= 0 otherwise.

(2) If W is an F -linear code in V , then

χ(W |v) = |W | if v ∈W⊥

= 0 otherwise.

Proof. If 0 6= v ∈ V , then by Property (ND) of Lemma 9.4.3 there is a
word a ∈ V with weight 1 and a · v 6= 0. Therefore V ⊥ = {0}, and (1) is a
special case of (2).

For (2), if v ∈W⊥, then

χ(W |v) =
∑

w∈W

1 = |W | .

Therefore to complete (2) and the lemma we may assume that there is a w ∈W
with v = w · v 6= 0.

By Property (ND) of Lemma 9.4.3, there is an a = av ∈ F with χ(av) 6= 1.
Therefore, for a = aw,

χ(a|v) = χ(a|w · v) = χ(a|v) 6= 1 ,

by Lemma 9.4.1(2).
Now we have

χ(W |v) = χ(W ⊕ a|v)
= χ(W |v)χ(a|v)

by Lemma 9.4.2. Therefore

0 = χ(W |v)(χ(a|v)− 1) ,

and χ(W |v) = 0, as required. 2

(9.4.5) Corollary. Suppose that, for some set of constants αu,∑
u∈V

αu χ(u|v) = 0 ,

for all 0 6= v ∈ V . Then αu = α is constant, for all u ∈ V .

Proof. By Lemma 9.4.4(1), a constant choice αu = α does have the stated
property. In particular, after subtracting an appropriate constant α from each
coefficient, we could assume that

∑
u∈V αu χ(u|v) = 0 holds for all v, including

0. We do so, and then aim to prove that each αu equals 0.
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For fixed but arbitrary z ∈ V , we have

0 =
∑
v∈V

0 · χ(z|v)

=
∑
v∈V

(∑
u∈V

αu χ(u|v)

)
χ(z|v)

=
∑
u∈V

αu

(∑
v∈V

χ(u|v)χ(z|v)

)
=

∑
u∈V

αu

∑
v∈V

χ(u− z|v)

= αz|V |

by Lemma 9.4.4(1). 2

(9.4.6) Proposition. For all v ∈ V with wH(v) = i,∑
u∈V

zwH(u)χ(u|v) = (1 + (s− 1)z)n−i(1− z)i .

Proof. For all (v1, . . . , vn) = v ∈ V , we have

∑
u∈V

zwH(u)χ(u|v) =
∑
u∈V

n∏
j=1

zwH(uj)χ(uj |vj)

=
n∏

j=1

∑
u∈F

zwH(u)χ(u|vj)

by distributivity. Here∑
u∈F

zwH(u)χ(u|vj) = 1 + z χ(F \ {0} |vj)

which, by the case n = 1 of Lemma 9.4.4(1), is 1 + (s− 1)z when vj = 0 and is
1− z when vj 6= 0. Therefore

∑
u∈V

zwH(u)χ(u|v) =
n∏

j=1

∑
u∈F

zwH(u)χ(u|vj)

= (1 + (s− 1)z)n−wH(v)(1− z)wH(v) ,

as claimed. 2

Let Ym = {x ∈ V | wH(x) = m }, so that the sphere of radius e centered at
0, Se = Se(0), is the disjoint union of the Ym, for m = 1, . . . , e.
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(9.4.7) Corollary. Let wH(v) = i.

(1) χ(Ym|v) = Km(i;n, s),

(2) χ(Se|v) =
∑e

m=0 Km(i;n, s).

Proof. By the proposition, χ(Ym|v) is the coefficient of zm in

(1 + (s− 1)z)n−i(1− z)i .

By Proposition 9.3.1 this coefficient is also Km(i;n, s). This gives (1), and (2)
follows directly. 2

(9.4.8) Theorem. Let A be a code in Fn with distance enumerator WA(z) =∑n
i=0 aiz

i. Define the rational numbers bm by

|A|−1
n∑

i=0

ai(1 + (s− 1)z)n−i(1− z)i =
n∑

m=0

bmz
m .

Then

(1) (Delsarte’s Theorem 9.1.2.) bm ≥ 0, for all m. (Indeed we have
bm = |A|−2

∑
wH(u)=m |χ(u|A)|2.)

(2) (MacWilliams’ Theorem 9.1.1.) If A is an F -linear code, then
WA⊥(z) =

∑n
m=0 bmz

m .

Proof. We calculate

∑
c,d∈A

∑
u∈V

zwH(u)χ(u|c− d)

in two different ways.

By Proposition 9.4.6,

∑
c,d∈A

∑
u∈V

zwH(u)χ(u|c− d) =
∑

c,d∈A

(1 + (s− 1)z)n−wH(c−d)(1 + z)wH(c−d)

= |A|
n∑

i=0

ai(1 + (s− 1)z)n−i(1 + z)i ,

which is |A|2 times the lefthand side of the definition.
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On the other hand∑
c,d∈A

∑
u∈V

zwH(u)χ(u|c− d) =
∑
u∈V

zwH(u)
∑

c,d∈A

χ(u|c− d)

=
∑
u∈V

zwH(u)
∑

c,d∈A

χ(u|c)χ(u| − d)

=
∑
u∈V

zwH(u)χ(u|A)χ(u| −A)

=
∑
u∈V

zwH(u)χ(u|A)χ(u|A)

=
∑
u∈V

zwH(u)|χ(u|A)|2

=
n∑

m=0

 ∑
wH(u)=m

|χ(u|A)|2
 zm .

We conclude that

|A|
n∑

i=0

ai(1 + (s− 1)z)n−i(1 + z)i =
n∑

m=0

 ∑
wH(u)=m

|χ(u|A)|2
 zm .

Therefore
bm = |A|−2

∑
wH(u)=m

|χ(u|A)|2 ≥ 0 ,

proving Delsarte’s Theorem.
Furthermore, if A is linear, then by Lemma 9.4.4(2)

χ(u|A) = |A| if u ∈ A⊥

= 0 otherwise.

Therefore

bm = |A|−2
∑

wH(u)=m

|χ(u|A)|2

= |A|−2
∑

wH(u)=m

u∈A⊥

|A|2

= |{u | wH(u) = m,u ∈ A⊥ }| ,

proving MacWilliams’ Theorem. 2

This proof of MacWilliams’ Theorem is essentially one of the two given in
the original paper (and thesis) of MacWilliams for linear codes over fields. Its
modification to prove Delsarte’s Theorem as well is due to Welch, McEliece, and
Rumsey (1974).
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Here we have proved MacWilliams’ Theorem for a more general class of
codes than the linear codes of Theorem 9.1.1, namely for those codes that are
F -linear, where F has Property (ND) of Lemma 9.4.3. Many properties of
linear codes over fields go over to these codes. For instance, substituting 1 into
the equations of Theorem 9.4.8, we learn that, for the F -linear code A,

|A|−1 sn = |A|−1
n∑

i=0

ai(1 + (s− 1)1)n−i(1− 1)i =
n∑

m=0

bm1m = |A⊥| .

That is, |A||A⊥| = |V |, whence A⊥⊥ = A (things that could also be proved
directly).

(9.4.9) Theorem. (Lloyd’s Theorem.) Let C ⊆ Fn be a perfect e-error-
correcting code. Then the polynomial

Ψe(x) =
e∑

i=0

Ki(x;n, s)

of degree e has e distinct integral roots in {1, . . . , n}.

Proof. The basic observation is that, since C is a perfect e-error-correcting
code,

Se ⊕ C = V .

Therefore, by Lemma 9.4.2

χ(Se|v)χ(C|v) = χ(V |v) ,

for all v ∈ V . As V = Sn, we have by Corollary 9.4.7

Ψe(x)χ(C|v) = Ψn(x) ,

where x = wH(v) and Ψj(x) =
∑j

i=0 Ki(x;n, s).
By Proposition 9.3.1, Ki(x;n, s) is a polynomial of degree i in x, so Ψj(x)

has degree j in x. In particular, Ψn(x) = χ(V |v) has degree n. But by Lemma
9.4.4(1) it has roots x = 1, . . . , n. Therefore

Ψn(x) = c(x− 1)(x− 2) · · · (x− n) ,

for an appropriate constant c (which can be calculated using Corollary 9.3.2).
We conclude that

Ψe(x)χ(C|v) = c(x− 1)(x− 2) · · · (x− n) ,

for x = wH(v).
As the polynomial Ψe(x) has degree e in x, the theorem will be proven once

we can show that, for at least e values of m 6= 0, there are words v ∈ Ym

with χ(C|v) 6= 0. By Theorem 9.4.8(1), this is equivalent to proving that
|{m 6= 0 | bm 6= 0 }| ≥ e. But this is immediate from Proposition 9.4.10 below.

2
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(9.4.10) Proposition. For the e-error-correcting code A with the bm defined
as in Theorem 9.4.8, we have

|{m 6= 0 | bm 6= 0 }| ≥ e .

Proof. Let N(A) = {m 6= 0 | bm 6= 0 } and g = |N(A)|, and assume
that g ≤ e. Define the polynomial a(x) =

∏
m∈N(A)(x − m), of degree g (an

empty product being taken as 1). Therefore a(m) = 0 when m ∈ N(A), whereas
χ(A|v) = 0 whenever 0 6= m = wH(v) 6∈ N(A), by Theorem 9.4.8(1).

As each Ki(x;n, s) has degree i in x (by Proposition 9.3.1), there are con-
stants αi (not all 0) with

a(x) =
g∑

i=0

αi Ki(x;n, s) .

Using Corollary 9.4.7(1), we get, for all v 6= 0,

0 = a(wH(v))χ(A|v)

=

(
g∑

i=0

αi χ(Yi|v)

)
χ(A|v)

=
g∑

i=0

αi χ(Yi ⊕A|v)

=
g∑

i=0

∑
y∈Yi,a∈A

αi χ(y + a|v) .

From Corollary 9.4.5 we learn αi = α is a nonzero constant function of i and
that every element u ∈ V is equal to some y + a. In particular, it must be
possible to write the word e at distance e from a codeword c in the form y + a.
As A is an e-error-correcting code, the only possibility is e = (e− c) + c, with
e− c ∈ Ye, hence g ≥ e, as claimed. 2

Remarks. 1. The proposition is also due to MacWilliams and Delsarte.
In MacWilliams’ version for linear codes, |{m 6= 0 | bm 6= 0 }| is the number
of nonzero weights in the dual code (as is evident from our proof of Theorem
9.4.8(2)).

2.We could combine Lloyd’s Theorem and the proposition, with the rephrased
proposition saying that equality holds if and only if A is perfect, in which case
the appropriate polynomial has the appropriate roots. This might shorten the
proof somewhat but also make it more mysterious.

3. Recall that the covering radius g = cr(A) of the code A ⊆ Fn is the
smallest g such that Fn =

⋃
a∈A Sg(a). That is, it is the smallest g with

V = Sg +A. A more careful proof of the proposition gives

|{m 6= 0 | bm 6= 0 }| ≥ cr(A) .
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Lloyd’s Theorem and the Sphere Packing Condition are the main tools used
in proving nonexistence results for perfect codes and other related codes. The
Sphere Packing Condition has a natural derivation in the present language:

|Se| |C| = χ(Se|0)χ(C|0) = χ(Se ⊕ C|0) = χ(V |0) = |V | ,

for the perfect e-error-correcting code C in V .
The following simple example of a nonexistence result for perfect codes is a

good model for more general results of this type.

(9.4.11) Theorem. If C is a binary perfect 2-error-correcting code of length
n ≥ 2, then either n = 2 and C = F2

2 or n = 5 and C = {x,y | x + y = 1 }.

Proof. We do this in three steps:

Step 1. Sphere Packing Condition: There is a positive integer r with
2 + n + n2 = 2r+1. If n ≤ 6, then we have one of the examples of
the theorem. Therefore we can assume that n ≥ 7, and in particular
8n < 2r+1.

By the Sphere Packing Condition we have

1 + n+
(
n

2

)
= 2r ,

where r is the redundancy of the code. This simplifies to 2 + n + n2 = 2r+1.
We record the first few values:

n 2 3 4 5 6
2 + n+ n2 8 14 22 32 44

Only n = 2, 5 can occur, and in these cases we easily find the examples described.
Therefore we may assume from now on that n ≥ 7, in which case

2 + n(7 + 1) ≤ 2 + n(n+ 1) = 2r+1 .

Step 2. Lloyd’s Theorem: n ≡ 3 (mod 4) .

Ψ2(x) = K1(x;n, 2) + K1(x;n, 2) + K2(x;n, 2)
= 1 + (n− 2x) +

+
(

(−1)0
(
x

0

)(
n− x

2

)
+ (−1)1

(
x

1

)(
n− x

1

)
+ (−1)2

(
x

2

)(
n− x

0

))
=

1
2

(4x2 − 4(n+ 1)x+ (2 + n+ n2))
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By Step 1. 2+n+n2 = 2r+1; so if we substitute y for 2x, then Lloyd’s Theorem
9.4.9 says that the quadratic polynomial

y2 − 2(n+ 1)y + 2r+1

has two even integer roots in the range 2 through 2n. Indeed

y2 − 2(n+ 1)y + 2r+1 = (y − 2a)(y − 2b) ,

for positive integers a, b with a+ b = r + 1 and 2a + 2b = 2(n+ 1).
We next claim that 2a and 2b are not 2 or 4. If y = 2 is a root, then

4− 2(n+ 1)2 + 2r+1 = 0 hence 2r+1 = 4n < 8n .

Similarly if y = 4 is a root, then

16− 2(n+ 1)4 + 2r+1 = 0 hence 2r+1 = 8n− 8 < 8n ;

and in both cases we contradict Step 1.
Therefore a, b ≥ 3, and

n+ 1 = 2a−1 + 2b−1 ≡ 0 (mod 4) ,

as desired.

Step 3. Conclusion.

Let n = 4m+ 3 and substitute into the Sphere Packing Condition:

2r+1 = 2 + (4m+ 3) + (4m+ 3)2

= 2 + 4m+ 3 + 16m2 + 24m+ 9
= 14 + 28m+ 16m2

The lefthand side is congruent to 0 modulo 4, while the righthand side is con-
gruent to 2 modulo 4. This contradiction completes the proof. 2

Remark. For n = 2, we find

y2 − 2(n+ 1)y + 2r+1 = y2 − 6y + 8 = (y − 2)(y − 4) ;

and, for n = 5, we find

y2 − 2(n+ 1)y + 2r+1 = y2 − 12y + 32 = (y − 4)(y − 8) .
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9.5 Generalizations of MacWilliams’ Theorem

In Sections 9.2 and 9.3, for ease of exposition we only presented proofs of
MacWilliams’ Theorem 9.1.1 in the case of binary linear codes. On the other
hand, in Section 9.4, once we had introduced the appropriate machinery, we
were easily able to prove MacWilliams’ Theorem for a class of codes larger than
that of all linear codes over finite fields. It seems to have been Gleason (1971)
who first fully appreciated the strength and generality of MacWilliams’ proof
using characters.

Initially in this section F is a ring that satisfies Property (ND) of Lemma
9.4.3, but we mainly concentrate on the case F = Z4 as it is of indepen-
dent interest. We only give examples of two of the many generalizations that
MacWilliams’ Theorem admits.

Let V = Fn, and let f : V −→ R be a map to any vector space over C. Then
the (discrete) Fourier transform (or Hadamard transform) of f is f̂ : V −→ R Fourier transform

given by

f̂(v) =
∑
u∈V

f(u)χ(u|v) .

(9.5.1) Proposition. (Poisson summation formula.)
If A is an F -linear code then

∑
u∈A⊥

f(u) = |A|−1
∑
v∈A

f̂(v) .

Proof. We use Lemma 9.4.4(2) to calculate

|A|−1
∑
v∈A

f̂(v) = |A|−1
∑
v∈A

(∑
u∈V

f(u)χ(u|v)

)

= |A|−1
∑
u∈V

f(u)

(∑
v∈A

χ(u|v)

)
= |A|−1

∑
u∈A⊥

f(u) |A|

=
∑

u∈A⊥

f(u) ,

as desired. 2

This calculation was embedded in our proof of Theorem 9.4.8 for the partic-
ular choice of map f(u) = zwH(u) ∈ C[z]. Using the proposition and Proposition
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9.4.6 in that case, we find

WA⊥(z) =
∑

u∈A⊥

f(u) = |A|−1
∑
v∈A

f̂(v)

= |A|−1
∑
v∈A

(∑
u∈V

f(u)χ(u|v)

)
= |A|−1

∑
v∈A

(1 + (s− 1)z)n−wH(v)(1− z)wH(v)

= |A|−1
n∑

i=0

ai(1 + (s− 1)z)n−i(1− z)i .

This is MacWilliams’ Theorem. (This can not really be described as a fourth
proof but rather a rewording of the third proof.)

Remember that the homogeneous weight enumerator of A is

WA(x, y) =
∑
a∈A

xn−wH(a)ywH(a) .

Thus, for a given a = (a1, . . . , aj , . . . , an), we have in xn−wH(a)ywH(a) factors
x, one for each aj = 0, and factors y, one for each aj 6= 0. Different nonzero
coefficients make the same contribution. If instead we wish to note the con-
tribution of each member of F , we look at the (homogeneous) complete weight
enumerator CA(x1, . . . , xs) for A, a polynomial in s = |F | commuting variables,complete weight enumerator

one to count occurrences of each member of the alphabet. (For the binary al-
phabet, the complete weight enumerator is just the usual homogeneous weight
enumerator.)

At this point we specialize to F = Z4. For the word v = (v1, . . . , vj , . . . , vn)
of V , we write w0(v) for the number of 0’s among the vj , w1(v) for the number
of 1’s, w2(v) for the number of 2’s, and w3(v) for the number of 3’s among the
vj . Thus w0(v)+w1(v)+w2(v)+w3(v) = n. The complete weight enumerator
for A is then

CA(x, y, z, w) =
∑
v∈A

xw0(v) yw1(v) zw2(v) ww3(v) .

If we want a version of MacWilliams’ Theorem for complete weight enumerators,
we do not have to retrace our steps in the previous sections. We just apply
Poisson summation and the Fourier transform to a different base function f .

For F = Z4, we set f(u) = xw0(u) yw1(u) zw2(u) ww3(u). Then, as before, we
have

CA⊥(x, y, z, w) =
∑

u∈A⊥

f(u) = |A|−1
∑
v∈A

f̂(v) .
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To compute the Fourier transform, we follow Proposition 9.4.6:

f̂(v) =
∑
u∈V

f(u)χ(u|v)

=
∑
u∈V

xw0(u) yw1(u) zw2(u) ww3(u)χ(u|v)

=
∑
u∈V

 n∏
j=1

xw0(uj) yw1(uj) zw2(uj) ww3(uj)χ(uj |vj)


=

n∏
j=1

(∑
u∈F

xw0(u) yw1(u) zw2(u) ww3(u)χ(u|vj)

)

=
n∏

j=1

(xχ(0|vj) + y χ(1|vj) + z χ(2|vj) + wχ(3|vj)) .

The value of each factor will depend upon that of vj :

vj xχ(0|vj) + y χ(1|vj) + z χ(2|vj) + wχ(3|vj)
0 x+ y + z + w
1 x+ iy − z − iw
2 x− y + z − w
3 x− iy − z + iw

Hence finally

f̂(v) = (x+ y + z + w)w0(v) (x+ iy − z − iw)w1(v)

(x− y + z − w)w2(v) (x− iy − z + iw)w3(v) .

When inserted into the summation formula, this gives MacWilliams’ Theo-
rem for complete weight enumerators over Z4:

(9.5.2) Theorem. If A is a Z4-linear code, then

CA⊥(x, y, z, w) = |A|−1 CA(x+ y + z + w, x+ iy − z − iw,
x− y + z − w, x− iy − z + iw) . 2

Although this is quite complicated, it is also relatively powerful. For in-
stance we regain the usual homogeneous Z4-version of MacWilliams’ Theorem
by specializing to y = z = w.

WA⊥(x, y) = CA⊥(x, y, y, y)
= |A|−1 CA(x+ y + y + y, x+ iy − y − iy,

x− y + y − y, x− iy − y + iy)
= |A|−1 CA(x+ 3y, x− y, x− y, x− y)
= |A|−1 WA(x+ 3y, x− y) .
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In certain situations there are metrics on Fn that are more appropriate than
the Hamming metric. For instance, when reading time from a clock with hands
but no numbers, it will be easier to mistake 3 o’clock for 2 or 4 than for 8
o’clock. The Lee metric on Zs sets the Lee distanceLee metric

dL(i, j) = min(|i− j|, s− |i− j|) ,

for i, j ∈ Zs, and the Lee weight

wL(i) = dL(i, 0) .

Thus, on Z4, we have

wL(0) = 0, wL(1) = wL(3) = 1, and wL(2) = 2 .

This is the first new case, since the Lee metric on Z2 and Z3 is the same as the
Hamming metric.

As before, two words v = (v1, . . . , vn) and w = (w1, . . . , wn) from Zn
s have

Lee distance given by

dL(v,w) =
n∑

j=1

dL(vj , wj)

and Lee weight wL(v) = dL(v,0).
The Lee weight enumerator of A ⊆ Zn

s is thenLee weight enumerator

LA(z) =
∑
v∈A

zwL(v) .

As the largest weight of a word in Zn
s is t n, where t = bs/2c, the homogeneous

Lee weight enumerator ishomogeneous Lee weight
enumerator

LA(x, y) =
∑
v∈A

xtn−wL(v)ywL(v) .

When F = Z4, the homogeneous Lee weight enumerator is

LA(x, y) =
∑
v∈A

x2n−wL(v)ywL(v) .

For a particular word v ∈ Zn
4 we see that

x2n−wL(v)ywL(v) = (x2)w0(v)(xy)w1(v)(y2)w2(v)(xy)w3(v) ,

and therefore
LA(x, y) = CA

(
x2, xy, y2, xy

)
.

(9.5.3) Theorem. If A is a Z4-linear code, then

LA⊥(x, y) = |A|−1LA(x+ y, x− y) .
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Proof. We use Theorem 9.5.2.

LA⊥(x, y) = CA⊥
(
x2, xy, y2, xy

)
= |A|−1 CA

(
x2 + xy + y2 + xy, x2 + ixy − y2 − ixy,
x2 − xy + y2 − xy, x2 − ixy − y2 + ixy

)
= |A|−1 CA

(
(x+ y)2, x2 − y2, (x− y)2, x2 − y2

)
= |A|−1 LA(x+ y, x− y) . 2

It is notable (and significant) that the transformation

x −→ x+ y y −→ x− y ,

which takes the homogeneous Lee weight enumerator of the Z4-linear code A to
|A| times that of its dual, is the same transformation that takes the homogeneous
weight enumerator of the binary linear code A to |A| times that of its dual. (See
Theorem 9.1.1(2).)


