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Preface

These notes were written over a period of years as part of an advanced under-
graduate/beginning graduate course on Algebraic Coding Theory at Michigan
State University. They were originally intended for publication as a book, but
that seems less likely now. The material here remains interesting, important,
and useful; but, given the dramatic developments in coding theory during the
last ten years, significant extension would be needed.

The oldest sections are in the Appendix and are over ten years old, while the
newest are in the last two chapters and have been written within the last year.
The long time frame means that terminology and notation may vary somewhat
from one place to another in the notes. (For instance, Zp, Zp, and Fp all denote
a field with p elements, for p a prime.)

There is also some material that would need to be added to any published
version. This includes the graphs toward the end of Chapter 2, an index, and
in-line references. You will find on the next page a list of the reference books
that I have found most useful and helpful as well as a list of introductory books
(of varying emphasis, difficulty, and quality).

These notes are not intended for broad distribution. If you want to use them in
any way, please contact me.

Please feel free to contact me with any remarks, suggestions, or corrections:

jhall@math.msu.edu

For the near future, I will try to keep an up-to-date version on my web page:

www.math.msu.edu\~jhall

Jonathan I. Hall
3 August 2001

The notes were partially revised in 2002. A new chapter on weight enumeration
was added, and parts of the algebra appendix were changed. Some typos were
fixed, and other small corrections were made in the rest of the text. I particularly
thank Susan Loepp and her Williams College students who went through the

iii



iv PREFACE

notes carefully and made many helpful suggestions.

I have been pleased and surprised at the interest in the notes from people who
have found them on the web. In view of this, I may at some point reconsider
publication. For now I am keeping to the above remarks that the notes are not
intended for broad distribution.

Please still contact me if you wish to use the notes. And again feel free to
contact me with remarks, suggestions, and corrections.

Jonathan I. Hall
3 January 2003

Further revision of the notes began in the spring of 2010. Over the years I
have received a great deal of positive feedback from readers around the world.
I thank everyone who has sent me corrections, remarks, and questions.

Initially this revision consists of small changes in the older notes. I plan to
add some new chapters. Also a print version of the notes is now actively under
discussion.

Please still contact me if you wish to use the notes. And again feel free to
send me remarks, suggestions, and corrections.

Jonathan I. Hall
9 September 2010
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Chapter 1

Introduction

Claude Shannon’s 1948 paper “A Mathematical Theory of Communication”
gave birth to the twin disciplines of information theory and coding theory. The
basic goal is efficient and reliable communication in an uncooperative (and pos-
sibly hostile) environment. To be efficient, the transfer of information must not
require a prohibitive amount of time and effort. To be reliable, the received
data stream must resemble the transmitted stream to within narrow tolerances.
These two desires will always be at odds, and our fundamental problem is to
reconcile them as best we can.

At an early stage the mathematical study of such questions broke into the
two broad areas. Information theory is the study of achievable bounds for com-
munication and is largely probabilistic and analytic in nature. Coding theory
then attempts to realize the promise of these bounds by models which are con-
structed through mainly algebraic means. Shannon was primarily interested in
the information theory. Shannon’s colleague Richard Hamming had been labor-
ing on error-correction for early computers even before Shannon’s 1948 paper,
and he made some of the first breakthroughs of coding theory.

Although we shall discuss these areas as mathematical subjects, it must
always be remembered that the primary motivation for such work comes from
its practical engineering applications. Mathematical beauty can not be our sole
gauge of worth. Here we shall concentrate on the algebra of coding theory,
but we keep in mind the fundamental bounds of information theory and the
practical desires of engineering.

1.1 Basics of communication

Information passes from a source to a sink via a conduit or channel. In our
view of communication we are allowed to choose exactly the way information is
structured at the source and the way it is handled at the sink, but the behaviour
of the channel is not in general under our control. The unreliable channel may
take many forms. We may communicate through space, such as talking across
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2 CHAPTER 1. INTRODUCTION

a noisy room, or through time, such as writing a book to be read many years
later. The uncertainties of the channel, whatever it is, allow the possibility that
the information will be damaged or distorted in passage. My conversation may
be drowned out or my manuscript might weather.

Of course in many situations you can ask me to repeat any information that
you have not understood. This is possible if we are having a conversation (al-
though not if you are reading my manuscript), but in any case this is not a
particularly efficient use of time. (“What did you say?” “What?”) Instead to
guarantee that the original information can be recovered from a version that is
not too badly corrupted, we add redundancy to our message at the source. Lan-
guages are sufficiently repetitive that we can recover from imperfect reception.
When I lecture there may be noise in the hallway, or you might be unfamiliar
with a word I use, or my accent could confuse you. Nevertheless you have a
good chance of figuring out what I mean from the context. Indeed the language
has so much natural redundancy that a large portion of a message can be lost
without rendering the result unintelligible. When sitting in the subway, you are
likely to see overhead and comprehend that “IF U CN RD THS U CN GT A
JB.”

Communication across space has taken various sophisticated forms in which
coding has been used successfully. Indeed Shannon, Hamming, and many of the
other originators of mathematical communication theory worked for Bell Tele-
phone Laboratories. They were specifically interested in dealing with errors that
occur as messages pass across long telephone lines and are corrupted by such
things as lightening and crosstalk. The transmission and reception capabilities
of many modems are increased by error handling capability embedded in their
hardware. Deep space communication is subject to many outside problems like
atmospheric conditions and sunspot activity. For years data from space missions
has been coded for transmission, since the retransmission of data received fault-
ily would be very inefficient use of valuable time. A recent interesting case of
deep space coding occurred with the Galileo mission. The main antenna failed
to work, so the possible data transmission rate dropped to only a fraction of
what was planned. The scientists at JPL reprogrammed the onboard computer
to do more code processing of the data before transmission, and so were able to
recover some of the overall efficiency lost because of the hardware malfunction.

It is also important to protect communication across time from inaccura-
cies. Data stored in computer banks or on tapes is subject to the intrusion
of gamma rays and magnetic interference. Personal computers are exposed to
much battering, so often their hard disks are equipped with “cyclic redundancy
checking” CRC to combat error. Computer companies like IBM have devoted
much energy and money to the study and implementation of error correcting
techniques for data storage on various mediums. Electronics firms too need
correction techniques. When Phillips introduced compact disc technology, they
wanted the information stored on the disc face to be immune to many types of
damage. If you scratch a disc, it should still play without any audible change.
(But you probably should not try this with your favorite disc; a really bad
scratch can cause problems.) Recently the sound tracks of movies, prone to film
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breakage and scratching, have been digitized and protected with error correction
techniques.

There are many situations in which we encounter other related types of com-
munication. Cryptography is certainly concerned with communication, however
the emphasis is not on efficiency but instead upon security. Nevertheless modern
cryptography shares certain attitudes and techniques with coding theory.

With source coding we are concerned with efficient communication but the
environment is not assumed to be hostile; so reliability is not as much an issue.
Source coding takes advantage of the statistical properties of the original data
stream. This often takes the form of a dual process to that of coding for cor-
rection. In data compaction and compression1 redundancy is removed in the
interest of efficient use of the available message space. Data compaction is a
form of source coding in which we reduce the size of the data set through use of
a coding scheme that still allows the perfect reconstruction of the original data.
Morse code is a well established example. The fact that the letter “e” is the
most frequently used in the English language is reflected in its assignment to
the shortest Morse code message, a single dot. Intelligent assignment of symbols
to patterns of dots and dashes means that a message can be transmitted in a
reasonably short time. (Imagine how much longer a typical message would be
if “e” was represented instead by two dots.) Nevertheless, the original message
can be recreated exactly from its Morse encoding.

A different philosophy is followed for the storage of large graphic images
where, for instance, huge black areas of the picture should not be stored pixel
by pixel. Since the eye can not see things perfectly, we do not demand here
perfect reconstruction of the original graphic, just a good likeness. Thus here
we use data compression, “lossy” data reduction as opposed to the “lossless”
reduction of data compaction. The subway message above is also an example
of data compression. Much of the redundancy of the original message has been
removed, but it has been done in a way that still admits reconstruction with a
high degree of certainty. (But not perfect certainty; the intended message might
after all have been nautical in thrust: “IF YOU CANT RIDE THESE YOU
CAN GET A JIB.”)

Although cryptography and source coding are concerned with valid and im-
portant communication problems, they will only be considered tangentially here.

One of the oldest forms of coding for error control is the adding of a parity
check bit to an information string. Suppose we are transmitting strings com-
posed of 26 bits, each a 0 or 1. To these 26 bits we add one further bit that
is determined by the previous 26. If the initial string contains an even number
of 1’s, we append a 0. If the string has an odd number of 1’s, we append a
1. The resulting string of 27 bits always contains an even number of 1’s, that
is, it has even parity. In adding this small amount of redundancy we have not
compromised the information content of the message greatly. Of our 27 bits,
26 of them carry information. But we now have some error handling ability.

1We follow Blahut by using the two terms compaction and compression in order to distin-
guish lossless and lossy compression.
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If an error occurs in the channel, then the received string of 27 bits will have
odd parity. Since we know that all transmitted strings have even parity, we
can be sure that something has gone wrong and react accordingly, perhaps by
asking for retransmission. Of course our error handling ability is limited to this
possibility of detection. Without further information we are not able to guess
the transmitted string with any degree of certainty, since a received odd parity
string can result from a single error being introduced to any one of 27 different
strings of even parity, each of which might have been the transmitted string.
Furthermore there may have actually been more errors than one. What is worse,
if two bit errors occur in the channel (or any even number of bit errors), then
the received string will still have even parity. We may not even notice that a
mistake has happened.

Can we add redundancy in a different way that allows us not only to detect
the presence of bit errors but also to decide which bits are likely to be those in
error? The answer is yes. If we have only two possible pieces of information,
say 0 for “by sea” and 1 for “by land,” that we wish to transmit, then we could
repeat each of them three times — 000 or 111 . We might receive something
like 101 . Since this is not one of the possible transmitted patterns, we can as
before be sure that something has gone wrong; but now we can also make a
good guess at what happened. The presence of two 1’s but only one 0 points
strongly to a transmitted string 111 plus one bit error (as opposed to 000 with
two bit errors). Therefore we guess that the transmitted string was 111. This
“majority vote” approach to decoding will result in a correct answer provided
at most one bit error occurs.

Now consider our channel that accepts 27 bit strings. To transmit each of
our two messages, 0 and 1, we can now repeat the message 27 times. If we
do this and then decode using “majority vote” we will decode correctly even if
there are as many as 13 bit errors! This is certainly powerful error handling,
but we pay a price in information content. Of our 27 bits, now only one of them
carries real information. The rest are all redundancy.

We thus have two different codes of length 27 — the parity check code
which is information rich but has little capability to recover from error and the
repetition code which is information poor but can deal well even with serious
errors. The wish for good information content will always be in conflict with
the desire for good error performance. We need to balance the two. We hope
for a coding scheme that communicates a decent amount of information but can
also recover from errors effectively. We arrive at a first version of

The Fundamental Problem — Find codes with both reasonable
information content and reasonable error handling ability.

Is this even possible? The rather surprising answer is, “Yes!” The existence of
such codes is a consequence of the Channel Coding Theorem from Shannon’s
1948 paper (see Theorem 2.3.2 below). Finding these codes is another question.
Once we know that good codes exist we pursue them, hoping to construct prac-
tical codes that solve more precise versions of the Fundamental Problem. This
is the quest of coding theory.
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Figure 1.1: Shannon’s model of communication
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1.2 General communication systems

We begin with Shannon’s model of a general communication system, Figure
1.2. This setup is sufficiently general to handle many communication situations.
Most other communication models, such as those requiring feedback, will start
with this model as their base.

Our primary concern is block coding for error correction on a discrete mem-
oryless channel. We next describe these and other basic assumptions that are
made here concerning various of the parts of Shannon’s system; see Figure 1.2.
As we note along the way, these assumptions are not the only ones that are
valid or interesting; but in studying them we will run across most of the com-
mon issues of coding theory. We shall also honor these assumptions by breaking
them periodically.

We shall usually speak of the transmission and reception of the words of the
code, although these terms may not be appropriate for a specific envisioned ap-
plication. For instance, if we are mainly interested in errors that affect computer
memory, then we might better speak of storage and retrieval.

1.2.1 Message

Our basic assumption on messages is that each possible message k-tuple is as
likely to be selected for broadcast as any other.

We are thus ignoring the concerns of source coding. Perhaps a better way
to say this is that we assume source coding has already been done for us. The
original message has been source coded into a set of k-tuples, each equally
likely. This is not an unreasonable assumption, since lossless source coding is
designed to do essentially this. Beginning with an alphabet in which different
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Figure 1.2: A more specific model
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letters have different probabilities of occurrence, source coding produces more
compact output in which frequencies have been levelled out. In a typical string
of Morse code, there will be roughly the same number of dots and dashes. If the
letter “e” was mapped to two dots instead of one, we would expect most strings
to have a majority of dots. Those strings rich in dashes would be effectively
ruled out, so there would be fewer legitimate strings of any particular reasonable
length. A typical message would likely require a longer encoded string under
this new Morse code than it would with the original. Shannon made these
observations precise in his Source Coding Theorem which states that, beginning
with an ergodic message source (such as the written English language), after
proper source coding there is a set of source encoded k-tuples (for a suitably
large k) which comprises essentially all k-tuples and such that different encoded
k-tuples occur with essentially equal likelihood.

1.2.2 Encoder

We are concerned here with block coding. That is, we transmit blocks of symbolsblock coding

of fixed length n from a fixed alphabet A. These blocks are the codewords, and
that codeword transmitted at any given moment depends only upon the present
message, not upon any previous messages or codewords. Our encoder has no
memory. We also assume that each codeword from the code (the set of all
possible codewords) is as likely to be transmitted as any other.

Some work has been done on codes over mixed alphabets, that is, allowing
the symbols at different coordinate positions to come from different alphabets.
Such codes occur only in isolated situations, and we shall not be concerned with
them at all.

Convolutional codes, trellis codes, lattice codes, and others come from en-
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Figure 1.3: The Binary Symmetric Channel
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coders that have memory. We lump these together under the heading of con-
volutional codes. The message string arrives at the decoder continuously rather convolutional codes

than segmented into unrelated blocks of length k, and the code string emerges
continuously as well. That n-tuple of code sequence that emerges from the en-
coder while a given k-tuple of message is being introduced will depend upon
previous message symbols as well as the present ones. The encoder “remem-
bers” earlier parts of the message. The coding most often used in modems is of
convolutional type.

1.2.3 Channel

As already mentioned, we shall concentrate on coding on a discrete memoryless
channel or DMC. The channel is discrete because we shall only consider finite discrete memoryless channel

DMCalphabets. It is memoryless in that an error in one symbol does not affect the
reliability of its neighboring symbols. The channel has no memory, just as above
we assumed that the encoder has no memory. We can thus think of the channel
as passing on the codeword symbol-by-symbol, and the characteristics of the
channel can described at the level of the symbols.

An important example is furnished by the m-ary symmetric channel. The
m-ary symmetric channel has input and output an alphabet of m symbols, say m-ary symmetric channel

x1, . . . , xm. The channel is characterized by a single parameter p, the probabil-
ity that after transmission of any symbol xj the particular symbol xi 6= xj is
received. That is,

p = Prob(xi |xj), for i 6= j .

Related are the probability
s = (m− 1)p

that after xj is transmitted it is not received correctly and the probability

q = 1− s = 1− (m− 1)p = Prob(xj |xj))

that after xj is transmitted it is received correctly. We write mSC(p) for the m- mSC(p)

ary symmetric channel with transition probability p. The channel is symmetric transition probability
in the sense Prob(xi |xj) does not depend upon the actual values of i and j but
only on whether or not they are equal. We are especially interested in the 2-ary
symmetric channel or binary symmetric channel BSC(p) (where p = s). BSC(p)

Of course the signal that is actually broadcast will often be a measure of some
frequency, phase, or amplitude, and so will be represented by a real (or complex)
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number. But usually only a finite set of signals is chosen for broadcasting, and
the members of a finite symbol alphabet are modulated to the members of the
finite signal set. Under our assumptions the modulator is thought of as part
of the channel, and the encoder passes symbols of the alphabet directly to the
channel.

There are other situations in which a continuous alphabet is the most ap-
propriate. The most typical model is a Gaussian channel which has as alphabetGaussian channel

an interval of real numbers (bounded due to power constraints) with errors
introduced according to a Gaussian distribution.

The are also many situations in which the channel errors exhibit some kind
of memory. The most common example of this is burst errors. If a particular
symbol is in error, then the chances are good that its immediate neighbors are
also wrong. In telephone transmission such errors occur because of lightening
and crosstalk. A scratch on a compact disc produces burst errors since large
blocks of bits are destroyed. Of course a burst error can be viewed as just one
type of random error pattern and be handled by the techniques that we shall
develop. We shall also see some methods that are particularly well suited to
dealing with burst errors.

One final assumption regarding our channel is really more of a rule of thumb.
We should assume that the channel machinery that carries out modulation,
transmission, reception, and demodulation is capable of reproducing the trans-
mitted signal with decent accuracy. We have a

Reasonable Assumption — Most errors that occur are not severe.

Otherwise the problem is more one of design than of coding. For a DMC we
interpret the reasonable assumption as saying that an error pattern composed
of a small number of symbol errors is more likely than one with a large number.
For a continuous situation such as the Gaussian channel, this is not a good
viewpoint since it is nearly impossible to reproduce a real number with perfect
accuracy. All symbols are likely to be received incorrectly. Instead we can think
of the assumption as saying that whatever is received should resemble to a large
degree whatever was transmitted.

1.2.4 Received word

We assume that the decoder receives from the channel an n-tuple of symbols
from the transmitter’s alphabet A.

This assumption could be included in our discussion of the channel, since
it really concerns the demodulator, which we think of as part of the chan-
nel just as we do the modulator. Many implementations combine the de-
modulator with the decoder in a single machine. This is the case with com-
puter modems which serve as encoder/modulator and demodulator/decoder
(MOdulator-DEModulator).

Think about how the demodulator works. Suppose we are using a binary
alphabet which the modulator transmits as signals of amplitude +1 and −1.
The demodulator receives signals whose amplitudes are then measured. These



1.2. GENERAL COMMUNICATION SYSTEMS 9

received amplitudes will likely not be exactly +1 or −1. Instead values like
.750, and −.434 and .003 might be found. Under our assumptions each of these
must be translated into a +1 or −1 before being passed on to the decoder. An
obvious way of doing this is to take positive values to +1 and negative values to
−1, so our example string becomes +1,−1,+1. But in doing so, we have clearly
thrown away some information which might be of use to the decoder. Suppose
in decoding it becomes clear that one of the three received symbols is certainly
not the one originally transmitted. Our decoder has no way of deciding which
one to mistrust. But if the demodulator’s knowledge were available, the decoder
would know that the last symbol is the least reliable of the three while the first
is the most reliable. This improves our chances of correct decoding in the end.

In fact with our assumption we are asking the demodulator to do some
initial, primitive decoding of its own. The requirement that the demodulator
make precise (or hard) decisions about code symbols is called hard quantization. hard quantization

The alternative is soft quantization. Here the demodulator passes on information soft quantization
which suggests which alphabet symbol might have been received, but it need not
make a final decision. At its softest, our demodulator would pass on the three
real amplitudes and leave all symbol decisions to the decoder. This of course
involves the least loss of information but may be hard to handle. A mild but
still helpful form of soft quantization is to allow channel erasures. The channel erasures

receives symbols from the alphabet A but the demodulator is allowed to pass on
to the decoder symbols from A∪{?}, where the special symbol “?” indicates an
inability to make an educated guess. In our three symbol example above, the
decoder might be presented with the string +1,−1, ?, indicating that the last
symbol was received unreliably. It is sometimes helpful to think of an erasure
as a symbol error whose location is known.

1.2.5 Decoder

Suppose that in designing our decoding algorithms we know, for each n-tuple
y and each codeword x, the probability p(y|x) that y is received after the
transmission of x. The basis of our decoding is the following principle:

Maximum Likelihood Decoding — When y is received, we must
decode to a codeword x that maximizes Prob(y |x).

We often abbreviate this to MLD. While it is very sensible, it can cause prob- MLD

lems similar to those encountered during demodulation. Maximum likelihood
decoding is “hard” decoding in that we must always decode to some codeword.
This requirement is called complete decoding. complete decoding

The alternative to complete decoding is incomplete decoding, in which we incomplete decoding
either decode a received n-tuple to a codeword or to a new symbol ∞ which
could be read as “errors were detected but were not corrected” (sometimes ab-
breviated to “error detected”). Such error detection (as opposed to correction) error detection

can come about as a consequence of a decoding default. We choose this default decoding default

alternative when we are otherwise unable (or unwilling) to make a sufficiently
reliable decoding choice. For instance, if we were using a binary repetition code
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of length 26 (rather than 27 as before), then majority vote still deals effectively
with 12 or fewer errors; but 13 errors produces a 13 to 13 tie. Rather than make
an arbitrary choice, it might be better to announce that the received message
is too unreliable for us to make a guess. There are many possible actions upon
default. Retransmission could be requested. There may be other “nearby” data
that allows an undetected error to be estimated in other ways. For instance,
with compact discs the value of the uncorrected sound level can be guessed to
be the average of nearby values. (A similar approach can be take for digital
images.) We will often just declare “error detected but not corrected.”

Almost all the decoding algorithms that we discuss in detail will not be
MLD but will satisfy IMLD, the weaker principle:IMLD

Incomplete Maximum Likelihood Decoding — When y is
received, we must decode either to a codeword x that maximizes
Prob(y |x) or to the “error detected” symbol ∞.

Of course, if we are only interested in maximizing our chance of successful
decoding, then any guess is better than none; and we should use MLD. But this
longshot guess may be hard to make, and if we are wrong then the consequences
might be worse than accepting but recognizing failure. When correct decoding
is not possible or advisable, this sort of error detection is much preferred over
making an error in decoding. A decoder error has occurred if x has been trans-decoder error

mitted, y received and decoded to a codeword z 6= x. A decoder error is much
less desirable than a decoding default, since to the receiver it has the appear-
ance of being correct. With detection we know something has gone wrong and
can conceivably compensate, for instance, by requesting retransmission. Finally
decoder failure occurs whenever we do not have correct decoding. Thus decoderdecoder failure

failure is the combination of decoding default and decoder error.
Consider a code C in An and a decoding algorithm A. Then Px(A) is defined

as the error probability (more properly, failure probability) that after x ∈ C is
transmitted, it is received and not decoded correctly using A. We then define

PC(A) = |C|−1
∑
x∈C
Px(A) ,

the average error expectation for decoding C using the algorithm A. This judges
how good A is as an algorithm for decoding C. (Another good gauge would
be the worst case expectation, maxx∈C Px(A).) We finally define the error
expectation PC for C viaerror expectation PC

PC = min
A
PC(A) .

If PC(A) is large then the algorithm is not good. If PC is large, then no decoding
algorithm is good for C; and so C itself is not a good code. In fact, it is not
hard to see that PC = PC(A), for every MLD algorithm A. (It would be more
consistent to call PC the failure expectation, but we stick with the common
terminology.)

We have already remarked upon the similarity of the processes of demodu-
lation and decoding. Under this correspondence we can think of the detection
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symbol ∞ as the counterpart to the erasure symbol ? while decoder errors cor-
respond to symbol errors. Indeed there are situations in concatenated coding
where this correspondence is observed precisely. Codewords emerging from the
“inner code” are viewed as symbols by the “outer code” with decoding error
and default becoming symbol error and erasure as described.

A main reason for using incomplete rather than complete decoding is ef-
ficiency of implementation. An incomplete algorithm may be much easier to
implement but only involve a small degradation in error performance from that
for complete decoding. Again consider the length 26 repetition code. Not only
are patterns of 13 errors extremely unlikely, but they require different handling
than other types of errors. It is easier just to announce that an error has been
detected at that point, and the the algorithmic error expectation PC(A) only
increases by a small amount.

1.3 Some examples of codes

1.3.1 Repetition codes

These codes exist for any length n and any alphabet A. A message consists of a
letter of the alphabet, and it is encoded by being repeated n times. Decoding can
be done by plurality vote, although it may be necessary to break ties arbitrarily.

The most fundamental case is that of binary repetition codes, those with
alphabet A = {0, 1}. Majority vote decoding always produces a winner for
binary repetition codes of odd length. The binary repetition codes of length 26
and 27 were discussed above.

1.3.2 Parity check and sum-0 codes

Parity check codes form the oldest family of codes that have been used in prac-
tice. The parity check code of length n is composed of all binary (alphabet
A = {0, 1}) n-tuples that contain an even number of 1’s. Any subset of n − 1
coordinate positions can be viewed as carrying the information, while the re-
maining position “checks the parity” of the information set. The occurrence of
a single bit error can be detected since the parity of the received n-tuple will
be odd rather than even. It is not possible to decide where the error occurred,
but at least its presence is felt. (The parity check code is able to correct single
erasures.)

The parity check code of length 27 was discussed above.
A versions of the parity check code can be defined in any situation where

the alphabet admits addition. The code is then all n-tuples whose coordinate
entries sum to 0. When the alphabet is the integers modulo 2, we get the usual
parity check code.

1.3.3 The [7, 4] binary Hamming code

We quote from Shannon’s paper:
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An efficient code, allowing complete correction of [single] errors
and transmitting at the rate C [=4/7], is the following (found by a
method due to R. Hamming):

Let a block of seven symbols be X1, X2, . . . , X7 [each either 0
or 1]. Of these X3, X5, X6, and X7 are message symbols and cho-
sen arbitrarily by the source. The other three are redundant and
calculated as follows:

X4 is chosen to make α = X4 +X5 +X6 +X7 even
X2 is chosen to make β = X2 +X3 +X6 +X7 even
X1 is chosen to make γ = X1 +X3 +X5 +X7 even

When a block of seven is received, α, β, and γ are calculated and if
even called zero, if odd called one. The binary number αβ γ then
gives the subscript of the Xi that is incorrect (if 0 then there was
no error).

This describes a [7, 4] binary Hamming code together with its decoding. We
shall give the general versions of this code and decoding in a later chapter.

R.J. McEliece has pointed out that the [7, 4] Hamming code can be nicely
thought of in terms of the usual Venn diagram:

&%
'$

&%
'$

&%
'$

X1

X7

X6X4 X2

X5 X3

The message symbols occupy the center of the diagram, and each circle is com-
pleted to guarantee that it contains an even number of 1’s (has even parity). If,
say, received circles A and B have odd parity but circle C has even parity, then
the symbol within A ∩B ∩ C is judged to be in error at decoding.

1.3.4 An extended binary Hamming code

An extension of a binary Hamming code results from adding at the beginning
of each codeword a new symbol that checks the parity of the codeword. To the
[7, 4] Hamming code we add an initial symbol:

X0 is chosen to make X0 +X1 +X2 +X3 +X4 +X5 +X6 +X7 even

The resulting code is the [8, 4] extended Hamming code. In the Venn diagram
the symbol X0 checks the parity of the universe.

The extended Hamming code not only allows the correction of single errors
(as before) but also detects double errors.
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1.3.5 The [4, 2] ternary Hamming code

This is a code of nine 4-tuples (a, b, c, d) ∈ A4 with ternary alphabet A =
{0, 1, 2}. Endow the set A with the additive structure of the integers modulo
3. The first two coordinate positions a, b carry the 2-tuples of information, each
pair (a, b) ∈ A2 exactly once (hence nine codewords). The entry in the third
position is sum of the previous two (calculated, as we said, modulo 3):

a+ b = c ,

for instance, with (a, b) = (1, 0) we get c = 1 + 0 = 1. The final entry is then
selected to satisfy

b+ c+ d = 0 ,

so that 0 + 1 + 2 = 0 completes the codeword (a, b, c, d) = (1, 0, 1, 2). These
two equations can be interpreted as making ternary parity statements about the
codewords; and, as with the binary Hamming code, they can then be exploited
for decoding purposes. The complete list of codewords is:

(0, 0, 0, 0) (1, 0, 1, 2) (2, 0, 2, 1)
(0, 1, 1, 1) (1, 1, 2, 0) (2, 1, 0, 2)
(0, 2, 2, 2) (1, 2, 0, 1) (2, 2, 1, 0)

( 1.3.1) Problem. Use the two defining equations for this ternary Hamming code
to describe a decoding algorithm that will correct all single errors.

1.3.6 A generalized Reed-Solomon code

We now describe a code of length n = 27 with alphabet the field of real number
R. Given our general assumptions this is actually a nonexample, since the
alphabet is not discrete or even bounded. (There are, in fact, situations where
these generalized Reed-Solomon codes with real coordinates have been used.)

Choose 27 distinct real numbers α1, α2, . . . , α27 . Our message k-tuples will
be 7-tuples of real numbers (f0, f1, . . . , f6), so k = 7. We will encode a given
message 7-tuple to the codeword 27-tuple

f = (f(α1), f(α2), . . . , f(α27)) ,
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where
f(x) = f0 + f1x+ f2x

2 + f3x
3 + f4x

4 + f5x
5 + f6x

6

is the polynomial function whose coefficients are given by the message. Our
Reasonable Assumption says that a received 27-tuple will resemble the codeword
transmitted to a large extent. If a received word closely resembles each of two
codewords, then they also resemble each other. Therefore to achieve a high
probability of correct decoding we would wish pairs of codewords to be highly
dissimilar.

The codewords coming from two different messages will be different in those
coordinate positions i at which their polynomials f(x) and g(x) have different
values at αi. They will be equal at coordinate position i if and only if αi is a
root of the difference h(x) = f(x) − g(x). But this can happen for at most 6
values of i since h(x) is a nonzero polynomial of degree at most 6. Therefore:

distinct codewords differ in at least 21 (= 27 − 6) coordinate posi-
tions.

Thus two distinct codewords are highly different. Indeed as many up to 10
errors can be introduced to the codeword f for f(x) and the resulting word will
still resemble the transmitted codeword f more than it will any other codeword.

The problem with this example is that, given our inability in practice to
describe a real number with arbitrary accuracy, when broadcasting with this
code we must expect almost all symbols to be received with some small error —
27 errors every time! One of our later objectives will be to translate the spirit
of this example into a more practical setting.



Chapter 2

Sphere Packing and
Shannon’s Theorem

In the first section we discuss the basics of block coding on the m-ary symmetric
channel. In the second section we see how the geometry of the codespace can
be used to make coding judgements. This leads to the third section where we
present some information theory and Shannon’s basic Channel Coding Theorem.

2.1 Basics of block coding on the mSC

Let A be any finite set. A block code or code, for short, will be any nonempty block code

subset of the set An of n-tuples of elements from A. The number n = n(C) is
the length of the code, and the set An is the codespace. The number of members length

codespacein C is the size and is denoted |C|. If C has length n and size |C|, we say that
sizeC is an (n, |C|) code.
(n, |C|) codeThe members of the codespace will be referred to as words, those belonging
wordsto C being codewords. The set A is then the alphabet.
codewords
alphabet

If the alphabet A has m elements, then C is said to be an m-ary code. In

m-ary code

the special case |A|=2 we say C is a binary code and usually take A = {0, 1}

binary

or A = {−1,+1}. When |A|=3 we say C is a ternary code and usually take

ternary

A = {0, 1, 2} or A = {−1, 0,+1}. Examples of both binary and ternary codes
appeared in Section 1.3.

For a discrete memoryless channel, the Reasonable Assumption says that a
pattern of errors that involves a small number of symbol errors should be more
likely than any particular pattern that involves a large number of symbol errors.
As mentioned, the assumption is really a statement about design.

On an mSC(p) the probability p(y|x) that x is transmitted and y is received
is equal to pdqn−d, where d is the number of places in which x and y differ.
Therefore

Prob(y |x) = qn(p/q)d ,

15
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a decreasing function of d provided q > p. Therefore the Reasonable Assumption
is realized by the mSC(p) subject to

q = 1− (m− 1)p > p

or, equivalently,
1/m > p .

We interpret this restriction as the sensible design criterion that after a symbol
is transmitted it should be more likely for it to be received as the correct symbol
than to be received as any particular incorrect symbol.

Examples.
(i) Assume we are transmitting using the the binary Hamming code

of Section 1.3.3 on BSC(.01). Comparing the received word 0011111 with
the two codewords 0001111 and 1011010 we see that

p(0011111|0001111) = q6p1 ≈ .009414801 ,

while
p(0011111|1011010) = q4p3 ≈ .000000961 ;

therefore we prefer to decode 0011111 to 0001111. Even this event is
highly unlikely, compared to

p(0001111|0001111) = q7 ≈ .932065348 .

(ii) If m = 5 with A = {0, 1, 2, 3, 4}6 and p = .05 < 1/5 = .2, then
q = 1− 4(.05) = .8; and we have

p(011234|011234) = q6 = .262144

and
p(011222|011234) = q4p2 = .001024 .

For x,y ∈ An, we define

dH(x,y) = the number of places in which x and y differ.

This number is the Hamming distance between x and y. The Hamming distanceHamming distance

is a genuine metric on the codespace An. It is clear that it is symmetric and
that dH(x,y) = 0 if and only if x = y. The Hamming distance dH(x,y) should
be thought of as the number of errors required to change x into y (or, equally
well, to change y into x).

Example.
dH(0011111, 0001111) = 1 ;

dH(0011111, 1011010) = 3 ;

dH(011234, 011222) = 2 .

( 2.1.1) Problem. Prove the triangle inequality for the Hamming distance:

dH(x,y) + dH(y, z) ≥ dH(x, z) .
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The arguments above show that, for an mSC(p) with p < 1/m, maximum
likelihood decoding becomes:

Minimum Distance Decoding — When y is received, we must
decode to a codeword x that minimizes the Hamming distance dH(x,y).

We abbreviate minimum distance decoding as MDD. In this context, incom- minimum distance decoding

MDDplete decoding is incomplete minimum distance decoding IMDD:
IMDD

Incomplete Minimum Distance Decoding — When y is re-
ceived, we must decode either to a codeword x that minimizes the
Hamming distance dH(x,y) or to the “error detected” symbol ∞.

( 2.1.2) Problem. Prove that, for an mSC(p) with p = 1/m, every complete decoding
algorithm is an MLD algorithm.

( 2.1.3) Problem. Give a definition of what might be called maximum distance
decoding, MxDD; and prove that MxDD algorithms are MLD algorithms for an
mSC(p) with p > 1/m.

In An, the sphere1 of radius ρ centered at x is sphere

Sρ(x) = {y ∈ An | dH(x,y) ≤ ρ }.

Thus the sphere of radius ρ around x is composed of those y that might be
received if at most ρ symbol errors were introduced to the transmitted codeword
x.

The volume of a sphere of radius ρ is independent of the location of its
center.

( 2.1.4) Problem. Prove that in An with |A| = m, a sphere of radius e contains
eX
i=0

 
n

i

!
(m− 1)i words.

For example, a sphere of radius 2 in {0, 1}90 has volume

1 +
(

90
1

)
+
(

90
2

)
= 1 + 90 + 4005 = 4096 = 212

corresponding to a center, 90 possible locations for a single error, and
(

90
2

)
possibilities for a double error. A sphere of radius 2 in {0, 1, 2}8 has volume

1 +
(

8
1

)
(3− 1)1 +

(
8
2

)
(3− 1)2 = 1 + 16 + 112 = 129 .

For each nonnegative real number ρ we define a decoding algorithm SSρ for SSρ
An called sphere shrinking. sphere shrinking

1Mathematicians would prefer to use the term ‘ball’ here in place of ‘sphere’, but we stick
with the traditional coding terminology.



18 CHAPTER 2. SPHERE PACKING AND SHANNON’S THEOREM

Radius ρ Sphere Shrinking — If y is received, we decode to
the codeword x if x is the unique codeword in Sρ(y), otherwise we
declare a decoding default.

Thus SSρ shrinks the sphere of radius ρ around each codeword to its center,
throwing out words that lie in more than one such sphere.

The various distance determined algorithms are completely described in
terms of the geometry of the codespace and the code rather than by the specific
channel characteristics. In particular they no longer depend upon the transi-
tion parameter p of an mSC(p) being used. For IMDD algorithms A and B,
if PC(A) ≤ PC(B) for some mSC(p) with p < 1/m, then PC(A) ≤ PC(B)
will be true for all mSC(p) with p < 1/m. The IMDD algorithms are (incom-
plete) maximum likelihood algorithms on every mSC(p) with p ≤ 1/m, but this
observation now becomes largely motivational.

Example. Consider the specific case of a binary repetition code of
length 26. Since the first two possibilities are not algorithms but classes
of algorithms there are choices available.

w = number of 1’s 0 1 ≤ w ≤ 11 = 12 = 13 = 14 15 ≤ w ≤ 25 26

IMDD 0/∞ 0/∞ 0/∞ 0/1/∞ 1/∞ 1/∞ 1/∞
MDD 0 0 0 0/1 1 1 1

SS12 0 0 0 ∞ 1 1 1

SS11 0 0 ∞ ∞ ∞ 1 1

SS0 0 ∞ ∞ ∞ ∞ ∞ 1

Here 0 and 1 denote, respectively, the 26-tuple of all 0’s and all 1’s. In the
fourth case, we have less error correcting power. On the other hand we
are less likely to have a decoder error, since 15 or more symbol errors must
occur before a decoder error results. The final case corrects no errors, but
detects nontrivial errors except in the extreme case where all symbols are
received incorrectly, thereby turning the transmitted codeword into the
other codeword.

The algorithm SS0 used in the example is the usual error detection algo-
rithm: when y is received, decode to y if it is a codeword and otherwise decode
to ∞, declaring that an error has been detected.

2.2 Sphere packing

The code C in An has minimum distance dmin(C) equal to the minimum ofminimum distance

dH(x,y), as x and y vary over all distinct pairs of codewords from C. (This
leaves some confusion over dmin(C) for a length n code C with only one word. It
may be convenient to think of it as any number larger than n.) An (n,M) code
with minimum distance d will sometimes be referred to as an (n,M, d) code.(n,M, d) code

Example. The minimum distance of the repetition code of length n is
clearly n. For the parity check code any single error produces a word of



2.2. SPHERE PACKING 19

odd parity, so the minimum distance is 2. The length 27 generalized Reed-
Solomon code of Example 1.3.6 was shown to have minimum distance 21.

Laborious checking reveals that the [7, 4] Hamming code has minimum
distance 3, and its extension has minimum distance 4. The [4, 2] ternary
Hamming code also has minimum distance 3. We shall see later how to
find the minimum distance of these codes easily.

(2.2.1) Lemma. The following are equivalent for the code C in An for an
integer e ≤ n:

(1) under SSe any occurrence of e or fewer symbol errors will always be
successfully corrected;

(2) for all distinct x,y in C, we have Se(x) ∩ Se(y) = ∅;
(3) the minimum distance of C, dmin(C), is at least 2e+ 1.

Proof. Assume (1), and let z ∈ Se(x), for some x ∈ C. Then by assumption
z is decoded to x by SSe. Therefore there is no y ∈ C with y 6= x and z ∈ Se(y),
giving (2).

Assume (2), and let z be a word that results from the introduction of at
most e errors to the codeword x. By assumption z is not in Se(y) for any y of
C other than x. Therefore, Se(z) contains x and no other codewords; so z is
decoded to x by SSe, giving (1).

If z ∈ Se(x) ∩ Se(y), then by the triangle inequality we have dH(x,y) ≤
dH(x, z) + dH(z,y) ≤ 2e, so (3) implies (2).

It remains to prove that (2) implies (3). Assume dmin(C) = d ≤ 2e. Choose
x = (x1, . . . , xn) and y = (y1, . . . , yn) in C with dH(x,y) = d. If d ≤ e, then
x ∈ Se(x) ∩ Se(y); so we may suppose that d > e.

Let i1, . . . , id ≤ n be the coordinate positions in which x and y differ: xij 6=
yij , for j = 1, . . . , d. Define z = (z1, . . . , zn) by zk = yk if k 6∈ {i1, . . . , ie} and
zk = xk if k ∈ {i1, . . . , ie}. Then dH(y, z) = e and dH(x, z) = d − e ≤ e. Thus
z ∈ Se(x) ∩ Se(y). Therefore (2) implies (3). 2

A code C that satisfies the three equivalent properties of Lemma 2.2.1 is
called an e-error-correcting code. The lemma reveals one of the most pleasing e-error-correcting code

aspects of coding theory by identifying concepts from three distinct and impor-
tant areas. The first property is algorithmic, the second is geometric, and the
third is linear algebraic. We can readily switch from one point of view to another
in search of appropriate insight and methodology as the context requires.

( 2.2.2) Problem. Explain why the error detecting algorithm SS0 correctly detects
all patterns of fewer than dmin symbol errors.

( 2.2.3) Problem. Let f ≥ e. Prove that the following are equivalent for the code C
in An:

(1) under SSe any occurrence of e or fewer symbol errors will always be successfully
corrected and no occurrence of f or fewer symbol errors will cause a decoder error;

(2) for all distinct x,y in C, we have Sf (x) ∩ Se(y) = ∅;
(3) the minimum distance of C, dmin(C), is at least e+ f + 1.

A code C that satisfies the three equivalent properties of the problem is called an e-
error-correcting, f -error-detecting code. e-error-correcting,

f -error-detecting
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( 2.2.4) Problem. Consider an erasure channel, that is, a channel that erases
certain symbols and leaves a ‘?’ in their place but otherwise changes nothing. Explain
why, using a code with minimum distance d on this channel, we can correct all patterns
of up to d− 1 symbol erasures. (In certain computer systems this observation is used
to protect against hard disk crashes.)

By Lemma 2.2.1, if we want to construct an e-error-correcting code, we
must be careful to choose as codewords the centers of radius e spheres that are
pairwise disjoint. We can think of this as packing spheres of radius e into the
large box that is the entire codespace. From this point of view, it is clear that
we will not be able to fit in any number of spheres whose total volume exceeds
the volume of the box. This proves:

(2.2.5) Theorem. (Sphere packing condition.) If C is an e-error-correcting
code in An, then

|C| · |Se(∗)| ≤ |An| . 2

Combined with Problem 2.1.4, this gives:

(2.2.6) Corollary. (Sphere packing bound; Hamming bound.) If C is
a m-ary e-error-correcting code of length n, then

|C| ≤ mn

/ e∑
i=0

(
n

i

)
(m− 1)i. 2

A code C that meets the sphere packing bound with equality is called a
perfect e-error-correcting code. Equivalently, C is a perfect e-error-correctingperfect e-error-correcting code

code if and only if SSe is a MDD algorithm. As examples we have the binary
repetition codes of odd length. The [7, 4] Hamming code is a perfect 1-error-
correcting code, as we shall see in Section 4.1.

(2.2.7) Theorem. (Gilbert-Varshamov bound.) There exists an m-ary
e-error-correcting code C of length n such that

|C| ≥ mn

/ 2e∑
i=0

(
n

i

)
(m− 1)i .

Proof. The proof is by a “greedy algorithm” construction. Let the code-
space be An. At Step 1 we begin with the code C1 = {x1}, for any word x1.
Then, for i ≥ 2, we have:

Step i. Set Si =
⋃i−1
j=1 Sd−1(xj).

If Si = An, halt.
Otherwise choose a vector xi in An − Si;
set Ci = Ci−1 ∪ {xi};
go to Step i+ 1.
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At Step i, the code Ci has cardinality i and is designed to have minimum distance
at least d. (As long as d ≤ n we can choose x2 at distance d from x1; so each
Ci, for i ≥ 1 has minimum distance exactly d.)

How soon does the algorithm halt? We argue as we did in proving the sphere
packing condition. The set Si =

⋃i−1
j=1 Sd−1(xj) will certainly be smaller than

An if the spheres around the words of Ci−1 have total volume less than the
volume of the entire space An; that is, if

|Ci−1| · |Sd−1(∗)| < |An| .

Therefore when the algorithm halts, this inequality must be false. Now Problem
2.1.4 gives the bound. 2

A sharper version of the Gilbert-Varshamov bound exists, but the asymptotic
result of the next section is unaffected.

Examples.
(i) Consider a binary 2-error-correcting code of length 90. By the

Sphere Packing Bound it has size at most

290

|S2(∗)| =
290

212
= 278 .

If a code existed meeting this bound, it would be perfect.
By the Gilbert-Varshamov Bound, in {0, 1}90 there exists a code C

with minimum distance 5, which therefore corrects 2 errors, and having

|C| ≥ 290

|S4(∗)| =
290

2676766
≈ 4.62× 1020 .

As 278 ≈ 3.02× 1023, there is a factor of roughly 650 separating the lower
and upper bounds.

(ii) Consider a ternary 2-error-correcting code of length 8. By the
Sphere Packing Bound it has size bounded above by

38

|S2(∗)| =
6561

129
≈ 50.86 .

Therefore it has size at most b50.86c = 50. On the other hand, the Gilbert-
Varshamov Bound guarantees only a code C of size bounded below by

|C| ≥ 6561

|S4(∗)| =
6561

1697
≈ 3.87 ,

that is, of size at least d3.87e = 4 ! Later we shall construct an appropriate
C of size 27. (This is in fact the largest possible.)

( 2.2.8) Problem. In each of the following cases decide whether or not there exists a
1-error-correcting code C with the given size in the codespace V . If there is such a code,
give an example (except in (d), where an example is not required but a justification is).
If there is not such a code, prove it.

(a) V = {0, 1}5 and |C| = 6;
(b) V = {0, 1}6 and |C| = 9;
(c) V = {0, 1, 2}4 and |C| = 9.
(d) V = {0, 1, 2}8 and |C| = 51.
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( 2.2.9) Problem. In each of the following cases decide whether or not there exists
a 2-error-correcting code C with the given size in the codespace V . If there is such a
code, give an example. If there is not such a code, prove it.

(a) V = {0, 1}8 and |C| = 4;
(b) V = {0, 1}8 and |C| = 5.

2.3 Shannon’s theorem and the code region

The present section is devoted to information theory rather than coding theory
and will not contain complete proofs. The goal of coding theory is to live up to
the promises of information theory. Here we shall see of what our dreams are
made.

Our immediate goal is to quantify the Fundamental Problem. We need to
evaluate information content and error performance.

We first consider information content. The m-ary code C has dimensiondimension

k(C) = logm(|C|). The integer k = dk(C)e is the smallest such that each
message for C can be assigned its own individual message k-tuple from the m-
ary alphabet A. Therefore we can think of the dimension as the number of
codeword symbols that are carrying message rather than redundancy. (Thus
the number n− k is sometimes called the redundancy of C.) A repetition coderedundancy

has n symbols, only one of which carries the message; so its dimension is 1. For
a length n parity check code, n − 1 of the symbols are message symbols; and
so the code has dimension n− 1. The [7, 4] Hamming code has dimension 4 as
does its [8, 4] extension, since both contain 24 = 16 codewords. Our definition
of dimension does not apply to our real Reed-Solomon example 1.3.6 since its
alphabet is infinite, but it is clear what its dimension should be. Its 27 positions
are determined by 7 free parameters, so the code should have dimension 7.

The dimension of a code is a deceptive gauge of information content. For
instance, a binary code C of length 4 with 4 codewords and dimension log2(4) =
2 actually contains more information than a second code D of length 8 with 8
codewords and dimension log2(8) = 3. Indeed the code C can be used to produce
16 = 4× 4 different valid code sequences of length 8 (a pair of codewords) while
the code D only offers 8 valid sequences of length 8. Here and elsewhere, the
proper measure of information content should be the fraction of the code symbols
that carries information rather than redundancy. In this example 2/4 = 1/2 of
the symbols of C carry information while for D only 3/8 of the symbols carry
information, a fraction smaller than that for C.

The fraction of a repetition codeword that is information is 1/n, and for a
parity check code the fraction is (n−1)/n. In general, we define the normalized
dimension or rate κ(C) of the m-ary code C of length n byrate

κ(C) = k(C)/n = n−1 logm(|C|) .

The repetition code thus has rate 1/n, and the parity check code rate (n−1)/n.
The [7, 4] Hamming code has rate 4/7, and its extension rate 4/8 = 1/2. The
[4, 2] ternary Hamming code has rate 2/4 = 1/2. Our definition of rate does
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not apply to the real Reed-Solomon example of 1.3.6, but arguing as before we
see that it has “rate” 7/27. The rate is the normalized dimension of the code,
in that it indicates the fraction of each code coordinate that is information as
opposed to redundancy.

The rate κ(C) provides us with a good measure of the information content
of C. Next we wish to measure the error handling ability of the code. One
possible gauge is PC , the error expectation of C; but in general this will be
hard to calculate. We can estimate PC , for an mSC(p) with small p, by making
use of the obvious relationship PC ≤ PC(SSρ) for any ρ. If e = b(d − 1)/2c,
then C is an e-error-correcting code; and certainly PC ≤ PC(SSe), a probability
that is easy to calculate. Indeed SSe corrects all possible patterns of at most e
symbol errors but does not correct any other errors; so

PC(SSe) = 1−
e∑
i=0

(
n

i

)
(m− 1)ipiqn−i .

The difference between PC and PC(SSe) will be given by further terms pjqn−j

with j larger than e. For small p, these new terms will be relatively small.
Shannon’s theorem guarantees the existence of large families of codes for

which PC is small. The previous paragraph suggests that to prove this efficiently
we might look for codes with arbitrarily small PC(SS(dmin−1)/2), and in a sense
we do. However, it can be proven that decoding up to minimum distance
alone is not good enough to prove Shannon’s Theorem. (Think of the ‘Birthday
Paradox’.) Instead we note that a received block of large length n is most likely
to contain sn symbol errors where s = p(m − 1) is the probability of symbol
error. Therefore in proving Shannon’s theorem we look at large numbers of
codes, each of which we decode using SSρ for some radius ρ a little larger than
sn.

A family C of codes over A is called a Shannon family if, for every ε > 0, Shannon family

there is a code C ∈ C with PC < ε. For a finite alphabet A, the family C must
necessarily be infinite and so contain codes of unbounded length.

( 2.3.1) Problem. Prove that the set of all binary repetition codes of odd length is
a Shannon family on BSC(p) for p < 1/2.

Although repetition codes give us a Shannon family, they do not respond to
the Fundamental Problem by having good information content as well. Shannon
proved that codes of the sort we need are out there somewhere.

(2.3.2) Theorem. (Shannon’s Channel Coding Theorem.) Consider the
m-ary symmetric channel mSC(p) with p < 1/m. There is a function Cm(p)
such that, for any κ < Cm(p),

Cκ = { m-ary block codes of rate at least κ}

is a Shannon family. Conversely if κ > Cm(p), then Cκ is not a Shannon family.
2
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The function Cm(p) is the capacity function for themSC(p) and will be discussed
below.

Shannon’s theorem tells us that we can communicate reliably at high rates;
but, as R.J. McEliece has remarked, its lesson is deeper and more precise than
this. It tells us that to make the best use of our channel we must transmit at
rates near capacity and then filter out errors at the destination. Think about
Lucy and Ethel wrapping chocolates. The company can maximize its total profit
by increasing the conveyor belt rate and accepting a certain amount of wastage.
The tricky part is figuring out how high the rate can be set before chaos ensues.

Shannon’s theorem is robust in that bounding rate by the capacity function
still allows transmission at high rate for most p. In the particular case m = 2,
we have

C2(p) = 1 + p log2(p) + q log2(q) ,

where p+q = 1. Thus on a binary symmetric channel with transition probability
p = .02 (a pretty bad channel), we have C2(.02) ≈ .8586. Similarly C2(.1) ≈
.5310, C2(.01) ≈ .9192, and C2(.001) ≈ .9886. So, for instance, if we expect bit
errors .1 % of the time, then we may transmit messages that are nearly 99%
information but still can be decoded with arbitrary precision. Many channels
in use these days operate with p between 10−7 and 10−15.

We define the general entropy and capacity functions before giving an idea
of their origin. The m-ary entropy function is defined on (0, (m− 1)/m] byentropy

Hm(x) = −x logm(x/(m− 1))− (1− x) logm(1− x),

where we additionally define Hm(0) = 0 for continuity. Notice Hm(m−1
m ) =

1. Having defined entropy, we can now define the m-ary capacity function oncapacity

[0, 1/m] by
Cm(p) = 1−Hm((m− 1)p) .

We have Cm(0) = 1 and Cm(1/m) = 0.
We next see why entropy and capacity might play a role in coding problems.

(The lemma is a consequence of Stirling’s formula.)

(2.3.3) Lemma. For spheres in An with |A| = m and any σ in (0, (m−1)/m],
we have

lim
n→∞

n−1 logm(|Sσn(∗)|) = Hm(σ). 2

For a code C of sufficient length n on mSC(p) we expect sn symbol errors in
a received word, so we would like to correct at least this many errors. Applying
the Sphere Packing Condition 2.2.5 we have

|C| · |Ssn(∗)| ≤ mn ,

which, upon taking logarithms, is

logm(|C|) + logm(|Ssn(∗)|) ≤ n .



2.3. SHANNON’S THEOREM AND THE CODE REGION 25

We divide by n and move the second term across the inequality to find

κ(C) = n−1 logm(|C|) ≤ 1− n−1 logm(|Ssn(∗)|) .

The righthand side approaches 1−Hm(s) = Cm(p) as n goes to infinity; so, for
C to be a contributing member of a Shannon family, it should have rate at most
capacity. This suggests:

(2.3.4) Proposition. If C is a Shannon family for mSC(p) with 0 ≤ p ≤
1/m, then lim infC∈C κ(C) ≤ Cm(p). 2

The proposition provides the converse in Shannon’s Theorem, as we have
stated it. (Our arguments do not actually prove this converse. We can not
assume our spheres of radius sn to be pairwise disjoint, so the Sphere Packing
Condition does not directly apply.)

We next suggest a proof of the direct part of Shannon’s theorem, notic-
ing along the way how our geometric interpretation of entropy and capacity is
involved.

The outline for a proof of Shannon’s theorem is short: for each ε > 0 (and
n) we choose a ρ (= ρε(n) = sn+ o(n) ) for which

avgC PC(SSρ) < ε ,

for all sufficiently large n, where the average is taken over all C ⊆ An with
|C| = mκn (round up), codes of length n and rate κ. As the average is less than
ε, there is certainly some particular code C with PC less than ε, as required.

In carrying this out it is enough (by symmetry) to consider all C containing
a fixed x and prove

avgC Px(SSρ) < ε .

Two sources of incorrect decoding for transmitted x must be considered:

(i) y is received with y 6∈ Sρ(x);

(ii) y is received with y ∈ Sρ(x) but also y ∈ Sρ(z), for some z ∈ C with
z 6= x.

For mistakes of the first type the binomial distribution guarantees a probability
less than ε/2 for a choice of ρ just slightly larger than sn = p(m − 1)n, even
without averaging. For our fixed x, the average probability of an error of the
second type is over-estimated by

mκn |Sρ(z)|
mn

,

the number of z ∈ C times the probability that an arbitrary y is in Sρ(z). This
average probability has logarithm

−n
(

(1− n−1 logm(|Sρ(∗)|))− κ
)
.
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In the limit, the quantity in the parenthesis is

(1−Hm(s))− κ = β ,

which is positive by hypothesis. The average then behaves like m−nβ . Therefore
by increasing n we can also make the average probability in the second case less
than ε/2. This completes the proof sketch.

Shannon’s theorem now guarantees us codes with arbitrarily small error
expectation PC , but this number is still not a very good measure of error han-
dling ability for the Fundamental Problem. Aside from being difficult to cal-
culate, it is actually channel dependent, being typically a polynomial in p and
q = 1 − (m − 1)p. As we have discussed, one of the attractions of IMDD
decoding on m-ary symmetric channels is the ability to drop channel specific
parameters in favor of general characteristics of the code geometry. So perhaps
rather than search for codes with small PC , we should be looking at codes with
large minimum distance. This parameter is certainly channel independent; but,
as with dimension and rate, we have to be careful to normalize the distance.
While 100 might be considered a large minimum distance for a code of length
200, it might not be for a code of length 1,000,000. We instead consider the
normalized distance of the length n code C defined as δ(C) = dmin(C)/n.normalized distance

As further motivation for study of the normalized distance, we return to the
observation that, in a received word of decent length n, we expect sn = p(m−1)n
symbol errors. For correct decoding we would like

p(m− 1)n ≤ (dmin − 1)/2 .

If we rewrite this as

0 < 2p(m− 1) ≤ (dmin − 1)/n < dmin/n = δ ,

then we see that for a family of codes with good error handling ability we
attempt to bound the normalized distance δ away from 0.

The Fundamental Problem has now become:

The Fundamental Problem of Coding Theory — Find practi-
cal m-ary codes C with reasonably large rate κ(C) and reasonably
large normalized distance δ(C).

What is viewed as practical will vary with the situation. For instance, we might
wish to bound decoding complexity or storage required.

Shannon’s theorem provides us with cold comfort. The codes are out there
somewhere, but the proof by averaging gives no hint as to where we should
look.2 In the next chapter we begin our search in earnest. But first we discuss
what sort of pairs (δ(C), κ(C)) we might attain.

2In the last fifty years many good codes have been constructed, but only beginning in
1993—with the introduction of turbo codes, the rediscovery of LDPC codes, and the intense
study of related codes and associated iterative decoding algorithms—did we start to see how
Shannon’s bound is approachable in practice in certain cases. The codes and algorithms
discussed in these remain of importance.
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We could graph in [0, 1]× [0, 1] all pairs (δ(C), κ(C)) realized by some m-ary
code C, but many of these correspond to codes that have no claim to being
practical. For instance, the length 1 binary code C = {0, 1} has (δ(C), κ(C)) =
(1, 1) but is certainly impractical by any yardstick. The problem is that in order
for us to be confident that the number of symbol errors in a received n-tuple
is close to p(m − 1)n, the length n must be large. So rather than graph all
attainable pairs (δ(C), κ(C)), we adopt the other extreme and consider only
those pairs that can be realized by codes of arbitrarily large length.

To be precise, the point (δ, κ) ∈ [0, 1]×[0, 1] belongs to the m-ary code region code region

if and only if there is a sequence {Cn} of m-ary codes Cn with unbounded length
n for which

δ = lim
n→∞

δ(Cn) and κ = lim
n→∞

κ(Cn) .

Equivalently, the code region is the set of all accumulation points in [0, 1]× [0, 1]
of the graph of achievable pairs (δ(C), κ(C)).

(2.3.5) Theorem. (Manin’s bound on the code region.) There is a
continuous, nonincreasing function κm(δ) on the interval [0, 1] such that the
point (δ, κ) is in the m-ary code region if and only if

0 ≤ κ ≤ κm(δ) . 2

Although the proof is elementary, we do not give it. However we can easily
see why something like this should be true. If the point (δ, κ) is in the code
region, then it seems reasonable that the code region should contain as well the
points (δ′, κ) , δ′ < δ, corresponding to codes with the same rate but smaller
distance and also the points (δ, κ′), κ′ < κ, corresponding to codes with the
same distance but smaller rate. Thus for any point (δ, κ) of the code region, the
rectangle with corners (0, 0), (δ, 0), (0, κ), and (δ, κ) should be entirely contained
within the code region. Any region with this property has its upper boundary
function nonincreasing and continuous.

In our discussion of Proposition 2.3.4 we saw that κ(C) ≤ 1−Hm(s) when
correcting the expected sn symbol errors for a code of length n. Here sn is
roughly (d− 1)/2 and s is approximately (d− 1)/2n. In the present context the
argument preceding Proposition 2.3.4 leads to

(2.3.6) Theorem. (Asymptotic Hamming bound.) We have

κm(δ) ≤ 1−Hm(δ/2) . 2

Similarly, from the Gilbert-Varshamov bound 2.2.7 we derive:

(2.3.7) Theorem. (Asymptotic Gilbert-Varshamov bound.) We have

κm(δ) ≥ 1−Hm(δ) . 2

Various improvements to the Hamming upper bound and its asymptotic
version exist. We present two.
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(2.3.8) Theorem. (Plotkin bound.) Let C be an m-ary code of length n
with δ(C) > (m− 1)/m. Then

|C| ≤ δ

δ − m−1
m

. 2

(2.3.9) Corollary. (Asymptotic Plotkin bound.)
(1) κm(δ) = 0 for (m− 1)/m < δ ≤ 1.
(2) κm(δ) ≤ 1− m

m−1δ for 0 ≤ δ ≤ (m− 1)/m. 2

For a fixed δ > (m − 1)/m, the Plotkin bound 2.3.8 says that code size is
bounded by a constant. Thus as n goes to infinity, the rate goes to 0, hence
(1) of the corollary. Part (2) is proven by applying the Plotkin bound not to
the code C but to a related code C ′ with the same minimum distance but of
shorter length. (The proof of part (2) of the corollary appears below in §6.1.3.
The proof of the theorem is given as Problem 3.1.6.)

( 2.3.10) Problem. (Singleton bound.) Let C be a code in An with minimum
distance d = dmin(C). Prove |C| ≤ |A|n−d+1 . ( Hint: For the word y ∈ An−d+1, how
many codewords of C can have a copy of y as their first n− d+ 1 entries?)

( 2.3.11) Problem. (Asymptotic Singleton bound.) Use Problem 2.3.10 to
prove δ + κm(δ) ≤ 1. (We remark that this is a weak form of the asymptotic Plotkin
bound.)

While the asymptotic Gilbert-Varshamov bound shows that the code region
is large, the proof is essentially nonconstructive since the greedy algorithm must
be used infinitely often. Most of the easily constructed families of codes give
rise to code region points either on the δ-axis or the κ-axis.

( 2.3.12) Problem. Prove that the family of repetition codes produces the point
(1, 0) of the code region and the family of parity check codes produces the point (0, 1).

The first case in which points in the interior of the code region were explicitly
constructed was the following 1972 result of Justesen:

(2.3.13) Theorem. For 0 < κ < 1
2 , there is a positive constant c and a

sequence of binary codes Jκ,n with rate at least κ and

limn→∞δ(Jκ,n) ≥ c(1− 2κ) .

Thus the line δ = c(1− 2κ) is constructively within the binary code region. 2

Justesen also has a version of his construction that produces binary codes of
larger rate. The constant c that appears in Theorem 2.3.13 is the unique solution
to H2(c) = 1

2 in [0, 1
2 ] and is roughly .110 .

While there are various improvements to the asymptotic Hamming upper
bound on κm(δ) and the code region, such improvements to the asymptotic
Gilbert-Varshamov lower bound are rare and difficult. Indeed for a long time
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Nice Graph

Figure 2.1: Bounds on the m-ary code region

Another Nice Graph

Figure 2.2: The 49-ary code region

it was conjectured that the asymptotic Gilbert-Varshamov bound holds with
equality,

κm(δ) = 1−Hm(δ) .

This is now known to be false for infinitely many m, although not as yet for the
important cases m = 2, 3. The smallest known counterexample is at m = 49.

(2.3.14) Theorem. The line

κ+ δ =
5
6

is within the 49-ary code region but is not below the corresponding Gilbert-
Varshamov curve

κ = 1−H49(δ) . 2

This theorem and much more was proven by Tsfasman, Vladut, and Zink in
1982 using difficult results from algebraic geometry in the context of a broad
generalization of Reed-Solomon codes.

It should be emphasized that these results are of an asymptotic nature. As
we proceed, we shall see various useful codes for which (δ, κ) is outside the
code region and important families whose corresponding limit points lie on a
coordinate axis κ = 0 or δ = 0.
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Chapter 3

Linear Codes

In order to define codes that we can encode and decode efficiently, we add more
structure to the codespace. We shall be mainly interested in linear codes. A
linear code of length n over the field F is a subspace of Fn. Thus the words of linear code

the codespace Fn are vectors, and we often refer to codewords as codevectors. codevectors

In the first section we develop the basics of linear codes, in particular we
introduce the crucial concept of the dual of a code. The second and third sections
then discuss the general principles behind encoding and decoding linear codes.
We encounter the important concept of a syndrome.

3.1 Basics

If C is a linear code that, as a vector space over the field F , has dimension k,
then we say that C is an [n, k] linear code over F , or an [n, k] code, for short. [n, k] linear code

There is no conflict with our definition of the dimension of C as a code, since
|C| = |F |k. (Indeed the choice of general terminology was motivated by the
special case of linear codes.) In particular the rate of an [n, k] linear code is
k/n. If C has minimum distance d, then C is an [n, k, d] linear code over F .
The number n− k is again the redundancy of C. redundancy

We begin to use F2 in preference to {0, 1} to denote our binary alphabet,
since we wish to emphasize that the alphabet carries with it an arithmetic
structure. Similar remarks apply to ternary codes.

Examples. (i) The repetition code of length n over F is an [n, 1, n]
linear code.

(ii) The binary parity check code of length n is an [n, n − 1, 2] linear
code.

(iii) The [7, 4], [8, 4], and [4, 2] Hamming codes of the introduction
were all defined by parity considerations or similar equations. We shall
see below that this forces them to be linear.

(iv) The real Reed-Solomon code of our example is a [27, 7, 21] linear
code over the real numbers R.

31



32 CHAPTER 3. LINEAR CODES

(3.1.1) Theorem. (Shannon’s theorem for linear codes.) Let F be a
field with m elements, and consider a mSC(p) with p < 1/m. Set

Lκ = { linear codes over F with rate at least κ }.

Then Lκ is a Shannon family provided κ < Cm(p). 2

Forney (1966) proved a strong version of this theorem which says that we need
only consider those linear codes of length n with encoder/decoder complexity
on the order of n4 (but at the expense of using very long codes). Thus there
are Shannon families whose members have rate approaching capacity and are,
in a theoretical sense, practical1.

The Hamming weight (for short, weight) of a vector v is the number of itsHamming weight

nonzero entries and is denoted wH(v). We have wH(x) = dH(x,0). The mini-
mum weight of the code C is the minimum nonzero weight among all codewordsminimum weight

of C,
wmin(C) = min

0 6=x∈C
(wH(x)) .

(3.1.2) Lemma. Over a field, Hamming distance is translation invariant. In
particular, for linear codes, the minimum weight equals the minimum distance.

Proof. Clearly dH(x,y) = dH(x− z,y − z) for all z. In particular

dH(x,y) = dH(x− y,y − y) = dH(x− y,0) . 2

A consequence of the lemma is that minimum distance for linear codes is
much easier to calculate than for arbitrary codes. One need only survey |C|
codewords for weight rather than roughly |C|2 pairs for distance.

Examples. Of course the minimum weight of the length n repetition
code is n. Also the minimum weight of the parity check code is clearly 2.
The minimum weight of the length 27 real Reed-Solomon code is equal to
its minimum distance which we found to be 21. We listed the codewords
of the [4, 2] ternary Hamming code, and so it visibly has minimum weight
3.

Verifying that the minimum weight of the [7, 4] Hamming code is 3 is
easy to do directly by hand, but we will give a conceptual way of doing
this calculation below. The extended [8, 4] Hamming code adds an overall
parity check bit to the [7, 4] code, so its minimum weight is 4.

The following elementary property of binary weights can be very helpful.
For instance, it proves directly that the parity check code is linear.

( 3.1.3) Problem. Prove that, for binary vectors x and y of the same length, we
have

wH(x + y) = wH(x) + wH(y)− 2wH(x ∗ y)

where x ∗y is defined to have a 1 only in those positions where both x and y have a 1.
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The matrix G is a spanning matrix for the linear code C provided C = spanning matrix

RS(G), the row space of G. A generator matrix of the [n, k] linear code C over generator matrix
F is a k× n matrix G with C = RS(G). Thus a generator matrix is a spanning
matrix whose rows are linearly independent. We may easily construct many
codes using generator matrices. Of course it is not clear from the matrix how
good the code will be.

Examples. (i) The repetition code has generator matrix

G =
h
1, 1, . . . , 1

i
.

(ii) A particularly nice generator matrix for the parity check code is266666664

1 0 0 · · · 0 0 1
0 1 0 · · · 0 0 1
0 0 1 · · · 0 0 1

...
. . .

...
0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 1

377777775
,

composed of all weight 2 codewords with a one in the last column. This
code will have many other generator matrices as well. Here are two for
the [7, 6] parity check code:

26666664
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

37777775 ,

26666664
1 1 1 1 1 1 0
1 0 1 0 0 0 0
1 1 0 1 0 1 1
1 1 1 0 1 0 0
0 0 0 0 0 1 1
1 1 1 1 0 0 0

37777775 .

(iii) Consider the [7, 4] Hamming code of Example 1.3.3. In turn we
set the four message symbols (X3, X5, X6, X7) to (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1). The four resulting codewords form the rows of
a generator matrix. We find2664

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

3775
(iv) A generator matrix for the [8, 4] extended Hamming code of Ex-

ample 1.3.4 results from adding a column at the front to that for the [7, 4]
code, each new entry checking parity of that row in the matrix. We have2664

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1

3775
1Oxymoron!
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(v) For a generator matrix of the [4, 2] ternary Hamming code of Ex-
ample 1.3.5, we may set (a, b) equal to (1, 0) and (0, 1) in turn to get the
matrix »

1 0 1 2
0 1 1 1

–
,

although any pair of codewords would do as rows provided one is not a
multiple of the other. For instance»

0 1 1 1
1 1 2 0

–
is also a generator matrix.

( 3.1.4) Problem. Prove that, in a linear code over the field Fq, either all of the
codewords begin with 0 or exactly 1/q of the codewords begin with 0. (You might want
first to consider the binary case.)

( 3.1.5) Problem. Let C be an [n, k, d] linear code over the field Fq.
(a) Prove that the sum of all the weights of all the codewords of C is at most

n(q − 1)qk−1. ( Hint: Use the previous problem.)

(b) Prove that the minimum distance d of C is at most
n(q − 1)qk−1

qk − 1
. ( Hint: The

minimum weight is less than or equal to the average nonzero weight.)
(c) Prove the Plotkin bound for linear codes with d/n > (q − 1)/q:

|C| ≤ d

d− q−1
q
n
.

( 3.1.6) Problem. Prove the Plotkin bound for a general m-ary code C of length n
and minimum distance d with d/n > (m− 1)/m:

|C| ≤ d

d− m−1
m

n
.

( Hint: Find an upper bound on the average nonzero distance between codewords by
comparing all distinct pairs of codewords and examining each coordinate position in
turn.)

Let C be any code (not necessarily linear) in Fn, for F a field. The dual
code of C, denoted C⊥, is the codedual code

C⊥ = {x ∈ Fn | x · c = 0, for all c ∈ C} ,

where x · c is the usual dot product. The dual of C is linear even if C is not.
(This is often a good way of proving that a given code is linear.) We can in
turn examine the dual of the dual and discover easily that (C⊥)⊥ = C⊥⊥ ⊇ C.

If C is itself a linear code, then in fact C⊥⊥ = C. For instance, the dual of
the binary repetition code of length n is the parity check code of length n; and
the dual of the parity check code of length n is the repetition code of length n.
To see that C⊥⊥ = C for linear C, we use another description of C⊥. Let G
be a generator matrix for C. Then x is in C⊥ if and only if Gx> = 0. Thus
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the vectors of C⊥ are precisely the transposes of the vectors of the null space
NS(G). Therefore by Theorem A.1.7 the dimension of C plus the dimension of
C⊥ equals the length n, that is, C⊥ has dimension n−k. Calculating dimensions
twice, we learn that C⊥⊥ has dimension k. As this space contains C and has
the same dimension as C, it is equal to C. In summary:

(3.1.7) Lemma. If C is an [n, k] linear code over F , then its dual C⊥ is an
[n, n− k] linear code over F and C⊥⊥ = C. 2

The linear code C is self-orthogonal if C⊥ ≥ C and is self-dual if C⊥ = C. self-orthogonal

self-dualSo, for instance, a binary repetition code of even length is self-orthogonal, as is
the [7, 3] binary dual Hamming code. Since the dimension of a code plus that of
its dual add up to the length, a self-dual code must be a [2k, k] linear code, for
some k. The [8, 4] extended Hamming code is self-dual, as can be easily checked
using the generator matrix given above. The ternary [4, 2] Hamming code is
also self-dual, as is easily checked.

A generator matrix H for the dual code C⊥ of the linear C is sometimes
called a check matrix for C. In general it is not difficult to calculate a check check matrix

matrix for a code, given a generator matrix G. Indeed if we pass to a generator
in RREF, then it is easy to find a basis for the null space and so for C⊥ by
following the remarks of Section A.1.3 of the appendix. In particular, if the
generator matrix G (or its RREF) has the special form[

Ik×k | Ak×n−k
]

then one check matrix is

H =
[
−A>n−k×k | In−k×n−k

]
.

( 3.1.8) Problem. Consider a binary code of length 16 written as 4 × 4 square
matrices. The code E is composed of every 4× 4 binary matrix M such that:

(i) every row of M contains an even number of 1’s; and

(ii) either every column of M contains an even number of 1’s or every column of M
contains an odd number of 1’s.

(a) Prove that E is a linear code.

(b) What is the dimension of E?

(c) What is the minimum distance of E?

(d) If the matrix 2664
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

3775
is received, give all possible decodings subject to MDD. That is, find all code matrices
in E that are at minimum distance from this matrix.
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( 3.1.9) Problem. Consider a binary code of length 21 whose words are written as
arrays in the following gem shape:

x1 x2 x3

x4 x5 x6 x7 x8

x9 x10 x11 x12 x13

x14 x15 x16 x17 x18

x19 x20 x21

The code E is composed of every binary array M of this shape and such that:

(i) every row of M contains an even number of 1’s; and
(ii) every column of M contains an even number of 1’s.

(a) Prove that E is a linear code.
(b) What is the dimension of E?
(c) What is the minimum distance of E?
(d) If the array

0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 1 0

is received, give all possible decodings subject to MDD. That is, find all codewords in
E that are closest to this array.

(e) If the array
1 0 1

1 1 1 1 1
0 1 1 1 0
1 1 1 1 1

1 0 1

is received, give all possible decodings subject to MDD.

( 3.1.10) Problem. If C is a binary [n, k] linear code, prove that either all weights
of codewords of C are even or the even weight codewords of C form a linear [n, k − 1]
subcode B. In the second case, how can the dual code of B be constructed from the
dual code of C?

( 3.1.11) Problem. (a) Let C be a self-orthogonal binary linear code. Prove that all
of its codewords have even weight. If additionally C has a spanning set composed of
codewords with weights a multiple of 4, prove that every codeword has weight a multiple
of 4.

(b) Prove that a linear ternary code is self-orthogonal if and only if all its weights
are a multiple of three.

If C is a binary code and x is a vector of C⊥ then c ·x = 0, for all c ∈ C; so x
can be thought of as checking the parity of a subset of the coordinate positions
of C, those positions in which x equals one. Extending this idea to nonbinary
linear codes, we consider any vector of the dual as providing the coefficients
of a “parity check equation” on the entries of codewords. The rows of a check
matrix provide a basis for the space of parity check equations satisfied by the
code, hence the terminology.
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Because C⊥⊥ = C, we can use a check matrix H for C to give a concise
definition of C:

C = {x |Hx> = 0 }.
Any matrix H for which C = {x |Hx> = 0 } we shall call a control matrix for control matrix

C. (This terminology is not common.) Thus a check matrix is a special kind
of control matrix. A check matrix must have linearly independent rows while a
control matrix need not.

We often define a code in terms of a check matrix (or control matrix). In
Example 1.3.5 we defined the [4, 2] ternary Hamming code to be all 4-tuples
(a, b, c, d) from {0, 1, 2}4 that satisfy a + b = c and b + c + d = 0. That is, we
defined the code via the check matrix[

1 1 2 0
0 1 1 1

]
.

Here the first check row requires that, for (a, b, c, d) to be in the code,

(a, b, c, d) · (1, 1, 2, 0) = a+ b+ 2c = 0 ,

that is, a+ b = c; and the second forces b+ c+ d = 0.
Shannon’s discussion under Examples 1.3.3 of the [7, 4] binary Hamming

code essentially defines the code by its check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Here every nonzero binary 3-tuple occurs exactly once as a column of the check
matrix. The columns have been arranged so that column i is the binary repre-
sentation of the integer i.

What is the minimum weight of the [7, 4] Hamming code? If x is a vector
of weight 1, then the product Hx> is a column of H, indeed column i of H if
the single 1 of x is in position i. As all columns of H are nonzero, Hx> is also
nonzero; so x is not a codeword. If instead x has weight 2, then Hx> is the sum
of two columns of H, those columns in which x equals 1. As no two columns are
equal, this sum is never 0; so again x is not a codeword. On the other hand, it is
possible to find three columns of H that sum to 0 (for instance, the first three);
so the code does contain words of weight 3 (for instance, (1, 1, 1, 0, 0, 0, 0)).
Therefore this code has minimum weight 3.

It is not difficult to generalize these arguments. Block matrix multiplication
implies that, for any matrix H and row vector x, the matrix product Hx>

is a linear combination of the columns of H with coefficients provided by x,
namely the sum

∑
i hixi where H has ith column hi and xi is the ith entry

of x. In particular the entries of a nonzero codeword x give the coefficients
of a linear dependence among the columns of H, a check matrix (or control
matrix). Of course any column hi that is multiplied by a scalar xi = 0 makes
no contribution to this linear combination. The nonzero entries of the codeword
are the coefficients of a linear dependence among only those columns hi for which
the coefficient xi is not 0. We are led to:
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(3.1.12) Lemma. Let C be a linear code with control matrix H. A set of w
columns of H is linearly dependent if and only if there is a nonzero codeword in
C all of whose nonzero entries occur among coordinate positions corresponding
to members of that column set.

In particular dmin(C) = d if and only if there exists a set of d linearly
dependent columns in H but no set of d− 1 linearly dependent columns.

Proof. All but the last sentence was discussed above. By Lemma 3.1.2
dmin(C) = wmin(C). Now wmin(C) ≤ d if and only if there are d linearly
dependent columns in H, while wmin(C) ≥ d if and only if all collections of
d− 1 columns are linearly independent. 2

( 3.1.13) Problem. Let

H =
h
h1, h2, . . . , hn

i
be the check matrix of the e-error-correcting, binary [n, k] linear code D, the various
hj being the columns of H. Next let D′ be the binary [n, k] linear code with check
matrix

H ′ =
h

h1, h1 + h2, h1 + h3, . . . , h1 + hn
i
.

Prove that D′ is also an e-error-correcting code.

(3.1.14) Theorem. (Singleton Bound.) If C is an [n, k] linear code over
the field F , then

dmin(C) ≤ n− k + 1 .

Proof. Every n − k × n − k + 1 submatrix of a check matrix has rank at
most n − k, so every set of n − k + 1 columns of the check matrix is linearly
dependent. The theorem then follows from Lemma 3.1.12. 2

We have seen in Problem 2.3.10 that this result is true even for nonlinear
codes. Indeed if we move k and d = dmin(C) to opposite sides and raise q = |F |
to the appropriate power, we are left with

|C| = qk ≤ qn−d+1 .

The present proof of the bound shows that even more is true. Any set of
n − k + 1 coordinate positions contains the support (the nonzero entries) of a
nonzero codeword.

( 3.1.15) Problem. Use a generator matrix in RREF to give another quick proof
of the Singleton bound for linear codes.

A linear code that meets the Singleton bound with equality is called maxi-
mum distance separable or, for short, an MDS code. Every subset of n− k + 1maximum distance separable

MDS code coordinate positions supports a codeword in an MDS code. By convention
the zero code {0} is MDS, even though its minimum distance is somewhat
ill-defined.

The [4, 2] ternary Hamming code has minimum distance 3 and so is MDS
since 3 = 4− 2 + 1. We shall meet many MDS codes later when we discuss the
generalized Reed-Solomon codes.
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( 3.1.16) Problem. Prove that the dual of an MDS codes is also an MDS code.

( 3.1.17) Problem. Prove that a binary MDS code of length n is one of {0}, the
repetition code, the parity check code, or all Fn2 .

3.2 Encoding and information

If we are transmitting with an [n, k] linear code over the field F , then we think
of our message as being provided as k-tuples from F , members of the space
F k. We can encode using the generator matrix G by mapping the message
k-tuple x to the codeword xG. Here xG is a codeword since, by matrix block
multiplication, it is a linear combination of the rows of G (with coefficients given
by x) and C = RS(G).

The k × n generator matrix G is a standard generator matrix if its first k standard generator matrix

columns form a k × k identity matrix. The generator matrix G is systematic systematic
if among its columns can be found the columns of a k × k identity matrix, in
which case G is said to be systematic on those columns or positions. Notice that
a standard generator matrix is a special type of systematic generator matrix. If
G is a standard generator, then the first k entries of the transmitted codeword
xG contain the message vector x. If G is systematic, then all the entries of
the message vector appear among the entries of the transmitted codeword. A
subset of the coordinate positions of a linear code is called an information set information set

if there is a generator matrix for the code that is systematic on the columns in
those positions. We can think of the positions of an information set as carrying
the information, while the remaining positions are contributing redundancy. A
given code may, however, have many different information sets. A choice of one
set is essentially a choice of the corresponding systematic generator for encoding
purposes.

Examples. Consider the generator matrices given in §3.1. The generator
matrix for the repetition code is (trivially) standard. For the repetition
code, any coordinate position can serve as information set.

The first generator given for the parity check code is standard. Of the
two further generators for the [7, 6] parity check code the first is systematic
but not standard, and the second is neither. Every set of 6 coordinate
positions is an information set.

The generator matrix given for the [7, 4] binary Hamming code is sys-
tematic. Indeed its generator matrix was designed to be systematic on the
positions of the information set {3, 5, 6, 7}. Although it is not clear from
our definition, the set of positions {1, 2, 3, 4} is indeed an information set
for this code, as the following standard generator matrix indicates:

H =

2664
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

3775 .

Not every 4-subset of positions is an information set. The definition via
check equations guarantees that {4, 5, 6, 7} is not an information set, since
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each codeword has an even number of 1’s in these positions. Each partic-
ular even weight pattern occurs on these positions in two different code-
words, while no odd weight pattern occurs at all.

The generator matrix given for the [8, 4] binary extended Hamming
code is systematic, but this code has no standard generator matrix since
each codeword has an even number of 1’s in positions {1, 2, 3, 4}.

The first generator given for the [4, 2] ternary Hamming code is stan-
dard while the second is systematic but not standard. Each pair of posi-
tions is an information set. (This universality characterizes MDS codes;
see Problem 3.2.3.)

It should be noted that, in some references (particularly engineering texts),
generator matrices that we have called “standard” are called “systematic” and
the more general class that we call “systematic” is not given a specific name.

The rows of a generator matrix form a basis of its row space, the code. Every
linear code has a systematic generator matrix, for instance RREF(G) for any
generator G, where the pivot columns are those of an identity matrix. If the
code has a standard generator matrix S, then S = RREF(G). Therefore a
code has a standard generator matrix if and only if its generator matrix G has
a RREF in which the pivot columns are the initial columns.

( 3.2.1) Problem. Let C be an [n, k] linear code over F , and let J be a subset of
k coordinate positions. For the generator matrix G we write GJ for the k × k matrix
composed of those columns of G indexed by J . Similarly, for the codeword c, we write
cJ for the k-tuple of entries in the positions of J .

The following are equivalent:
(1) J is an information set;
(2) for each m ∈ F k, there is a unique c ∈ C with cJ = m;
(3) for every generator matrix G, the matrix GJ is invertible.

( 3.2.2) Problem. For a nonlinear code C over A, define an information set to be a
minimal subset J of the coordinate positions such that no member of A|J| is repeated
in these positions. Prove that the dimension of C is a lower bound for |J |.

Two related codes may be different but still share many properties. For
instance, if the code D is gotten from C by reversing all codewords (i.e., first
entry last, . . . , last entry first) then C and D will likely be different but will have
many common properties—the same length, minimum distance, dimension, etc.
For many purposes we need not distinguish between C and D.

Two codes C and D of length n over A are permutation equivalent if theypermutation equivalent

are the same up to a uniform permutation of their coordinate entries. (This is
often abbreviated to equivalence.) That is, there is a permutation σ of the setequivalence

{1, . . . , n} such that

(x1, x2, . . . , xn) ∈ C ⇐⇒ (xσ(1), xσ(2), . . . , xσ(n)) ∈ D.

Since every linear code has a systematic generator matrix, and a systematic
matrix can be changed into a standard matrix by permuting columns, we find
that every linear code is equivalent to a code with a standard generator matrix.
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Although we do not need the definitions right now, this seems a good time
to give three further notions of equivalence for codes defined over fields. Notice
that linearity is not required for the various forms of equivalence. In practice
regular equivalence is the one of most relevance for codes that are not linear.

Definition. Two codes C and D of length n over the field F are diagonally
equivalent if they are the same up to the multiplication in each codeword of the diagonally equivalent

ith entry by the nonzero constant αi, for each i.

Definition. Two codes C and D of length n over the field F are monomially
equivalent if they are the same up to: monomially equivalent

(1) a uniform permutation of their entries (as with regular equivalence);
(2) the multiplication in each codeword of the ith entry by the nonzero constant
αi, for each i.

So monomial equivalence is the union of regular equivalence and diagonal equiv-
alence. For a linear code it corresponds to multiplying column i of a generator
matrix by the constant αi in addition to permuting the columns of the generator.

Definition. Two codes C and D of length n over the field F are affine
equivalent if they are the same up to: affine equivalent

(1) a uniform permutation of their entries;
(2) the multiplication in each codeword of the ith entry by the nonzero constant
αi, for each i;
(3) translation by a fixed vector of Fn.

Two codes that are affine equivalent have the same size, length, and minimum
distance. Here if C is a linear code, then D is a coset of a code monomially
equivalent to C.

( 3.2.3) Problem. For k 6= 0, prove that the [n, k] linear code C is an MDS code if
and only if every subset of k coordinate positions is an information set.

( 3.2.4) Problem. (Threshold decoding of MDS codes.) Let C be an [n, k]
linear MDS code with k 6= 0 and generator matrix G. For a set J of coordinate
positions, the matrix GJ is that submatrix of G composed of the columns of G that are
indexed by the members of J .

By Problem 3.2.3 every k subset J of coordinate positions is an information set
for C, so by Problem 3.2.1 the matrix GJ is always invertible. Indeed if the message
k-tuple m gives rise to the codeword c = mG, then we can recover m from c by
m = cJG

−1
J .

For decoding purposes this means that, for any received vector r, each k subset J
of coordinate positions produces a “guess” or “vote” bmJ = rJG

−1
J as to the identity

of the original message m. We choose that k-tuple bm that receives the most votes and
then decode r to the codeword bc = bmG.

Suppose that c = mG has been transmitted and that r has been received, e symbol
errors having occurred (that is, dH(c, r) = e). For k independent variables x1, . . . , xk
arranged as a row vector x = (x1, . . . , xk), consider the n linear equations, j =
1, . . . , n ,

Eqnj : rj = xGj ,
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where rj is the j-th entry of received r and Gj is the j-th column of the matrix G.

(a) Prove that setting x equal to m solves n− e of the equations Eqnj . Prove that

m gets
`
n−e
k

´
votes.

(b) For any k-tuple l that is not equal to m, prove that setting x equal to l solves
at most e+ k − 1 of the equations Eqnj . Prove that l gets at most

`
e+k−1
k

´
votes.

(c) Prove that, as long as 2e < n− k+ 1 (= dmin(C)), the received vector r will be
decoded correctly to c.

( 3.2.5) Problem. Consider the MDS code C over the field F7 of integers modulo
7 with generator matrix »

1 1 1 1 1 1
2 4 6 1 3 5

–
.

Use the method of the previous problem to decode the received vector

r = (1, 3, 6, 5, 4, 2) .

3.3 Decoding linear codes

A form of decoding always available is dictionary decoding. In this we make adictionary decoding

list of all possible received words and next to each word write the codeword (or
codewords) to which it may be decoded under MLD. In decoding, when a word
is received we look it up in our “dictionary” and decode it to a codeword listed
opposite it. This will almost never be a practical solution.

We now wish to use the structure of linear codes to aid in their decoding. If
we are transmitting with a linear code C of length n over F , then we can think
of the channel as adding in an error vector or error word (or even error patternerror vector

error word
error pattern

in the binary case). If c is transmitted and x is received, then the channel noise
has had the effect of adding to c the error vector e = x − c ∈ Fn, so that
x = c + e. The decoding problem is then, given x, estimate at least one of
c and e. The weight of e is the number of positions in which c and x differ;
so, when using an mSC(p) (with p < 1/m) and decoding under MLD, we are
looking for an error pattern e of minimum weight.

From the definition of e, we learn that the received vector x and the error
pattern e belong to the same coset x + C = e + C. While we do not know x
ahead of time, the cosets of C can be calculated in advance. We look for vectors
of minimum weight in each coset. Such a vector is caller a coset leader. Noticecoset leader

that while the minimum weight of a coset is well-defined, there may be more
than one vector of that weight in the coset, that is, there may be more than
one coset leader. Usually we choose and fix one of the coset leaders. Always 0
is the unique coset leader for the code itself.

We first describe the general technique of decoding with coset leaders and
then give two methods for its implementation. When the word x is received,
we do not know the actual error that was introduced; but we do know that it
belongs to the coset x + C. Thus if ê is the coset leader chosen for this coset,
then ê is one of the most likely error patterns; and we guess that it was the
actual error. (In fact ê is the unique most likely error pattern if it is the unique
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leader of its coset.) We decode x to the codeword ĉ = x− ê. With coset leader
decoding, the error patterns that are corrected are exactly those that are the
chosen coset leaders. In particular, the code will be e-error-correcting if and
only if every vector of weight at most e is the unique leader of its coset.

Coset leader decoding is an MDD algorithm for linear codes over fields of
size m. Therefore knowledge of the coset leaders for C makes it easy to calculate
PC on an mSC(p). Indeed, an error pattern will be corrected if and only if it is
a chosen coset leader. Thus, for mSC(p) with q = 1− (m− 1)p > p, we have

PC = PC(MDD) = 1−
( n∑
i=0

aip
iqn−i

)
,

where ai is the number of cosets of C with coset leader of weight i.

( 3.3.1) Problem. If x and y are binary vectors of length n, then we write x � y to
indicate that x has a 0 in every position that y has a 0 (but x may have 0’s in places
that y has 1’s.) Equivalently, everywhere x has a 1, y also has a 1, but y may have
more 1’s. For instance

(0, 0, 0, 1, 1, 0, 1, 0) � (0, 1, 0, 1, 1, 0, 1, 1) .

(a) Let x and y be binary n-tuples, and set f = x + y. Prove that x � y if and only
if wH(y) = wH(x) + wH(f).

(b) Let C be a binary linear code of length n. Prove that if y is a coset leader for the
coset y + C and x � y, then x is also a coset leader for the coset x + C.

Our first method for coset leader decoding is standard array decoding. Set standard array decoding

K = |C|, the cardinality of C, and R = |Fn|/|C|, the number of distinct cosets
of C. Enumerate the codewords:

C = { c1 = 0, c2, . . . , cK}

and coset leaders:
{ e1 = 0, e2, . . . , eR},

one coset leader for each coset of C in Fn. We form a large array, the standard
array, whose first row contains the codewords, and first column contains the
coset leaders, and in general has cj + ei as its i, j entry. The ith row of the
standard array is the coset ei+C. Thus every n-tuple of Fn is contained exactly
once in the array.

To decode using the standard array, when x is received, look it up in the
array. If it is in the i, j position, then we have x = cj + ei. In this case we
assume that the introduced error vector was ei and decode x to ĉ = cj .

Standard array decoding is not of much practical value as it involves storage
of the large array as well as random access searches through the array. It does
have historical and theoretical value, because it illustrates the important general
fact that code structure can be exploited to design decoding algorithms that are
more efficient than dictionary decoding.
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The second method of coset leader decoding is syndrome decoding, where syndrome decoding

the dual code and check matrices are used. Let H be a check matrix for the
[n, k] linear code C. We have already mentioned that the vector x is in the
code C if and only if the matrix product Hx> equals 0. For any received vector
x, the length r = n − k column vector Hx> is a measure of whether on not
the n-tuple x belongs to the code. The column r-tuple Hx> is the syndromesyndrome

of the n-tuple x. According to the “Pocket Oxford Dictionary,” a syndrome
is generally a “characteristic combination of opinions.” The syndrome voices
information about the error vector. Syndrome decoding is error oriented, using
the opinions voiced by the syndrome vector to identify the appropriate error
vector.

As the syndrome of a codeword is 0, two vectors x and e that differ by a
codeword c will have the same syndrome:

Hx> = H(c + e)> = 0 +He> = He>

That is, syndromes are constant on cosets of C in Fn. Equally well, distinct
cosets have different syndromes since the difference of vectors from distinct
cosets is not a codeword and so has nonzero syndrome.

We interpret the above equation as saying that a received vector x and
the corresponding error vector e introduced by the channel will have the same
syndrome, namely that of the coset to which they both belong. Instead of
storing the entire standard array, we need only store a syndrome dictionary (orsyndrome dictionary

syndrome table) containing all possible syndromes {s1 = 0, . . . , sR} together
with coset leaders {e1 = 0, . . . , eR} such that He>i = si. In decoding, when
x is received, first calculate the syndrome s = Hx>. Next look up s in the
syndrome dictionary as s = si. Finally decode x to ĉ = x− ei.

Example. Consider the [4, 2] ternary Hamming code with check matrix

H =

»
1 1 2 0
0 1 1 1

–
.

The syndromes are therefore column vectors of length 2. For instance,
the received vector x = (1, 2, 1, 1) has syndrome

Hx> =

„
1 + 2 + 2 + 0
0 + 2 + 1 + 1

«
=

„
2
1

«
.

To decode using syndromes we first write out our syndrome dictionary,
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the first column containing the transposes of all possible syndromes.

syndrome coset
transpose leader

00 0000
01 0001
02 0002
10 1000
11 0100
12 0020
20 2000
21 0010
22 0200

It is not necessary to list out all cosets of the code to make this dictionary.
Instead notice that two words of F4

3 are in the same coset if and only if
their difference is a codeword. So, for instance, not only must (0, 0, 0, 1),
(0, 0, 0, 2), and (0, 2, 0, 0) all be of minimum weight in their respective
cosets; but they belong to different cosets. (Subtracting one of them from
another gives a word of weight less than 3, not a codeword since the
minimum weight of the Hamming code is 3.) The transposed syndromes
are then calculated as, respectively, (0, 1), (0, 2), and (2, 2); and the results
are recorded in the dictionary.

To decode our received vector x = (1, 2, 1, 1) we first calculate, as
before, its transposed syndrome (2, 1). We then look up this syndrome
in our dictionary and discover that the corresponding coset leader is be =
(0, 0, 1, 0). We therefore assume that this is the error that occurred and
decode x to the codeword

bc = x− be = (1, 2, 1, 1)− (0, 0, 1, 0) = (1, 2, 0, 1) .

It may sometimes be more convenient to define syndromes and do syndrome
decoding relative to a control matrix H rather than a check matrix.

Syndrome decoding does not suffer from many of the failings of standard
array decoding. The syndrome dictionary is much smaller than the standard
array for storage purposes; and it can be ordered lexicographically, so that
searches can be done linearly. Still syndrome decoding in this dictionary form is
too general to be of much practical use. Certain practical decoding algorithms
do employ partial syndrome dictionaries that list only the most common syn-
dromes. Syndrome decoding is also the paradigm for many genuine decoding
techniques. To each received vector we associate some kind of “syndrome.” The
properties of the specific code then are used in the passage from syndrome to
error vector and decoded word. The decoding method for the [7, 4] Hamming
code as given by Shannon in Example 1.3.3 is a type of syndrome decoding,
since he has arranged the columns of the check matrix H (given on page 37) to
contain the binary numbers in order. The calculated syndrome αβγ is therefore
associated with the coset whose leader has a 1 in the αβγth position (read in
binary) and 0 elsewhere. We decode assuming an error in this position.
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( 3.3.2) Problem. (a) Give a syndrome dictionary for the [8, 4] extended binary
Hamming code E with the following check matrix (and generator matrix—the code is
self dual):

XL3 =

2664
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

3775 .

(b) Use your table to decode the received word:

(0, 0, 1, 0, 0, 1, 1, 0) .

(c) Use your table to decode the received word:

(0, 1, 1, 1, 1, 1, 0, 1) .

We now consider using syndrome decoding and check matrices to correct
erasures rather than errors. (See Problem 2.2.4.) Remember that erasures
occur as a consequence of soft quantization of received symbols. We allow
transmitted symbols from the alphabet A to be received as members of A or as
?, the erasure symbol. Alternatively we may think of erasures as symbol errors
whose locations are known. Under this second interpretation, we might receive a
word from the alphabet A but with certain positions flagged as being unreliable.
These flagged positions are then the erasure locations. The two views of erasures
are equivalent. Indeed each occurrence of ? may filled arbitrarily by an alphabet
letter (typically 0 for a linear code) and then flagged as unreliable. Conversely
each flagged symbol can be replaced by ?, the erasure symbol. Which point of
view is the best will depend upon the particular situation.

Since C contains codewords of weight d = dmin(C) as well as 0 of weight
0, we could never hope to correct d erasures; but we can decode up to d − 1
erasures correctly.

(3.3.3) Proposition. Let C be an [n, k, d] linear code over F with check
matrix H whose rows are hi, for i = 1, . . . , r = n− k. Let x = (x1, x2, . . . , xn)
be an n-tuple of indeterminates.

Assume the codeword c = (c1, c2, . . . , cn) is transmitted, and we receive the
vector p = (p1, p2, . . . , pn) ∈ Fn with the entries pl, for l ∈ L, flagged as erasures
but pj = cj, for j 6∈ L.

If |L| ≤ d− 1, then the set of equations in the unknowns xi

hi · x = hi · p for i = 1, . . . , r
xj = 0 for j 6∈ L (∗)

has as its unique solution the erasure vector

x = c− p = e .

Therefore by solving the equations (∗) we can decode all patterns of up to d− 1
erasures in codewords of C.
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Proof. This set of equations has at least one solution, namely the actual
erasure vector e = c−p. If e′ is any solution of the equations (∗) then c′ = e−e′

has syndrome 0 and equals 0 off L. Therefore c′ is a codeword of weight at most
d− 1 and so must be 0. We conclude that e = e′, and the set of equations (∗)
has the unique solution x = e. 2

The equations (∗) give n + r − |L| linear equations in the n unknowns,
where r ≥ d − 1 ≥ |L| (by the Singleton bound 3.1.14). By the proposition,
the solution is unique; so the system has rank n. The last n − |L| syndrome
equations of (∗) are clearly linearly independent; so we may delete some of the
first r equations to reduce (∗) to a system of n equations in n unknowns with a
unique solution. These equations can be solved by Gaussian elimination; so the
number of operations required is at worst on the order of n3, a respectably small
number. Indeed the set of equations is essentially triangular, so the complexity
is actually on the order of n2.

The algorithm of the proposition is an effective method for correcting era-
sures in any linear code. This can in turn be helpful when decoding errors as
well as erasures. We may concentrate our efforts upon designing an algorithm
that locates errors. After the errors have been located, they can be thought
of as flagged erasures and their values found with the algorithm of Proposition
3.3.3.
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Chapter 4

Hamming Codes

In the late 1940’s Claude Shannon was developing information theory and cod-
ing as a mathematical model for communication. At the same time, Richard
Hamming, a colleague of Shannon’s at Bell Laboratories, found a need for error
correction in his work on computers. Parity checking was already being used
to detect errors in the calculations of the relay-based computers of the day,
and Hamming realized that a more sophisticated pattern of parity checking al-
lowed the correction of single errors along with the detection of double errors.
The codes that Hamming devised, the single-error-correcting binary Hamming
codes and their single-error-correcting, double-error-detecting extended versions
marked the beginning of coding theory. These codes remain important to this
day, for theoretical and practical reasons as well as historical.

4.1 Basics

Denote by L3 the check matrix that we have been using to describe the [7, 4]
Hamming code:

L3 =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


It has among its columns each nonzero triple from F3

2 exactly once. From
this and Lemma 3.1.12, we were able to prove that the [7, 4] Hamming code
has minimum distance 3. This suggests a general method for building binary
Hamming codes. For any r, construct a binary r × 2r − 1 matrix H such
that each nonzero binary r-tuple occurs exactly once as a column of H. Any
code with such a check matrix H is a binary Hamming code of redundancy binary Hamming code

r, denoted Hamr(2). Thus the [7, 4] code is a Hamming code Ham3(2). Each
binary Hamming code has minimum weight and distance 3, since as before there
are no columns 0 and no pair of identical columns. That is, no pair of columns
is linearly dependent, while any two columns sum to a third column, giving a
triple of linearly dependent columns. Lemma 3.1.12 again applies.

49
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As defined, any code that is equivalent to a binary Hamming code is itself
a Hamming code, since any permutation of coordinate positions corresponds
to a permutation of the columns of the associated check matrix. The new
check matrix is still a census of the nonzero r-tuples. Different codes and check
matrices may be selected to suit different purposes.

Examples. The following are check matrices for two [15, 11] binary
Hamming codes Ham4(2):2664

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 0 0 0 1 1 1 1 0 1 0 0
1 0 1 1 0 1 1 0 0 1 1 0 0 1 0
1 1 0 1 1 0 1 0 1 0 1 0 0 0 1

3775
2664

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3775
The first is the check matrix for a code which has a generator matrix in
standard form (see page 35 and Problem 4.1.9 below). The second matrix
checks a code which has no generator in standard form, since, for instance,
(000000000001111) is a codeword.

The second of the two example check matrices, which we will denote L4,
is the counterpart of the matrix L3 above, in that its column i contains the
binary representation of i. For each positive integer r, let Lr be the r × 2r − 1
matrix whose ith column is the binary representation of the integer i (with least
significant digit at the bottom). Then Lr is the check matrix for a Hamming
code Hamr(2). We call Lr a lexicographic check matrix.lexicographic check matrix

Examples. We have given L3 and L4 above. We also have the smaller
cases

L1 = [1] and L2 =

»
0 1 1
1 0 1

–
which are check matrices for, respectively, the degenerate Hamming code
Ham1(2) = {0} and Ham2(2), the repetition code of length 3.

For a binary Hamming code with lexicographic check matrix Lr, we have
an easy version of syndrome decoding available, similar to that for Ham3(2)
discussed earlier and presented by Shannon under Example 1.3.3. If the vector
x has been received, then to decode we first calculate the syndrome s = Lrx>.
If s is 0, then x is a codeword and no further decoding is required. If s is not 0,
then it is the binary representation of some integer, j say, between 1 and 2r−1.
We decode by assuming that a single error has occurred in position j of x.

If we add an overall parity check bit to a binary Hamming code Hamr(2),
then the minimum distance is increased to 4. We then have an extended Ham-
ming code, denoted XHamr(2). By Problem 2.2.3 this is a 1-error-correcting,extended Hamming code

2-error-detecting binary linear [2r, 2r − r] code, as originally constructed by
Hamming.

Begin with the Hamming code Hamr(2) given by the lexicographic check
matrix Lr and extend by adding an overall parity check bit at the front of each
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codeword. The check matrix XLr for this extended Hamming code XHamr(2)
is constructed by adding a column r-tuple 0 at the beginning of Lr and then
adding at the bottom the vector 1 composed entirely of 1’s.

Examples.

XL1 =

»
0 1

1 1

–
and XL2 =

24 0 0 1 1
0 1 0 1

1 1 1 1

35

XL3 =

2664
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

3775

XL4 =

266664
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

377775
To see that XLr is a check matrix for the extended lexicographic Hamming
code, first note that its r + 1 rows are linearly independent rows; so at least it
has the right rank. If c = (c1, . . . , cn) is a word from the Hamming code, then
the corresponding extended word is c′ = (c0, c1, . . . , cn) where c0 =

∑n
i=1 ci

is the overall parity check symbol. The codeword c′ has dot product 0 with
each of the first r rows, since its original form c in the Hamming code has dot
product 0 with the corresponding row of Lr. Also the dot product of c′ with 1
is c0 + c1 + · · ·+ cn = (

∑n
i=1 ci) + c1 + · · ·+ cn = 0. Therefore XLr is indeed a

check matrix for the extended Hamming code as described.
We can think of our construction of binary Hamming codes as a greedy

construction. We begin with an integer r and try to construct the check matrix
for a 1-error-correcting binary linear code of redundancy r that, subject to this,
is of maximal length. We add new columns to a check matrix, being careful
at each stage not to reduce the minimum distance below three. By Lemma
3.1.12 we can do this provided at each stage we add a new column that is not
linearly dependent upon any previous column. As our field is F2, this amounts
to avoiding repeat columns and the 0 column.

This approach to Hamming codes easily extends to linear codes over finite
fields Fq other than F2. Again, begin with r and construct a check matrix for
a long 1-error-correcting linear code over Fq with redundancy r. Each time we
add a new column to our matrix, we must take care that it does not depend
linearly upon any previously chosen column. We avoid 0 always, so initially
we can choose from among qr − 1 nonzero column r-tuples. When we add in a
nonzero column, we remove not just it from further consideration but each of its
q − 1 multiples by the nonzero elements of Fq. Therefore the maximum length
possible is (qr − 1)/(q − 1). One easy way of constructing such a matrix of this
maximum length is to choose as columns all nonzero r-tuples whose top-most
nonzero entry is 1. A linear code over the finite field Fq is a Hamming code Hamming code

of redundancy r, written Hamr(q), if it has a check matrix whose collection of
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columns contains a unique nonzero scalar multiple of each nonzero r-tuple from
Fq. In particular any code that is monomially equivalent to a Hamming code
is again a Hamming code. Note that this general definition includes that for
binary Hamming codes given above.

Examples.
(i) Our original description of Ham2(3), a ternary Hamming code of

redundancy 2, was in terms of the check matrix»
1 1 2 0
0 1 1 1

–
.

A ternary Hamming code of redundancy 2 can also be constructed from
the “lexicographic” check matrix»

0 1 1 1
1 0 1 2

–
.

(ii) With q = 9, r = 2, and n = (92 − 1)/(9 − 1) = 10, one check
matrix for a Hamming code Ham2(9) of length 10 is»

0 1 1 1 1 1 1 1 1 1
1 0 1 2 i 1 + i 2 + i 2i 1 + 2i 2 + 2i

–
,

where i is a square root of 2 = −1 in F9.

(4.1.1) Theorem. A Hamming code of redundancy r(≥ 2) over the field F ,
|F | = q, is a linear [

qr − 1
q − 1

,
qr − 1
q − 1

− r, 3
]

code and is a perfect 1-error-correcting code.

Proof. Set n = (qr − 1)/(q − 1), the length of the Hamming code C. As
the code has redundancy r, its dimension is n − r. As discussed above, the
argument applying Lemma 3.1.12 to prove that dmin(C) = 3 for binary codes
goes over to the general case; so C corrects single errors. The Sphere Packing
Condition 2.2.6 for correcting e = 1 error then says

|C| · |S1(∗)| ≤ |An| .

Here this takes the form

qn−r ·
(
1 + (q − 1)n

)
≤ qn .

That is,

qn−r ·
(
1 + (q − 1)n

)
= qn−r ·

(
1 + (q − 1)

qr − 1
q − 1

)
= qn−r · qr ≤ qn .

Thus we in fact have equality in the Sphere Packing Condition 2.2.6 and the
Sphere Packing Bound 2.3.6. 2
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( 4.1.2) Problem. Prove that the family of all q-ary Hamming codes is asymptoti-
cally bad, being associated with the point (0, 1) of the q-ary code region.

( 4.1.3) Problem. Prove that for r ≥ 2 a»
qr − 1

q − 1
,
qr − 1

q − 1
− r, 3

–
linear code over the field Fq is a Hamming code.

Problem 4.1.3 says that, among linear codes, the Hamming codes are charac-
terized by their parameters — length, dimension, and distance. This is not the
case if we drop the assumption of linearity. Of course any coset of a Hamming
code Hamr(q) has the same parameters as the code. For q = 2 and for r ≤ 3,
the converse is true. This is trivial for r = 1, 2 and the case r = 3 is given as the
next problem. For q = 2 and r ≥ 4 nonlinear codes with Hamming parameters
exist that are not a coset of any Hamming code. Examples are constructed in
Problem 4.1.7 below. For q > 2 and r ≥ 2, nonlinear examples exist as well and
can be constructed in a manner related to that of Problem 4.1.7.

( 4.1.4) Problem. Prove that a 1-error-correcting binary code of length 7 that
contains 16 vectors must be a coset of a [7, 4] Hamming code.

( 4.1.5) Problem. Let C1 be an [n, k1, d1] linear code over F , and let C2 be a
[n, k2, d2] linear code code over F . Form the code

C = { (y ; x + y) | x ∈ C1, y ∈ C2 }.

(a) If C1 has generator matrix G1 and C2 has generator matrix G2, prove that C
is a [2n, k1 + k2] linear code over F with generator matrix

G =

»
0 G1

G2 G2

–
,

where the upper left 0 is a k1 × n matrix entirely composed of 0’s.
(b) Prove that dmin(C) = min(d1, 2d2).
(c) Under the additional assumption d1 > 2d2, prove that all codewords of minimum

weight in C have the form (y ; y), where y has minimum weight in C2.

( 4.1.6) Problem. Formulate and prove the appropriate version of Problem 4.1.5
for nonlinear C1 and C2.

( 4.1.7) Problem. In Problem 4.1.5 let C1 = Hamr−1(2) and C2 = Fn2 where
n = 2r−1−1. Then C has length 2n = 2r−2, dimension 2r−1−1−(r−1)+2r−1 = 2r−r,
and minimum distance 2. Furthermore all codewords of weight 2 in C have the shape
(y ; y), for y ∈ Fn2 of weight 1. Consider now the code

C∗ = { (y ; x + y ; c) | x ∈ Hamr−1(2), y ∈ Fn2 , c = y · 1 + f(x) },

where 1 ∈ Fn2 is the vector with all coordinates equal to 1, y ·1 is the usual dot product,
and f is any function from Hamr−1(2) to F2.
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(a) Prove that C∗ is a code with the same length, size, and minimum distance as
Hamr(2).

(b) Prove that C∗ is linear if and only if the function f is a linear map on
Hamr−1(2) (that is, for all x1,x2 ∈ Hamr−1(2), we have f(x1)+f(x2) = f(x1 +x2).)

(c) Prove that, for all r ≥ 4, there exist binary codes C∗ with the same parameters
as the Hamming codes Hamr(2) that are not equal to a coset of any Hamming code.

Any check matrix H for a Hamming code Hamr(q) can be easily used for
syndrome decoding. Upon encountering a nonzero syndrome s = Hx>, we must
survey the columns of H for a scalar multiple of s. If s is αh, where h is the ith

column of H, then we assume that the error vector had weight one with entry
α in its ith coordinate, and decode accordingly.

( 4.1.8) Problem. Consider the ternary [13, 10] Hamming code with check matrix24 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2

35 .

Decode the received word

(2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1) .

( 4.1.9) Problem. Consider a binary [n, k] linear code Cr with redundancy r = n−k
and standard generator matrix

h
Ik×k |A

i
, for some k × r binary matrix A.

(a) Prove that dmin(C) ≥ 3 if and only if the rows of A are pairwise distinct
r-tuples of weight at least 2.

(b) Using the result from (a), prove that the maximum possible number of rows in
A for a 1-error-correcting code Cr is 2r−1− r and that, in this case, C is a Hamming
code Hamr(2).

In constructing codes with a fixed minimum distance d we hope for codes
whose dimension is a large fraction of their length or, equivalently, whose redun-
dancy is small compared to their length. Let sq(n, f) =

∑f
i=0

(
n
i

)
(q−1)i be the

volume of a sphere of radius f in Fnq . The Gilbert-Varshamov Theorem 2.2.7
proved, by a greedy construction of codewords, that there is in Fnq a code C
with minimum distance d and satisfying |C| ≥ qn/sq(n, d− 1). That is, we can
find a code C with distance d and length n whose redundancy r = n− logq(|C|)
is bounded above by

qr ≤ sq(n, d− 1) .

In this section we have used greedy constructions instead to construct the check
matrices of Hamming codes. We pursue this in Problem 4.1.10 and find, via
a greedy construction of a check matrix, that there is a linear code C with
minimum distance d and redundancy r whose length n is bounded below by

qr ≤ sq(n, d− 2) .

This small improvement may be relevant in specific cases; but, since in the limit
(d−1)/n and (d−2)/n are indistinguishable, the asymptotic bound of Theorem
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2.3.7 is not affected. Although the bounds have a very similar appearance, the
two constructions are essentially different in character. The first endeavors to
constructs a code of small redundancy with given length, while the second tries
to construct a long code with given redundancy.

( 4.1.10) Problem. (a) Let H be an r×m matrix with entries from Fq. For a fixed
positive integer d, prove that the number of column r-tuples that linearly depend upon
some subset of d− 2 columns from H is at most

Pd−2
i=0

`
m
i

´
(q − 1)i = sq(m, d− 2).

(b) (Linear Gilbert-Varshamov Bound) Prove that there exists a linear code
C over Fq of minimum distance d and redundancy r whose length n satisfies

qr ≤ sq(n, d− 2) .

4.2 Hamming codes and data compression

Hamming codes can also be used for data compression allowing a small amount
of distortion (loss of information) by “running the machine backwards.”

Choose a generator matrix G for a Hamming code Hamr(q) of length n over
F . Each n-tuple x from Fn is at distance at most 1 from a unique codeword c
of Hamr(q). Instead of storing the n-tuple x, store the smaller message (n− r)-
tuple m, the unique solution to mG = c. At decompression, the stored message
m is “encoded” to c = mG, which differs from the original data vector x in
at most one position. This works because spheres of radius one around the
codewords of Hamr(q) cover the whole codespace Fn.

Consider a code C of length n over the alphabet A. In general the covering
radius of a code C, denoted cr(C), is the smallest number r such that the spheres covering radius

of radius r around the codewords of C cover the entire codespace An, that is,
An =

⋃
c∈C Sr(c). Data compression problems are basically dual to those of

error correction. A good code for correcting errors has a large number of words
but still has large minimum distance. A good data compression code has a small
number of words but still has a small covering radius. As with correction, these
are conflicting goals.

Data compression questions have been considered for almost as long as those
of error correction. Sometimes they have been phrased in terms of the “foot-
ball pools” or lottery problem. Typically in the lottery, each ticket purchased
contains a collection of numbers (selected by the purchaser and from some fixed
range A). Whether or not a given ticket is a winner or loser depends upon
how well its numbers match those of a master ticket which is selected at a later
time. If in order to win it is not necessary for a given ticket to match all of the
master lottery numbers but only miss at most f of them, then a question arises.
What is the smallest number of lottery tickets I must choose and buy in order
to guarantee that I have a ticket on which at most f numbers are wrong? What
is being sought is a small code (the collection of purchased lottery tickets) that
has covering radius at most f . For the football pools problem, the alphabet A
is ternary, since each match result being predicted has three possible outcomes:
‘win’ (for the home team, say), ‘lose’, or ‘draw’.
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For a Hamming code, the covering radius is 1. Indeed, for any perfect e-
error-correcting code, the covering radius is e.

(4.2.1) Proposition. Let C be an e-error-correcting code. Then cr(C) ≥ e
with equality if and only if C is a perfect e-error-correcting code.

Proof. As C is an e-error-correcting code, the spheres of radius e around
codewords are pairwise disjoint. Therefore the spheres of radius e − 1 around
codewords do not cover the whole space. Thus cr(C) > e−1, whence cr(C) ≥ e.
If we have equality, then we must have equality in the Sphere Packing Bound
2.2.6, hence the code is perfect. 2

(4.2.2) Proposition. The covering radius of the linear code C is equal to
the maximum weight of a coset leader.

Proof. The coset of the word −x consists of the sum of −x with each
individual codeword of C, so the weights of the coset members give the distances
of x from the various codewords. The minimal such weight is thus the distance
of x from the code and also the weight of a coset leader. The maximum weight
of a coset leader is therefore the largest distance of any word x from the code.
2

As with dmin, the covering radius of a code is, in general, difficult to compute.
The following problem, reminiscent of Problem 4.1.5, can be of great help.

( 4.2.3) Problem. Let the [n1, k1] linear code C1 over F have generator matrix G1,
and let the [n2, k2] linear code C2 over F have generator matrix G2. Consider the
[n1 + n2, k1 + k2] linear code C over F with generator matrix

G =

»
0 G1

G2 ∗

–
,

where the upper left 0 is a k1 × n2 matrix of 0’s and the lower right ∗ is an arbitrary
k2 × n1 matrix with entries from F .

Prove that cr(C) ≤ cr(C1) + cr(C2).

4.3 First order Reed-Muller codes

In 1954, I.S. Reed and D.E. Muller introduced independently a class of binary
codes of length 2m, for any integer m, associated with Boolean logic. The first
of these codes, for each m, fits naturally into the context of Hamming codes.

A code dual to a binary extended Hamming code is called a first order Reed-
Muller code, denoted RM(1,m) where m is the redundancy of the associatedfirst order Reed-Muller code

Hamming code. Any code that is equivalent to a first order Reed-Muller code is
also first order Reed-Muller. We shall concentrate on the specific code RM(1,m)
with generator matrix XLm.

The associated dual Hamming code is sometimes called a shortened first
order Reed-Muller code or a simplex code. The dual Hamming code can beshortened first order

Reed-Muller code
simplex code
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easily recovered from RM(1,m). Indeed by first choosing all the codewords of
RM(1,m) that have a 0 in their first coordinate position and then deleting this
now useless coordinate, we find the dual Hamming code. This is clear when we
consider how the matrix XLm was constructed by bordering the matrix Lm, the
generator matrix of the dual lexicographic Hamming code. (See page 51.)

Having earlier constructed the generator XLm as a matrix in bordered block
form, we now examine it again, but blocked in a different manner. Notice that
RM(1, 1) = F2

2, RM(1, 2) is the parity check code of length 4, and RM(1, 3) is a
self-dual extended [8, 4] Hamming code.

Examples.

XL1 =

»
0 1

1 1

–
and XL2 =

24 0 0 1 1

0 1 0 1
1 1 1 1

35

XL3 =

2664
0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

3775

XL4 =

266664
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

377775
For i between 2m−1 and 2m, the column m-tuple containing the binary rep-
resentation of i is just that for i − 2m−1 with its leading 0 replaced by a 1.
Therefore, if we ignore the top row of XLm, then the remaining m rows consist
of an m× 2m−1 matrix repeated twice. Indeed this repeated matrix is nothing
other than XLm−1. We now observe the recursive construction:

XLm =
[

0 · · · 0 1 · · · 1
XLm−1 XLm−1

]
.

(4.3.1) Theorem. For each m, the first order Reed-Muller code RM(1,m) is
a binary linear [2m,m+ 1, 2m−1] code.

Proof. Certainly RM(1,m) is linear of length 2m, and its dimension m+ 1
is evident from the generator matrix XLm. From their generator matrices XL1

and XL2, it is easy to see that RM(1, 1) (= F2
2) and RM(1, 2) (the parity check

code of length 4) both have minimum distance 2m−1.
We now verify the minimum distance in general by induction, assuming that

we already have dmin(RM(1,m − 1)) = 2m−2. Let C1 be RM(1,m − 1) with
minimum distance d1 = 2m−2, and let C2 be the repetition code of length
2m−1, whose minimum distance is therefore d2 = 2m−1. The generator matrix
XLm for RM(1,m) is then constructed from the generators G1 = XLm−1 and
G2 = [1 · · · 1] according to the recipe of Problem 4.1.5. Therefore, by that
problem, we have

dmin(RM(1,m)) = min(2d1, d2) = min(2.2m−2, 2m−1) = 2m−1 ,
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as claimed. 2

(4.3.2) Theorem. The first order Reed-Muller code RM(1,m) consists of a
unique word of weight 0, namely 0, a unique word of weight 2m, namely 1, and
2m+1 − 2 words of weight 2m−1.

Proof. The last row of the generator matrix XLm is 1; so 0 and 1 are
the unique codewords of weight 0 and 2m, respectively. By Theorem 4.3.1 the
linear code RM(1,m) has no codewords c of weight between 0 and 2m−1, and
so it also has no codewords 1 + c of weight between 0 and 2m−1. That is, it has
no codewords of weight between 2m−1 and 2m. Therefore all codewords other
than 0 and 1 have weight exactly 2m−1. 2

(4.3.3) Corollary. The dual of the binary Hamming code of redundancy
m consists of a unique word of weight 0, namely 0, and 2m − 1 words of weight
2m−1.

Proof. In recovering the dual Hamming code from RM(1,m), we shorten
the code by taking all codewords that begin with 0 and then delete that position.
In particular the codeword 1 of RM(1,m) does not survive. But by Theorem
4.3.2 all other nonzero codewords of RM(1,m) have weight 2m−1. As only zeros
are deleted, all the nonzero codewords of the dual Hamming code also will have
weight 2m−1. 2

These dual Hamming codes are equidistant codes in that distinct codewordsequidistant codes

are at a fixed distance from each other, here 2m−1. They satisfy the Plotkin
bound 2.3.8 with equality. (The proof of the Plotkin bound as given in Prob-
lem 3.1.5 compares the minimum distance with the average distance between
codewords. For an equidistant code these are the same.)

For a binary word x ∈ Fn2 , consider the corresponding word x∗ ∈ {+1,−1}n
gotten by replacing each 0 by the real number +1 and each 1 by −1.

(4.3.4) Lemma. If x,y ∈ Fn2 , then as vectors of real numbers x∗ · y∗ =
n− 2dH(x,y). In particular if x,y ∈ F2h

2 with dH(x,y) = h, then x∗ · y∗ = 0.

Proof. The dot product of two ±1 vectors is the number of places in which
they are the same minus the number of places where they are different. Here
that is (n− dH(x,y))− dH(x,y). 2

Let RM(1,m)± be the code got by replacing each codeword c of RM(1,m)
with its ±1 version c∗. List the codewords of RM(1,m)± as c∗1, c∗2, . . . , c

∗
2m+1 .

(4.3.5) Lemma. If c∗ ∈ RM(1,m)± then also −c∗ ∈ RM(1,m)±. We have

c∗i · c∗j = 2m if c∗i = c∗j
= −2m if c∗i = −c∗j
= 0 if c∗i 6= ±c∗j .
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Proof. As 1 ∈ RM(1,m) we have (1 + c)∗ = −c∗ ∈ RM(1,m)±. By
Theorem 4.3.2, if distinct b, c ∈ RM(1,m) with b 6= 1+c, then dH(b, c) = 2m−1.
The lemma follows from Lemma 4.3.4. 2

We use this lemma as the basis of a decoding algorithm. When a vector r
is received, calculate each of the dot products r · c∗i , for i = 1, . . . , 2m+1. Then
decode to that codeword c∗j that maximizes the dot product.

In fact this can be done a little more efficiently. Arrange our listing of
RM(1, r) so that c∗i+2m = −c∗i , for each i = 1, . . . , 2m. That is, the second half
of the list is just the negative of the first half. In decoding, we calculate only
those dot products from the first half r · c∗i , for i = 1, . . . , 2m, and select that j
that maximizes the absolute value |r · c∗j |. The received word r is then decoded
to c∗j if r · c∗j is positive and to −c∗j if r · c∗j is negative.

We organize this as Hadamard transform decoding. Set n = 2m, and let Hn Hadamard transform decoding

be the n × n matrix whose ith row is the codeword c∗i . The dot products of
Lemma 4.3.5 then give

HnH
>
n = n In×n ,

since the negative of a row of Hn is never a row. Upon receiving the vector r,
we calculate its Hadamard transform r̂ = Hnr>. If r̂j is that coordinate of r̂
that has the largest absolute value, then we decode r to c∗j in case r̂j > 0 or to
to −c∗j in case r̂j < 0.

An important aspect of Hadamard transform decoding is that it is a soft
decision algorithm rather than a hard decision algorithm. We need not require
that the received vector r have entries ±1. Its entries can be arbitrary real
numbers, and the algorithm still works without modification.

Example. Consider the code RM(1, 3)± which comes from RM(1, 3) of
length n = 23 = 8 with generator matrix XL3. Let

H8 =

266666666664

+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1

377777777775
,

so H8H
>
8 = 8 I8×8. The codewords of RM(1, 3)± are then the rows of H8

and their negatives.
Suppose we receive the vector r = (1, 1,−1, 1,−1,−1, 1, 1). This has

Hadamard transform H8r
> = (2,−2, 2,−2, 2,−2, 6, 2). The entry with

largest absolute value is br7 = 6 > 0, so we decode to

c∗7 = (+1,+1,−1,−1,−1,−1,+1,+1) .

If next we receive r = (−.7, 1, 0,−.8,−.9, 1, .9,−1), then

H8r
> = (−.5,−.9, 1.3,−6.3,−.5,−.9, .9, 1.3) .
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The entry with largest absolute value is br4 = −6.3 < 0, so we decode to

−c∗4 = (−1,+1,+1,−1,−1,+1,+1,−1) .

( 4.3.6) Problem. Assume that you are using the code RM(1, 3)± of the example.
Use Hadamard transform decoding to decode the received word

(.5 , .4 , −.6 , .5 , .6 , −.3 , .5 , −.6 ) .

For any positive integer n, a ±1 square matrix H of side n that satisfies

HH> = n In×n

is called a Hadamard matrix. If we take as a code the rows of H and theirHadamard matrix

negatives, then Hadamard transform decoding will work exactly as described
above. Such a code (or its {0, 1} counterpart) is called a Hadamard code.Hadamard code

( 4.3.7) Problem. Prove that a Hadamard matrix of side n must have n = 1, 2
or n a multiple of 4. ( Remark. It is a long-standing conjecture of combinatorial
design theory that the converse of this problem is true: for each such n, there exists a
Hadamard matrix.)

Begin with a Hadamard code of side n. Choose those n codewords that start
with +1, drop that position, and translate back to a {0, 1} code. The result is
a binary code of length n− 1 and size n which is equidistant of distance n/2. A
code constructed in this fashion is a shortened Hadamard code. Starting withshortened Hadamard code

the matrix H8 of the example above, we recover from RM(1, 3) and RM(1, 3)±

the [7, 3] dual Hamming code.

( 4.3.8) Problem. Let h be a positive integer. Let C be a binary equidistant code of
length 2h− 1 and size 2h with distance h.

(a) Prove that C is a shortened Hadamard code.

(b) Prove that C meets the Plotkin bound 2.3.8 with equality.

Although any Hadamard matrix can be used to design a code that allows
Hadamard transform decoding, there are certain advantages to be gained from
using those matrices that come from Reed-Muller codes as described. The
existence of a soft decision algorithm is good, but we hope to implement it as
efficiently as possible. Consider decoding using the matrix H8 of the example.
Each decoding process requires 63 operations, 56 additions for calculating the
8 dot products and 7 comparisons among the answers. (By convention the
operation of negation is considered to make no contribution.) Certain annoying
repetitions are involved. For instance, both the second and the sixth rows of
H8 begin +1,−1,+1,−1; so the corresponding calculation r1 − r2 + r3 − r4 is
made twice during the decoding process. Can this and other patterns within
H8 be exploited? The answer is “yes,” and it is this fact that makes a matrix
derived from RM(1,m) a better choice than other Hadamard matrices with the
same dimensions.
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Let H1 = [1], a 1×1 Hadamard matrix, and define recursively a 2m+1×2m+1

matrix in block form

H2m+1 =
[

+H2m +H2m

+H2m −H2m

]
.

Then

H2 =
[

+1 +1
+1 −1

]
,

and

H4 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 .
The matrix H8 is that of the example. This construction can be continued,
for all m. The matrix H2m produced is a Hadamard matrix associated with
RM(1,m)± and the Reed-Muller code RM(1,m) whose generator matrix is XLm.
The recursive construction of H2m is related to that of XLm and admits a
streamlined implementation of decoding for RM(1,m) and RM(1,m)±, using
the so-called Fast Hadamard Transform or FHT algorithm. For instance, FHT
decoding of RM(1, 3)± can be achieved with 31 operations rather than the 63
counted previously.

The Reed-Muller codes in general, and the code RM(1, 3) in particular, are
important codes that often arise as constituents of larger codes. It is therefore
worthwhile to have decoding algorithms that are as efficient as possible. Sun
and Van Tilborg have given a soft decision algorithm for RM(1, 3) that is related
to FHT decoding but only needs, on the average, 14 operations with worst-case
performance of 17 operations.
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Chapter 5

Generalized Reed-Solomon
Codes

In 1960, I.S. Reed and G. Solomon introduced a family of error-correcting codes
that are doubly blessed. The codes and their generalizations are useful in prac-
tice, and the mathematics that lies behind them is interesting. In the first sec-
tion we give the basic properties and structure of the generalized Reed-Solomon
codes, and in the second section we describe in detail one method of algebraic
decoding that is quite efficient.

5.1 Basics

Let F be a field and choose nonzero elements v1, . . . , vn ∈ F and distinct
elements α1, . . . , αn ∈ F . Set v = (v1, . . . , vn) and α = (α1, . . . , αn). For
0 ≤ k ≤ n we define the generalized Reed-Solomon codes generalized Reed-Solomon codes

GRSn,k(α,v) = { (v1f(α1), v2f(α2), . . . , vnf(αn)) | f(x) ∈ F [x]k } .

Here we write F [x]k for the set of polynomial in F [x] of degree less than k, a
vector space of dimension k over F . For fixed n, α, and v, the various GRS
codes enjoy the nice embedding property GRSn,k−1(α,v) ≤ GRSn,k(α,v).

If f(x) is a polynomial, then we shall usually write f for its associated code-
word. This codeword also depends upon α and v; so at times we prefer to write
unambiguously

evα,v(f(x)) = (v1f(α1), v2f(α2), . . . , vnf(αn)) ,

indicating that the codeword f = evα,v(f(x)) arises from evaluating the poly-
nomial f(x) at α and scaling by v.

(5.1.1) Theorem. GRSn,k(α,v) is an [n, k] linear code over F with length
n ≤ |F |. We have dmin = n − k + 1 provided k 6= 0. In particular, GRS codes
are MDS codes.

63
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Proof. As by definition the entries in α are distinct, we must have n ≤ |F |.
If a ∈ F and f(x), g(x) ∈ F [x]k, then af(x) + g(x) is also in F [x]k ; and

evα,v(af(x) + g(x)) = a evα,v(f(x)) + evα,v(g(x)) = af + g .

Therefore GRSn,k(α,v) is linear of length n over F .
Let f(x), g(x) ∈ F [x]k be distinct polynomials. Set h(x) = f(x)− g(x) 6= 0,

also of degree less than k. Then h = f − g and wH(h) = dH(f ,g). But the
weight of h is n minus the number of 0’s in h. As all the vi are nonzero, this
equals n minus the number of roots that h(x) has among {α1, . . . , αn}. As
h(x) has at most k − 1 roots by Proposition A.2.10, the weight of h is at least
n− (k − 1) = n− k + 1. Therefore dmin ≥ n− k + 1, and we get equality from
the Singleton bound 3.1.14. (Alternatively, h(x) =

∏k−1
i=1 (x − αi) produces a

codeword h of weight n− k + 1.)
The argument of the previous paragraph also shows that distinct polynomials

f(x), g(x) of F [x]k give distinct codewords. Therefore the code contains |F |k
codewords and has dimension k. 2

The vector v plays little role here, and its uses will be more apparent later.
At present, it serves to make sure that any code that is monomially equivalent
to a GRS code is itself a GRS code.

Let us now find a generator matrix for GRSn,k(α,v). The argument of
Theorem 5.1.1 makes it clear that any basis f1(x), . . . , fk(x) of F [x]k gives rise
to a basis f1, . . . , fk of the code. A particularly nice polynomial basis is the set
of monomials 1, x, . . . , xi, . . . , xk−1. The corresponding generator matrix, whose
ith row (numbering rows from 0 to k − 1) is

evα,v(xi) = (v1α
i
1, . . . , vjα

i
j , . . . , vnα

i
n) ,

is the canonical generator matrix for GRSn,k(α,v):canonical generator matrix 

v1 v2 . . . vj . . . vn
v1α1 v2α2 . . . vjαj . . . vnαn

...
...

. . .
...

. . .
...

v1α
i
1 v2α

i
2 . . . vjα

i
j . . . vnα

i
n

...
...

. . .
...

. . .
...

v1α
k−1
1 v2α

k−1
2 . . . vjα

k−1
j . . . vnα

k−1
n


( 5.1.2) Problem. Consider the code C = GRSn,k(α,v), and assume that all the
entries of the vector α are nonzero. If

α = (α1, α2, . . . , αn) ,

define
β = (α−1

1 , α−1
2 , . . . , α−1

n ) .

Find a vector w such that C = GRSn,k(β,w).
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( 5.1.3) Problem. (a) Consider the code GRSn,k(α,v) over F . Let a, c be nonzero
elements of F , and let b be the vector of Fn all of whose entries are equal to b ∈ F .
Prove that

GRSn,k(α,v) = GRSn,k(aα + b, cv) .

(b) If n < |F |, prove that there is an α′ with no entries equal to 0 and

GRSn,k(α,v) = GRSn,k(α′,v) .

( 5.1.4) Problem. Consider the code E, which will be linear of length n + 1
and dimension k, whose generator matrix results from adding a new column to the
canonical generator matrix for GRSn,k(α,v):2666666666664

v1 v2 . . . vj . . . vn 0
v1α1 v2α2 . . . vjαj . . . vnαn 0

...
...

. . .
...

. . .
...

...
v1α

i
1 v2α

i
2 . . . vjα

i
j . . . vnα

i
n 0

...
...

. . .
...

. . .
...

...

v1α
k−2
1 v2α

k−2
2 . . . vjα

k−2
j . . . vnα

k−2
n 0

v1α
k−1
1 v2α

k−1
2 . . . vjα

k−1
j . . . vnα

k−1
n 1

3777777777775
Prove that dmin(E) = n− k + 2.

Remark. As n − k + 2 = (n + 1) − k + 1, this shows that the code E satisfies the
Singleton Bound with equality and so is maximum distance separable (MDS), just as
all GRS codes are.

It is extremely profitable to think of Theorem 5.1.1 again in terms of poly-
nomial interpolation:

Any polynomial of degree less than k is uniquely determined by its
values at k (or more) distinct points.

Here, any codeword with as many as k entries equal to 0 corresponds to a
polynomial of degree less than k whose values match the 0 polynomial in k
points and so must itself be the 0 polynomial.

Given any n-tuple f , we can easily reconstruct the unique polynomial f(x)
of degree less than n with f = evα,v(f(x)). We first introduce some notation.
Set

L(x) =
n∏
i=1

(x− αi)

and
Li(x) = L(x)/(x− αi) =

∏
j 6=i

(x− αj) .

The polynomials L(x) and Li(x) are monic of degrees n and n− 1, respectively.
The vector f has ith coordinate vif(αi), so we have enough information to
calculate, using the Lagrange interpolation formula A.2.11,

f(x) =
n∑
i=1

Li(x)
Li(αi)

f(αi) .
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The coefficients Li(αi) are always nonzero and are often easy to compute.

( 5.1.5) Problem. (a) Prove that Li(αi) = L′(αi), where L′(x) is the formal
derivative of L(x) as defined in Problem A.2.26.

(b) If n = |F | and {α1, . . . , αn} = F , then Li(αi) = −1, for all i.
(c) If {α1, . . . , αn} is composed of n roots of xn−1 in F , then Li(αi) = nα−1

i ( 6= 0).
In particular, if n = |F | − 1 and {α1, . . . , αn} = F − {0}, then Li(αi) = −α−1

i (hence
α−1
i Li(αi)

−1 = −1).

The polynomial f(x) has degree less than k, while the interpolation polyno-
mial of the righthand side above has apparent degree n − 1. The resolution of
this confusion allows us to find the dual of a GRS code easily.

(5.1.6) Theorem. We have

GRSn,k(α,v)⊥ = GRSn,n−k(α,u),

where u = (u1, . . . , un) with u−1
i = vi

∏
j 6=i(αi − αj).

Proof. By definition ui = v−1
i Li(αi)−1.

We prove that every f in GRSn,k(α,v) has dot product 0 with every g in
GRSn,n−k(α,u), from which the result is immediate. Let f = evα,v(f(x)) and
g = evα,u(g(x)). The polynomial f(x) has degree less than k while g(x) has
degree less than n − k. Therefore their product f(x)g(x) has degree at most
n− 2. By Lagrange interpolation A.2.11 we have

f(x)g(x) =
n∑
i=1

Li(x)
Li(αi)

f(αi)g(αi) .

Equating the coefficient of xn−1 from the two sides gives:

0 =
n∑
i=1

1
Li(αi)

f(αi)g(αi)

=
n∑
i=1

(vif(αi))
(

v−1
i

Li(αi)
g(αi)

)

=
n∑
i=1

(vif(αi))(uig(αi))

= f · g ,

as required. 2

The ability in the class of GRS codes to choose different vectors v to ac-
company a fixed α has been helpful here.

Of course, to specify f as a codeword in C = GRSn,k(α,v) we do not need
to check it against every g of C⊥ = GRSn,n−k(α,u). It is enough to consider
a basis of C⊥, a nice one being the rows of the canonical generator matrix for
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C⊥, a check matrix for C. Our introduction of GRS codes such as C essentially
defines them via their canonical generator matrices. As we have seen before,
describing a linear code instead in terms of a check matrix can be fruitful. In
particular this opens the possibility of syndrome decoding.

Set r = n− k, and let c = (c1, . . . , cn) ∈ Fn. Then

c ∈ C ⇐⇒ 0 = c · evα,u(xj), for 0 ≤ j ≤ r − 1

⇐⇒ 0 =
n∑
i=1

ciuiα
j
i , for 0 ≤ j ≤ r − 1 .

We rewrite these r equations as a single equation in the polynomial ring F [z]
in a new indeterminate z. The vector c is in C if and only if in F [z] we have

0 =
r−1∑
j=0

( n∑
i=1

ciuiα
j
i

)
zj

=
n∑
i=1

ciui

(r−1∑
j=0

(αiz)j
)

The polynomials 1 − αz and zr are relatively prime, so it is possible to invert
1− αz in the ring F [z] (mod zr). Indeed

1
1− αz

=
r−1∑
j=0

(αz)j (mod zr) ,

a truncation of the usual geometric series expansion (which could equally well
be taken as a definition for the inverse of 1− αz module zr). We are left with:

(5.1.7) Theorem. (Goppa formulation for GRS codes.) The general-
ized Reed-Solomon code GRSn,k(α,v) over F is equal to the set of all n-tuples
c = (c1, c2, . . . , cn) ∈ Fn, such that

n∑
i=1

ciui
1− αiz

= 0 (mod zr) ,

where r = n− k and u−1
i = vi

∏
j 6=i(αi − αj). 2

This interpretation of GRS codes has two main values. First, it is open to a
great deal of generalization, as we shall later see. Second, it suggests a practical
method for the decoding of GRS codes, the topic of the next section.

5.2 Decoding GRS codes

As GRS codes are MDS, they can be decoded using threshold decoding as in
Problem 3.2.4. We now present an efficient and more specific algorithm for
decoding the dual of GRSn,r(α,u), starting from the Goppa formulation.
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Suppose c = (c1, c2, . . . , cn) is transmitted, and p = (p1, p2, . . . , pn) is
received, so that the error vector e = (e1, e2, . . . , en) has been introduced;
p = c + e. We calculate the syndrome polynomial of p: syndrome polynomial

Sp(z) =
n∑
i=1

piui
1− αiz

(mod zr) .

Then it is easily seen that

Sp(z) = Sc(z) + Se(z) (mod zr) ,

whence, by the Goppa formulation of Theorem 5.1.7,

Sp(z) = Se(z) (mod zr) .

Let B be the set of error locations:

B = {i | ei 6= 0} .

Then we have the syndrome polynomial

Sp(z) = Se(z) =
∑
b∈B

ebub
1− αbz

(mod zr).

We now drop the subscripts and write S(z) for the syndrome polynomial.
Clear denominators to find the Key Equation:Key Equation

σ(z)S(z) = ω(z) (mod zr),

where
σ(z) = σe(z) =

∏
b∈B

(1− αbz)

and
ω(z) = ωe(z) =

∑
b∈B

ebub

( ∏
a∈B,a6=b

(1− αaz)
)
.

(Empty products are taken as 1.) The polynomial σ(z) is called the error locatorerror locator

polynomial, and the polynomial ω(z) is the error evaluator polynomial.error evaluator

The names are justifiable. Given the polynomials σ(z) = σe(z) and ω(z) =
ωe(z), we can reconstruct the error vector e. Assume for the moment that none
of the αi are equal to 0 (although similar results are true when some αi is 0) .
Then:

B = { b |σ(α−1
b ) = 0 }

and, for each b ∈ B,

eb =
−αbω(α−1

b )
ubσ′(α−1

b )
,

where σ′(z) is the formal derivative of σ(z) (see Problem A.2.26). In fact the
polynomials σ(z) and ω(z) determine the error vector even when some αi is 0.
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( 5.2.1) Problem. Let σ(z) and ω(z) be the error locator and evaluator polynomials
for the error vector e 6= 0. Set B = { b | eb 6= 0 } and B0 = { b ∈ B |αb 6= 0}. Recall
that there is at most one index b with αb = 0.

Prove the following:

(a) wH(e) = |B| is equal to |B0| + 1 or |B0| depending upon whether or not there is
an index b with αb = 0 and eb 6= 0.

(b) deg σ(z) = |B0| and degω(z) ≤ |B| − 1 .

(c) B0 = { b |αb 6= 0, σ(α−1
b ) = 0 }.

(d) The index b with αb = 0 belongs to B if and only if deg σ(z) = degω(z).

(e) For b ∈ B0, eb is given by the formula above. If b ∈ B \B0 then

eb = wu−1
b

“ Y
a∈B0

(−αa)
”−1

,

where w is the coefficient of zf in ω(z) for f = degω(z).

If the error vector e 6= 0 has weight at most r/2 (= (dmin − 1)/2), then
relative to the syndrome polynomial Se(z) = S(z) the pair of polynomials
σe(z) = σ(z) and ωe(z) = ω(z) has the three properties by which it is charac-
terized in the next theorem. Indeed (1) is just the Key Equation. Property (2)
is a consequence of the assumption on error weight and the definitions of the
polynomials σ(z) and ω(z) (see Problem 5.2.1 above). For (3) we have σ(0) = 1
trivially. As σ(z) has deg(σ(z)) distinct roots, either gcd(σ(z), ω(z)) = 1 or the
two polynomials have a common root. But for each root α−1

b of σ(z) we have
0 6= ω(α−1

b ), a factor of eb 6= 0.
Our decoding method solves the Key Equation and so finds the error vector

e as above. The following theorem provides us with a characterization of the
solutions we seek.

(5.2.2) Theorem. Given r and S(z) ∈ F [z] there is at most one pair of
polynomials σ(z), ω(z) in F [z] satisfying:

(1) σ(z)S(z) = ω(z) (mod zr);
(2) deg(σ(z)) ≤ r/2 and deg(ω(z)) < r/2;
(3) gcd(σ(z), ω(z)) = 1 and σ(0) = 1.

In fact we prove something slightly stronger.

(5.2.3) Proposition. Assume that σ(z), ω(z) satisfy (1)-(3) of Theorem
5.2.2 and that σ1(z), ω1(z) satisfy (1) and (2). Then there is a polynomial µ(z)
with σ1(z) = µ(z)σ(z) and ω1(z) = µ(z)ω(z).

Proof. From (1)

σ(z)ω1(z) = σ(z)σ1(z)S(z) = σ1(z)ω(z) (mod zr) ;

so
σ(z)ω1(z)− σ1(z)ω(z) = 0 (mod zr) .
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But by (2) the lefthand side of this equation has degree less than r. Therefore

σ(z)ω1(z) = σ1(z)ω(z) .

From (3) we have gcd(σ(z), ω(z)) = 1, so by Lemma A.2.20 σ(z) divides σ1(z).
Set σ1(z) = µ(z)σ(z). Then

σ(z)ω1(z) = σ1(z)ω(z) = σ(z)µ(z)ω(z) .

The polynomial σ(z) is nonzero since σ(0) = 1; so by cancellation ω1(z) =
µ(z)ω(z), as desired. 2

Proof of Theorem 5.2.2.
Any second such pair has

σ1(z) = µ(z)σ(z) and ω1(z) = µ(z)ω(z)

by the proposition. So µ(z) divides gcd(σ1(z), ω1(z)) which is 1 by (3). There-
fore µ(z) = µ is a constant. Indeed

1 = σ1(0) = µ(0)σ(0) = µ · 1 = µ .

Thus σ1(z) = µ(z)σ(z) = σ(z) and ω1(z) = µ(z)ω(z) = ω(z). 2

Using the characterization of Theorem 5.2.2 we now verify a method of
solving the Key Equation with the Euclidean algorithm, as presented in Section
A.3.1 of the appendix.

(5.2.4) Theorem. (Decoding GRS using the Euclidean Algorithm.)
Consider the code GRSn,k(α,v) over F , and set r = n− k. Given a syndrome
polynomial S(z) (of degree less than r), the following algorithm halts, producing
polynomials σ̃(z) and ω̃(z):

Set a(z) = zr and b(z) = S(z).
Step through the Euclidean Algorithm A.3.1

until at Step j, deg(rj(z)) < r/2.
Set σ̃(z) = tj(z)
and ω̃(z) = rj(z).

If there is an error word e of weight at most r/2 = (dmin − 1)/2 with Se(z) =
S(z), then σ̂(z) = σ̃(0)−1σ̃(z) and ω̂(z) = σ̃(0)−1ω̃(z) are the error locator and
evaluator polynomials for e.

Proof. It is the goal of the Euclidean algorithm to decrease the degree of
rj(z) at each step, so the algorithm is guaranteed to halt.

Now assume that S(z) = Se(z) with wH(e) ≤ r/2. Therefore the error
locator and evaluator pair σ(z) = σe(z) and ω(z) = ωe(z) satisfies (1), (2), and
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(3) of Theorem 5.2.2. We first check that, for the j defined, the pair tj(z) and
rj(z) satisfies (1) and (2).

Requirement (1) is just the Key Equation and is satisfied at each step of the
Euclidean algorithm since always

Ej : rj(z) = sj(z)zr + tj(z)S(z).

For (2), our choice of j gives deg(rj(z)) < r/2 and also deg(rj−1(z)) ≥ r/2.
Therefore, from Problem A.3.5,

deg(tj(z)) + r/2 ≤ deg(tj(z)) + deg(rj−1(z))
= deg(a(z)) = deg(zr) = r .

Hence deg(tj(z)) ≤ r/2, giving (2).
By Proposition 5.2.3 there is a polynomial µ(z) with

tj(z) = µ(z)σ(z) and rj(z) = µ(z)ω(z) .

Here µ(z) is not the zero polynomial by Lemma A.3.3(1).
If we substitute for tj(z) and rj(z) in equation Ej we have

sj(z)zr + (µ(z)σ(z))S(z) = µ(z)ω(z) ,

which becomes
µ(z)

(
ω(z)− σ(z)S(z)

)
= sj(z)zr .

By the Key Equation, the parenthetical expression on the left is p(z)zr, for some
p(z); so we are left with µ(z)p(z)zr = sj(z)zr or

µ(z)p(z) = sj(z) .

Thus µ(z) divides gcd(tj(z), sj(z)), which is 1 by Corollary A.3.4.
We conclude that µ(z) = µ is a nonzero constant function. Furthermore

tj(0) = µ(0)σ(0) = µ ;

so
σ(z) = tj(0)−1tj(z) and ω(z) = tj(0)−1rj(z) ,

as desired. 2

When this algorithm is used, decoding default occurs when σ̂(z) does not
split into linear factors whose roots are inverses of entries in α with multiplicity
1. (Here we assume that none of the αi are 0.) That is, the number of roots of
σ̂(z) among the α−1

i must be equal to the degree of σ̂(z). If this is not the case,
then we have detected errors that we are not able to correct. Another instance
of decoder default occurs when tj(0) = 0, so the final division to determine σ̂(z)
can not be made.
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If tj(0) 6= 0 and σ̂(z) does split as described, then we can go on to evaluate
errors at each of the located positions and find a vector of weight at most r/2
with our original syndrome. In this case we have either decoded correctly, or we
had more than r/2 errors and have made a decoding error. (We need not worry
about division by 0 in evaluating errors, since this can only happen if σ̂(z) has
roots of multiplicity greater than one; see Problem A.2.27.)

Assume now that r is even or that α has weight n. Then this algorithm only
produces error vectors of weight r/2 or less. In particular if more than r/2 errors
occur then we will have a decoding default or a decoder error. Suppose that we
have found polynomials σ̂(z) and ω̂(z) that allow us to calculate a candidate er-
ror vector e of weight at most r/2. It follows from Lagrange interpolation A.2.11
that σ̂(z) = σe(z) and ω̂(z) = ωe(z). Also since σ(z) is invertible modulo zr, we
can solve the Key Equation to find that S(z) = Se(z). Therefore the received
vector is within a sphere of radius r/2 around a codeword and is decoded to
that codeword. That is, under these conditions Euclidean algorithm decoding as
given in Theorem 5.2.4 is an explicit implementation of the decoding algorithm
SSr/2.

Example. Consider the code C = GRS6,2(α,v) over the field F7 of
integers modulo 7, where

α = (2, 4, 6, 1, 3, 5)

and
v = (1, 1, 1, 1, 1, 1) .

First calculate a vector u for which C⊥ = GRS6,4(α,u). Starting with

L(x) = (x− 2)(x− 4)(x− 6)(x− 1)(x− 3)(x− 5)

we find:

L1(2) = (−2) (−4) (1) (−1) (−3) = 24 = 3
L2(4) = (2) (−2) (3) (1) (−1) = 12 = 5
L3(6) = (4) (2) (5) (3) (1) = 120 = 1
L4(1) = (−1) (−3) (−5) (−2) (−4) = −120 = 6
L5(3) = (1) (−1) (−3) (2) (−2) = −12 = 2
L6(5) = (3) (1) (−1) (4) (2) = −24 = 4

(Notice that these values could have been found easily using Problem
5.1.5(c).) Now ui = (viLi(αi))

−1 = Li(αi)
−1 since vi = 1; so

u = (5, 3, 1, 6, 4, 2) .

Next calculate the syndrome polynomial of an arbitrary received vector

p = (p1, p2, p3, p4, p5, p6) .

In our example r = 6− 2 = 4.

Sp(z) =
5 · p1

1− 2z
+

3 · p2

1− 4z
+

1 · p3

1− 6z
+

6 · p4

1− 1z
+

4 · p5

1− 3z
+

2 · p6

1− 5z
(mod z4)
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= 5p1( 1 +2z +4z2 +z3)
+3p2( 1 +4z +2z2 +z3)
+p3( 1 +6z +z2 +6z3)

+6p4( 1 +z +z2 +z3) (mod z4)
+4p5( 1 +3z +2z2 +6z3)
+2p6( 1 +5z +4z2 +6z3)

= p1( 5 +3z +6z2 +5z3)
+p2( 3 +5z +6z2 +3z3)
+p3( 1 +6z +z2 +6z3)
+p4( 6 +6z +6z2 +6z3) (mod z4) .
+p5( 4 +5z +z2 +3z3)
+p6( 2 +3z +z2 +5z3)

Notice that this calculation amounts to finding the canonical check matrix
for the code.

We now use the algorithm of Theorem 5.2.4 to decode the received
vector

p = (1, 3, 6, 5, 4, 2) .

We have the syndrome polynomial

S(z) =
5 · 1

1− 2z
+

3 · 3
1− 4z

+
1 · 6

1− 6z
+

6 · 5
1− 1z

+
4 · 4

1− 3z
+

2 · 2
1− 5z

(mod z4)

= 1( 5 +3z +6z2 +5z3)
+3( 3 +5z +6z2 +3z3)
+6( 1 +6z +z2 +6z3)
+5( 6 +6z +6z2 +6z3) (mod z4) .
+4( 4 +5z +z2 +3z3)
+2( 2 +3z +z2 +5z3)

= 5z + 3z2 + 4z3 (mod z4) .

The algorithm now requires that, starting with initial conditions

a(z) = z4 and b(z) = 4z3 + 3z2 + 5z ,

we step through the Euclidean Algorithm until at Step j we first have
deg(rj(z)) < r/2 = 2.

This is precisely the Euclidean Algorithm example done in the ap-
pendix. At Step 2. we have the first occurrence of a remainder term with
degree less than 2; we have r2(z) = 6z . We also have t2(z) = 3z2 +6z+4,
so t2(0)−1 = 4−1 = 2. Therefore we have error locator and evaluator
polynomials:

σ(z) = t2(0)−1t2(z) = 2(3z2 + 6z + 4) = 6z2 + 5z + 1

ω(z) = t2(0)−1r2(z) = 2(6z) = 5z .

The error locations are those in B = { b | σ(α−1
b ) = 0 }; so to find the

error locations, we must extract the roots of σ(z). As F7 does not have
characteristic 2, we can use the usual quadratic formula and find that the
roots are

2 , 3 =
−5±

√
25− 4 · 6

2 · 6 .
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Now 2−1 = 4 = α2 and 3−1 = 5 = α6, so B = {2, 6}.
An error value eb is given by

eb =
−αbω(α−1

b )

ubσ′(α
−1
b )

,

where σ′(z) = 5z + 5. Thus e2 = −4·10
3·15 = 3 and e6 = −5·15

2·20 = 6 .

We have thus found

e = (0, 3, 0, 0, 0, 6) ,

so we decode the received word p to

c = p− e = (1, 3, 6, 5, 4, 2)− (0, 3, 0, 0, 0, 6) = (1, 0, 6, 5, 4, 3) .

In the example we have been able to use the quadratic formula to calculate
the roots of σ(z) and so find the error locations. This will not always be possible.
There may be more than 2 errors. In any case, the quadratic formula involves
division by 2 and so is not valid when the characteristic of the field F is 2, one
of the most interesting cases. A method that is often used is the substitution,
one-by-one, of all field elements into σ(z), a Chien search. Although this lacks Chien search

subtlety, it is manageable when the field is not too big. There do not seem to
be general alternatives that are good and simple.

( 5.2.5) Problem. Consider the GRS8,4(α,v) code C over F13 with

v = (1, 1, 1, 1, 1, 1, 1, 1)

α = (1, 4, 3, 12, 9, 10, 5, 8) .

(a) Give n, k,β,u with C⊥ = GRSn,k(β,u).

(b) When transmitting with C, assume that the vector

p = (0, 0, 0, 0, 0, 0, 3, 5) .

is received. Use the Euclidean algorithm to find an error vector e and a decoded code-
word c. (The answers should be obvious. Use the question to check your understanding
of the process.)

(c) When transmitting with C, assume that the vector

p = (3, 6, 0, 4, 0, 5, 0, 12)

is received. Use the Euclidean algorithm to find an error vector e and a decoded
codeword c.

( 5.2.6) Problem. Consider the GRS10,4(α,v) code C over F13 with

v = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

α = (1, 2, 3, 4, 6, 7, 9, 10, 11, 12) .
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(a) Give n, k,β,u with C⊥ = GRSn,k(β,u).
( Hint: u = (∗, ∗, 9, 10, 12, 1, 3, 4, ∗, ∗).)

(b) When transmitting with C, assume that the vector

p = (4, 5, 6, 0, 0, 0, 0, 0, 0, 0) .

is received. Use the Euclidean algorithm to find an error vector e and a decoded code-
word c. (The answers should be obvious. Use the question to check your understanding
of the process.)

(c) When transmitting with C, assume that the vector

p = (3, 1, 0, 0, 0, 0, 0, 5, 7, 12) .

is received. Use the Euclidean algorithm to find an error vector e and a decoded
codeword c.

( 5.2.7) Problem. Let the field F8 be given as polynomials of degree at most 2 in α, a
root of the primitive polynomial x3+x+1 ∈ F2[x]. Consider the code C = GRS7,3(α,v)
over F8 with

α = v = (1, α, α2, α3, α4, α5, α6) .

By Problem 5.1.5(c) we have C⊥ = GRS7,4(α,u) for u = (1, 1, 1, 1, 1, 1, 1).
When transmitting with C, assume that the vector

p = (0, α5, 0, 1, α6, 0, 1)

is received. Use the Euclidean Algorithm to find an error vector e and a decoded
codeword c.



76 CHAPTER 5. GENERALIZED REED-SOLOMON CODES



Chapter 6

Modifying Codes

If one code is in some sense good, then we can hope to find from it similar and
related codes that are also good. In this chapter we discuss some elementary
methods for modifying a code in order to find new codes. In two further sections
we discuss special cases related to generalized Reed-Solomon codes.

6.1 Six basic techniques

A code C has three fundamental parameters—its length n, its dimension k, and
its redundancy r = n−k. Each of these parameters has a natural interpretation
for linear codes, and although the six basic modification techniques are not
restricted to linear codes it will be easy initially to describe them in these terms.
Each fixes one parameter and increases or decreases the other two parameters
accordingly. We have:

(i) Augmenting. Fix n; increase k; decrease r.
(ii) Expurgating. Fix n; decrease k; increase r.
(iii) Extending. Fix k; increase n; increase r.
(iv) Puncturing. Fix k; decrease n; decrease r.
(v) Lengthening. Fix r; increase n; increase k.
(vi) Shortening. Fix r; decrease n; decrease k.

The six techniques fall naturally into three pairs, each member of a pair
the inverse process to the other. Since the redundancy of a code is its “dual
dimension,” each technique also has a natural dual technique.

6.1.1 Augmenting and expurgating

In augmenting or expurgating a code we keep its length fixed but vary its di-
mension and redundancy.

When augmenting a code C we add codewords to C. augmenting

77
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The inverse process of expurgating a code is the throwing out of codewords.expurgating

Notice that augmentation may cause the minimum distance to decrease, while
expurgation will not decrease minimum distance and may, in fact, increase it.
For generalized Reed-Solomon codes, we always have

GRSn,k−1(α,v) ≤ GRSn,k(α,v) .

Therefore the second code results from augmenting the first, and the first from
expurgating the second. In this case the expurgated code has larger minimum
distance.

A linear code can be easily augmented by adding rows to a generator matrix
and expurgated by taking away rows. A typical way of augmenting a linear code
is by adding the row vector composed entirely of 1’s to its generator matrix.
(Of course, in certain cases this vector will already belong to the code; so the
action is inappropriate.)

Increasing the size of a linear code is the same as decreasing the size of its
dual, so these two techniques are dual to each other as well as inverse. The dual
of augmenting a code by the all 1’s vector is expurgating by keeping only those
codewords whose entries sum to 0.

These techniques are used for nonlinear codes as well. Consider a linear
code C that is a subcode of the linear code D. We can create new codes,
not necessarily linear, that are augmentations of C and expurgations of D, by
taking the union of certain cosets of C in D. For instance, we might choose those
cosets whose coset leaders had largest weight. This method has produced some
nonlinear codes that have better properties (in this case minimum distance)
than any linear code with the same length and size.

If K is a subfield of the field F and C is a code over F , then we can expurgate
C by keeping only those codewords all of whose entries belong to K. This
subfield subcode inherits many of the properties of the original code and may havesubfield subcode

further nice properties as well. This extremely important type of expurgation
will be discussed at length in a later chapter.

6.1.2 Extending and puncturing

In extending or puncturing a code we keep its dimension fixed but vary its length
and redundancy. These techniques are exceptional in that they are one-to-one.
Issues related to the extending and puncturing of GRS codes will be discussed
in the next two sections.

When extending a code we add extra redundancy symbols to it. The inverseextending

is puncturing, in which we delete redundancy symbols. Puncturing may causepuncturing
the minimum distance to decrease, but extending will not decrease the minimum
distance and may, in fact, increase it. (See Problem 6.1.1 below.) To extend a
linear code we add columns to its generator matrix, and to puncture the code
we delete columns from its generator.

Let us call the [n + 1, k] linear code C+ a coordinate extension of C if itcoordinate extension

results from the addition of a single new redundancy symbol to the [n, k] linear
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code C over the field F . Each codeword c+ = (c1, . . . , cn, cn+1) of the extended
code C+ is constructed by adding to the codeword c = (c1, . . . , cn) of C a new
coordinate cn+1 =

∑n
i=1 aici = a · c, for some fixed a = (a1, . . . , an) ∈ Fn.

Here we imply that the new coordinate is the last one, but this is not necessary.
A coordinate extension can add a new position at any place within the original
code.

Although it is formally possible, it makes little sense to add a coordinate
determined by a vector a of C⊥, since each new cn+1 would be 0. We thus
assume that a 6∈ C⊥. In this case, the subcode C0 = C ∩a⊥ of C has dimension
k − 1. We call C0 the kernel of the extension. Replacing the vector a by any kernel

other vector of the coset a + C⊥ leaves the extension C+ and the kernel C0

unchanged. Replacing a by a nonzero scalar multiple gives an extension of C
diagonally equivalent to C+ and with the same kernel C0.

The kernel C0 is that subcode of C that has 0 added in the extension position
cn+1 of C+. If G0 is a generator matrix for the kernel C0 and c ∈ C −C0, then
one generator matrix for the coordinate extension C+ is[

G0 0
c cn+1

]
,

where 0 is a column vector of k−1 entries equal to 0. Conversely, for any linear
[n, k− 1] subcode C0 of C, there is a coordinate extension C+ of C with kernel
C0. The extension C+ can be constructed via a generator matrix as above or,
equivalently, by choosing a vector a in C⊥0 − C⊥.

The most typical method of extending a code is the appending of an overall
parity check symbol, a final symbol chosen so that the entries of each new code-
word sum to zero. This corresponds to a coordinate extension in which a has all
of its entries equal to −1. For binary codes, this is the usual requirement that
the 1’s of a codeword in the extended code have even parity. For C a binary
Hamming code, this leads to the extended Hamming codes as constructed in
Section 4.3, although there we added the new coordinate at the front of the
codeword rather than the rear. An extended binary Hamming code has mini-
mum distance 4. No matter what position we choose to puncture an extended
binary Hamming code, we are left with a code of minimum distance 3. This
code must again be a Hamming code by Problem 4.1.3.

( 6.1.1) Problem. Let C+ be a coordinate extension of C with kernel C0. If
dmin(C0) > dmin(C), prove that dmin(C+) = dmin(C) + 1.

Let x′ denote the vector of length n − 1 that is gotten by deleting the last
entry from the vector x of length n. Then GRSn,k(α,v) can be punctured
to GRSn−1,k(α′,v′). Clearly this can be repeated and not always in the final
coordinate. The relationship between puncturing and correction of erasures in
GRS codes is discussed in the next section of this chapter. On the other hand
GRSn,k(α,v) is an extension of GRSn−1,k(α′,v′). Extensions of this kind are
always possible as long as n < |F |. We talk about further extension of GRS
codes in the final section of the chapter.
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( 6.1.2) Problem. Let C be a code with minimum distance d. Prove that C can
correct any pattern of g erasures and e errors provided

g + 2e+ 1 ≤ d .

( Hint: For a given pattern, consider the code that is C punctured at the erasure
locations.)

6.1.3 Lengthening and shortening

In lengthening or shortening a code we keep its redundancy fixed but vary its
length and dimension.

When lengthening a code C we increase the length and add codewords to C.lengthening

The inverse process of shortening a code involves the throwing out of codewordsshortening
and deleting coordinate positions. As such, these operations can be thought of
as combinations of the ones discussed above. Lengthening is extending followed
by augmenting, and shortening is expurgating followed by puncturing. Since
the two constituent operations tend to have opposing influence on the minimum
distance, the actual effect of a lengthening or shortening operation upon distance
will depended upon the situation.

For linear codes lengthening corresponds to bordering a generator matrix by
adding new columns (extending) and the same number of new rows (augment-
ing). A standard method is to add to the original generator a final column that
is entirely 0, and then add a row that is nonzero in this new column, for in-
stance, the vector of all 1’s. Thus a coordinate extension D+ of a linear code D
is a lengthening of its kernel C = D0. Lengthening a code is dual to extending,
and the special case of adding an all 0 column and all 1 row for C corresponds
to extending C⊥ by an overall parity check symbol. Thus in Section 4.3, we
started with a lexicographic generator matrix Lm for the dual Hamming code
C and bordered it to construct a generator ELm for the first order Reed-Muller
code RM(1,m) whose dual is the extended Hamming code.

( 6.1.3) Problem. Let C+ be a coordinate extension of the linear code C with kernel
C0. Prove that (C+)⊥ is an extension of C⊥0 and a lengthening of C⊥.

Shortening undoes lengthening by removing a border from a generator ma-
trix. To reverse the standard 0 column lengthening just described, we first find
a generator matrix for the longer code that has a unique row in which the last
column is nonzero. Then delete that row (expurgating) and the final column
(puncturing), leaving a generator matrix for the original code. In fact this re-
constructs the original code as the kernel of a coordinate extension in the overall
parity check position. Of course this type of shortening can be done with re-
spect to any column. There will also be various other shortenings available,
corresponding to deleting borders whose columns have more nonzero entries.
Shortening plays a role in constructing noncyclic CRC codes from cyclic codes,
as discussed in Section 8.4.1.

Using the x, x′ notation of the previous subsection, we see that the canon-
ical generator matrix for the code GRSn,k(α,v) is obtained by bordering the
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canonical generator matrix for GRSn−1,k−1(α′,v′). Therefore we can shorten
GRSn,k(α,v) to GRSn−1,k−1(α′,v′). In general this will not be the same as
the [n− 1, k− 1] shortened code constructed above by deleting the last position
from all codewords that finish with 0, the kernel of GRSn,k(α,v) viewed as an
extension in its last coordinate.

( 6.1.4) Problem. Let C be GRSn,k(α,v), and shorten C to the [n− 1, k − 1] code
D by taking all codewords of C that end in 0 and then deleting this last coordinate.
Find vectors β and u with D = GRSn−1,k−1(β,u).

We can also lengthen and shorten nonlinear codes. Choose a coordinate
position, and select from the code only those words that have some fixed entry
in that place. Then delete that position from each of these words. This process
can be repeated any number of times, leaving the residue of all codewords that
match some specific pattern on some specific set of positions, those positions
then deleted. We can use this approach to prove the rest of the Asymptotic
Plotkin Bound 2.3.9(2):

αm(δ) ≤ 1− m

m− 1
δ , for 0 ≤ δ ≤ m− 1

m
.

Proof of Corollary 2.3.9.
Consider a family {Cn} of m-ary codes of unbounded length n and such that

the limits
lim
n→∞

d(Cn)/n = lim
n→∞

δ(Cn) = δ

and
lim
n→∞

k(Cn)/n = lim
n→∞

κ(Cn) = κ

both exist. Assume additionally that δ ≤ (m− 1)/m. We wish to prove

κ ≤ 1− m

m− 1
δ .

Clearly we may assume that δ 6= 0, so d(Cn) goes to infinity with n. In
particular, there is an integer N such that d(Cn) ≥ m, for all n > N .

Let n > N , and set C = Cn and d = d(Cn). Define

n′ =
⌊

(d− 1)
m

m− 1

⌋
= (d− 1) +

⌊
d− 1
m− 1

⌋
≥ d .

Since 1 > (m− 1)/m ≥ 0,

d− 2 <
m− 1
m

n′ ≤ d− 1 .

Let x be an (n−n′)-tuple. Shorten the code to a set C ′ = C ′(x) of n′-tuples
by choosing all codewords ending in the (n−n′)-tuple x and then deleting these
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last (n − n′) positions from the chosen words. Then either C ′ is empty or the
shortened code C ′ has length n′ and minimum distance d′ ≥ d. Furthermore

m− 1
m

<
d

n′
≤ d′

n′
,

Therefore the Plotkin Bound 2.3.8 can be applied to C ′ to yield

|C ′| ≤ d′

d′ − m−1
m n′

≤ d

d− m−1
m n′

≤ d ,

since the function f(x) = x/(x − c) is decreasing. There are mn−n′ possible
choices for x, and each C ′(x) has size at most d; so

|C| ≤ dmn−n′ .

Taking logarithms and dividing by n, we reach

logm(|C|)
n

≤ logm(d) + n− n′

n

≤ logm(n)
n

+ 1− m

m− 1
d− 2
n

.

Therefore, for all n > N ,

κ(Cn) ≤ 1− m

m− 1
δ(Cn) + n−1

(
logm(n) + 2

m

m− 1

)
,

which, in the limit, is the desired bound. 2

6.2 Puncturing and erasures

In Subsection 6.1.2 we saw that the correction of erasures and errors can be
dealt with through correction of errors for a suitable punctured code. Indeed
the following theorem is a special case of Problem 6.1.2.

(6.2.1) Theorem. The code GRSn,k(α,v) can be used to correct any pattern
of g erasures and e errors provided

g + 2e ≤ n− k .

We are interested in proving the theorem by displaying a specific algorithm
for decoding. We shall see that a simple modification of Euclidean algorithm
decoding allows us to find the error and erasure locations, at which point the
algorithm of Proposition 3.3.3 can be used to find all values.

Remember that for the code C = GRSn,k(α,v) we defined

L(x) =
n∏
i=1

(x− αi)
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and
Li(x) = L(x)/(x− αi) .

Let J be a subset of the coordinate positions, and consider the code CJ =
GRSn−g,k(αJ ,vJ), gotten by puncturing C at the coordinate positions of the
set J̄ , the complement of J , with |J̄ | = g. For CJ we have

LJ(x) =
∏
i∈J

(x− αi)

and
LJ,i(x) = LJ(x)/(x− αi) ,

for i ∈ J . If we let

LJ̄(x) =
∏
i∈J̄

(x− αi) =
∏
i6∈J

(x− αi) ,

then
L(x) = LJ(x)LJ̄(x) and Li(x) = LJ,i(x)LJ̄(x) .

By Theorem 5.1.6 the dual of C is GRSn,n−k(α,u), where

ui =
1

viLi(αi)
;

and the dual of CJ is GRSn−g,n−g−k(αJ , ũ), where

ũi =
1

viLJ,i(αi)
,

for i ∈ J . Notice that we do not get ũ by simple puncturing of u (and so we do
not write uJ .) Nevertheless ũ is easy to calculate. For i ∈ J ,

ũi =
1

viLJ,i(αi)

=
1

vi(Li(αi)/LJ̄(αi))

=
LJ̄(αi)
viLi(αi)

= LJ̄(αi)ui .

We have proven

(6.2.2) Proposition. The dual of GRSn−g,k(αJ ,vJ) is

GRSn−g,n−g−k(αJ , ũ) ,

where ũi = LJ̄(αi)ui. 2
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We return to Theorem 6.2.1. Suppose we receive the word p which contains
g erasures at the positions J̄ . To find the locations of the errors (as opposed to
erasures) we decode the punctured received word pJ using the punctured code
CJ . As CJ corrects b(n− g − k + 1)/2c errors, this already proves the theorem
without an algorithm.

We now describe the error location algorithm, following that of Theorem
5.2.4. We first calculate the J-syndrome:

SJ(z) =
∑
i∈J

LJ̄(αi)uipi
1− αiz

(mod zr−g)

=
n∑
i=1

LJ̄(αi)uipi
1− αiz

(mod zr−g) .

Next we step through the Euclidean algorithm with the initialization

a(z) = zr−g and b(z) = SJ(z)

until a step j is reached where deg(rj(z)) < (r − g)/2. We can then find the
error locations I in J from the calculated σJ(z) (and ωJ(z)).

Of course we could at the same time find the error values at the locations
in I, but we would still need to find the values at the erasure locations in J̄ . It
is probably more efficient to use the algorithm of Proposition 3.3.3 to find all
values at the g + e ≤ d− 1 error and erasure locations I ∪ J̄ simultaneously.

6.3 Extended generalized Reed-Solomon codes

Let n > 1, and consider n-tuples from the field F with the following properties:
(i) w = (w1, w2, . . . , wn) ∈ Fn has all its entries wi not 0;
(ii) β = (β1, β2, . . . , βn) ∈ Fn and γ = (γ1, γ2, . . . , γn) ∈ Fn satisfy

βiγj 6= βjγi , for all i 6= j .

For k > 0 the extended generalized Reed-Solomon code EGRSn,k(β,γ; w) is theextended generalized
Reed-Solomon code code C composed of all codewords

evβ,γ;w(f) = (w1f(β1, γ1), . . . , wif(βi, γi), . . . , wnf(βn, γn)) ,

where f = f(x, y) runs through all polynomials of F [x, y] that are homogeneous
of degree k − 1:

f(x, y) = f0y
k−1 + f1xy

k−2 + f2x
2yk−3 + · · ·+ fk−1x

k−1 with fi ∈ F .

The condition (ii) states that, for all distinct i, j, there is no c ∈ F with
(βi, γi) = c(βj , γj). It should be thought of as saying that

βi/γi 6= βj/γj , for all i 6= j ,
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but care must be taken since we allow the possibility γj = 0. There is at most
one j with γj = 0, and in that case βj 6= 0 since n > 1.

For each i, let αi be the ratio βi/γi, where we write ∞ for βj/γj = βj/0.
Then by (ii) the αi are all distinct. Let α = (α1, α2 . . . , αn). Further let α′ be
α punctured at position j where αj =∞, if such a position exists.

For each i, set vi = wiγ
k−1
i ; and let v = (v1, v2, . . . , vn). All entries of v

are nonzero with the possible exception of that vj where γj = 0 and αj =∞, if
such a j exists. In that case let v′ be v punctured at position j.

We first check that the code we have defined is really an extension of a
generalized Reed-Solomon code.

(6.3.1) Theorem. Let C = EGRSn,k(β,γ; w). If αj = ∞ and γj = 0 then
the code gotten by puncturing C at position j is GRSn−1,k(α′,v′). If no such j
exists, then C = GRSn,k(α,v).

Proof. Let C ′ be the code gotten by puncturing C at j where αj =∞. If
no such j exists, let C ′ = C.

With each degree k − 1 homogeneous polynomial f(x, y) as above, we asso-
ciate a polynomial f̂ in the single indeterminate x

y :

f̂

(
x

y

)
=

1
yk−1

f(x, y) = f0 + f1

(
x

y

)
+ f2

(
x

y

)2

+ · · ·+ fk−1

(
x

y

)k−1

.

The polynomial f̂(xy ) has degree at most k − 1 and satisfies

f̂(αi) =
1

γk−1
i

f(βi, γi) .

Therefore, for any i with αi 6=∞, the ith entry of the codeword

evβ,γ;w(f)

in the code C = EGRSn,k(β,γ; w) equals that of the codeword

evα′,v(f̂)

in the generalized Reed-Solomon code GRSn′,k(α′,v′). That is,

C ′ = GRSn′,k(α′,v′) . 2

A canonical generator matrix for C has rows evβ,γ;w(f) as f = f(x, y)
runs through the basis yixk−1−i of the space of homogeneous polynomials of
degree k− 1. This matrix is also obtained by adding to the canonical generator
matrix for GRSn−1,k(α′,v′) at position j (where αj = ∞) a column that is
all 0 except for the entry wjβ

k−1
j in its last row. (Compare Problem 5.1.4.)

In particular GRSn−1,k−1(α′,v′) is revealed as the kernel of the coordinate
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extension of GRSn−1,k(α′,v′) at position j that produces the extended code
EGRSn,k(β,γ; w). In particular, the next theorem is a consequence of the
previous theorem and Problem 6.1.1. Instead we give a proof following that of
the corresponding result for GRS codes, Theorem 5.1.1.

(6.3.2) Theorem. The code EGRSn,k(β,γ; w) is an [n, k] linear code over
F with minimum distance n− k + 1.

Proof. The only thing that needs careful checking is that the minimum
distance is at least n− k + 1 = n− (k − 1).

Let f(x, y) be a homogeneous polynomial of degree k − 1, and let f̂(xy ) be
its associated polynomial. As all the wi are nonzero, the number of entries 0
in f = evβ,γ;w(f) equals the number of i with f(βi, γi) = 0. We must prove
there are at most k−1 such i. There are two cases to consider, depending upon
whether or not f(βj , γj) = 0 for a j with γj = 0 and αj =∞.

First consider those 0’s of f that occur at positions i for which γi 6= 0. Each
corresponding αi is a root of the polynomial f̂ , and there are at most deg(f̂)
roots. In particular, in the case where all 0’s of f occur at such positions i, there
are at most k − 1 ≤ deg(f̂) places equal to 0, as required.

Now assume that γj = 0 and f(βj , 0) = 0, that is,

0 = f00k−1 + f1βj0k−2 + f2β
2
j 0k−3 + · · ·+ fk−2β

k−2
j 01 + fk−1β

k−1
j

= fk−1β
k−1
j .

As βj 6= 0, we must have fk−1 = 0 in this case. Therefore the degree of f̂ is in
fact at most k− 2. So even here there are at most k− 1 places where f is 0, one
at position j and at most deg(f̂) ≤ k − 2 at other locations. 2

( 6.3.3) Problem. Prove that the dual of an EGRS code is also an EGRS code.

(6.3.4) Theorem. Let a, b, c, d, e ∈ F with

ad− bc 6= 0 and e 6= 0 .

Then
EGRSn,k(β,γ; w) = EGRSn,k(β̃, γ̃; w̃) ,

where

β̃i = aβi + bγi,

γ̃i = cβi + dγi,

andw̃i = ewi .

Proof. The proof consists mainly of calculation. The crucial observation
is that, for any homogeneous polynomial f(x, y) of degree k − 1 and for the
quadruple r, s, t, u ∈ F , the polynomial f(rx+ sy, tx+ uy) is also homogeneous
of degree k − 1, provided rx+ sy 6= 0 6= tx+ uy.
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The number ∆ = ad− bc is the determinant of the matrix[
a b
c d

]
.

As ∆ is nonzero we can solve for βi and γi and find that

βi = ∆−1(dβ̃i − bγ̃i) ,
γi = ∆−1(−cβ̃i + aγ̃i) .

As e 6= 0, the vector w̃ has no entries 0, since w has none. We also check
that

β̃iγ̃j − β̃j γ̃i = ∆(βiγj − βjγi) 6= 0 ,

giving the defining conditions (i) and (ii) for the vectors β̃, γ̃, and w̃.
Starting with the degree k − 1 homogeneous polynomial f(x, y), we define

the new polynomial

g(x, y) =
1

e∆k−1
f(dx− by,−cx+ ay) .

Then
evβ,γ;w(f) = evβ̃,γ̃;w̃(g) .

Therefore each codeword of the first code is also in the second code. As both
codes have the same dimension, they must be equal. 2

Problems 5.1.2 and 5.1.3 are special cases of this theorem.
The q + 1 possible ratios αi = βi/γi from {∞} ∪ Fq are identified with the

projective line over Fq. The EGRS codes can thus be thought of as codes
defined by functions on the projective line. The group of 2 × 2 matrices that
appears in Theorem 6.3.4 acts naturally on the projective line.

(6.3.5) Theorem. If n ≤ |F |, then C = EGRSn,k(β,γ; w) is equal to
GRSn,k(α,v) over F , for appropriate α and v. If n < |F |, then α may be
chosen with all its entries not equal to 0.

Proof. If n ≤ |F |, then some possible ratio α does not occur among the
αi = βi/γi. If the ratio α = ∞ is missing, then C is a GRS code by Theorem
6.3.1. If γj = 0 and α 6=∞, then any transformation[

a b
c d

]
=
[

a b
−1 α

]
in Theorem 6.3.4 takes γ to a vector γ̃ with no entry 0; so C is again a GRS
code by Theorem 6.3.1. If n < |F | then the the values of a, b, c, and d in
the transformation can be chosen so that both β̃ and γ̃ avoid 0. Then C =
GRSn,k(α̃,v) with each entry α̃ = β̃/γ̃ of α̃ nonzero. 2
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Chapter 7

Codes over Subfields

In Chapter 6 we looked at various general methods for constructing new codes
from old codes. Here we concentrate on two more specialized techniques that
result from writing the field F as a vector space over its subfield K. We will
start with linear codes over F and finish with linear codes over K. Of particular
practical importance is the case with K = F2. Our work on generalized Reed-
Solomon codes over F has given us many powerful codes, but by Theorem 5.1.1
their length is bounded by |F |. Binary generalized Reed-Solomon codes are
rendered trivial.

7.1 Basics

Let dimK(F ) = m, and choose e1, . . . em to be a K-basis for F . We define the
map φ : F −→ Km given by

φ(α) = (a1, . . . am) where α = a1e1 + · · ·+ amem .

For brevity, we shall write α̂ for the 1 × m row vector φ(α) and α̌ for its
transpose φ(α)> = (a1, . . . am)>, an m × 1 column vector. We extend this
notation to any p× q matrix A ∈ F p,q, with i, j entry ai,j by letting Â ∈ Kp,mq

be the matrix 

â1,1 â1,2 · · · â1,j · · · â1,q

â2,1 â2,2 · · · â2,j · · · â1,q

...
...

. . .
...

. . .
...

âi,1 âi,2 · · · âi,j · · · â1,q

...
...

. . .
...

. . .
...

âp,1 âp,2 · · · âp,j · · · âp,q


89
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and Ǎ ∈ Kmp,q be the matrix

ǎ1,1 ǎ1,2 · · · ǎ1,j · · · ǎ1,q

ǎ2,1 ǎ2,2 · · · ǎ2,j · · · ǎ1,q

...
...

. . .
...

. . .
...

ǎi,1 ǎi,2 · · · ǎi,j · · · ǎ1,q

...
...

. . .
...

. . .
...

ǎp,1 ǎp,2 · · · ǎp,j · · · ǎp,q


For our constructions, A might be a spanning or control matrix for a linear

code over F . Then the matrices Â and Ǎ can be thought of as spanning or
control matrices for linear codes over K.

It must be emphasized that these maps are highly dependent upon the choice
of the initial map φ, even though φ has been suppressed in the notation. We
shall see below that a careful choice of φ can be of great help. (The general
situation in which φ is an arbitrary injection of F into Kp, for some field K and
some p, is of further interest. Here we will be concerned with the linear case,
but see the Problem 7.2.3 below.)

7.2 Expanded codes

If C is a code in Fn, then the code

Ĉ = { ĉ | c ∈ C }

in Kmn is called an expanded code.expanded code

(7.2.1) Theorem. If C is an [n, k, d] code, then Ĉ is an [mn,mk,≥ d] code.

Proof. The map x 7→ x̂ (induced by φ) is one-to-one and has

̂ra + sb = râ + sb̂ ,

for all r, s ∈ K and a,b ∈ Fn. Thus Ĉ is a linear code over K with

|Ĉ| = |C| = |F |k = (|K|m)k = |K|mk ,

hence Ĉ has K-dimension mk. (This counting argument is a cheat unless F is
finite, the case of greatest interest to us. Instead, one should construct a K-basis
for Ĉ out of that for F and an F -basis for C. We do this below, constructing a
generator matrix for Ĉ from one for C.)

If the coordinate ci of c is nonzero, then ĉi is not the zero vector of Km.
Therefore each nonzero entry in c corresponds to a nonzero m-tuple ĉi within
ĉ and wH(c) ≤ wH(ĉ). In particular dmin(C) ≤ dmin(Ĉ). 2

The argument of the last paragraph shows that we would be very unlucky
indeed to have dmin(C) = dmin(Ĉ). For this to happen we would need a mini-
mum weight codeword c in C for which every nonzero ci had ĉi of weight 1. In
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the next section we shall see two examples in which the minimum distance of
an expanded codes goes up over that of its parent.

Let G be a generator matrix for C with rows gi, for i = 1, . . . , k. Notice
that gi and ejgi are F -scalar multiples but are linearly independent over K.
The mk vectors ejgi (for 1 ≤ j ≤ m, 1 ≤ i ≤ k) form a basis for C, thought of
as a K-space of dimension mk. If we let G0 be the mk × n matrix whose rows
are the various ejgi, then G0 is a spanning matrix for C and Ĝ0 is a generator
matrix for Ĉ.

A vector is a burst of length f if all of its nonzero entries are restricted to a burst

set of f consecutive positions. For instance, (00011101000) is a burst of length
5 (and 6, 7, . . . , 11, as well). Certain channels are prone to burst errors. (Think
of a scratch on a CD.) Expanded codes give some easy protection against burst
errors, since an error in m consecutive positions of Ĉ corresponds to only one
or two errors for the parent code C.

(7.2.2) Proposition. If the linear code C can be used to correct burst errors
of length e (in particular, if C is an e error-correcting code), then Ĉ can be used
to correct all burst errors of length up to 1 + (e− 1)m.

Proof. A burst in Kmn of length at most 1 + (e− 1)m has as preimage in
Fn a burst of length at most e. 2

( 7.2.3) Problem. (a) Consider an injection φ of F4 into F3
2 with the property that

φ(F4) = {001, 110, 010, 101} .

Prove that, for any code C ⊆ Fn4 , the corresponding expanded code Ĉ in F3n
2 has the

property that each codeword has no more than three consecutive 0’s and no more than
three consecutive 1’s among its entries. (This is a ‘run-length-limited’ constraint of
the sort that is made for magnetic recording and on compact discs.)

(b) Prove that there are exactly four 4-subsets of F3
2 with the property discussed in

(a).

Expanding is often used as an easy way to construct good binary codes for
bursty channels from codes over larger fields of characteristic 2. For instance,
one code that has been used by NASA and the European Space Agency, (for
space communication) and IBM, Phillips, and Sony (for tape and CD storage)
is the binary expansion of a GRS code of length 255 (= 28 − 1) and dimension
223 over F28 . (The vector α contains all nonzero field elements as entries, while
v = 1.) Expanding from F28 to F2 (so that m = 8) allows symbols of the
GRS code to be written as bytes of data. The associated binary expanded code
has length mn = 8(255) = 2040 and dimension mk = 8(223) = 1784. The
parent GRS code has dmin = 255 − 223 + 1 = 33, so it can correct up to 16
errors. Therefore the expanded code can correct any burst error of length at
most 1 + (16− 1)8 = 121 as well as any random error of weight at most 8.
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7.3 Golay codes and perfect codes

We construct four of the most famous and important codes using expanded
codes.

7.3.1 Ternary Golay codes

Here we have F = F9, K = F3, and m = 2 in Theorem 7.2.1.
Let i be a root of the imprimitive polynomial x2 + 1 ∈ F3[x]. We then write

the field F9 as {a + bi | a, b ∈ F3}, having chosen the F3-basis of e1 = 1 and
e2 = i for F9, so that the associated expansion map is

β = a 1 + b i 7→ φ(β) = β̂ = (a, b) ,

for a, b ∈ F3. For each β = a+ bi ∈ F9, let β̄ = a− bi, the conjugate of β.
Let A be a unitary 3× 3 matrix with entries from F9, that is AĀ> = I; and

let α ∈ F9 satisfy αᾱ = −1. Here by Ā we mean the matrix whose i, j entry is
āi,j , where ai,j is the i, j entry of A.

Example.

A =

24 1 + i i i
i 1 + i i
i i 1 + i

35 and α = 1− i .

Consider then the [6, 3] linear code C over F9 with generator matrix

G = [ I ; αA ] ,

for example,

G =

 1 0 0 −1 1 + i 1 + i
0 1 0 1 + i −1 1 + i
0 0 1 1 + i 1 + i −1

 .
We then may calculate

GḠ> = I + αᾱAĀ> = I + (−1)I = 0 ;

so
H = Ḡ =

[
I ; ᾱĀ

]
is a check matrix for C. In particular C⊥ equals C̄, the code composed of the
various c̄ as c runs through C. As G has standard form, a second check matrix
for C is

H ′ =
[
−αA> ; I

]
.

Therefore a second generator matrix is

H̄ ′ =
[
−ᾱĀ> ; I

]
.

(7.3.1) Proposition. Assume that A has no entry equal to 0. Then C has
minimum distance 4 and so is an MDS code.
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Proof. We have dmin(A) ≤ 6 − 3 + 1 = 4 by the Singleton Bound 3.1.14,
so we must show that C has no codewords of weight 1, 2, or 3. Consider a
nonzero codeword c = (c(1); c(2)) of weight 1, 2, or 3, where c(1), c(2) ∈ F3

9. By
the pigeonhole principle, either c(1) or c(2) has weight at most 1.

First suppose c(1) has weight at most 1. In view of the generator matrix G,
the only codeword with c(1) equal to 0 is the 0-word. A codeword with c(1) of
weight 1 is a scalar multiple of some row of G and so has weight 4, since by
assumption no entry of A is 0. Thus a nonzero codeword c with c(1) of weight
at most 1 has weight 4.

If instead c(2) has weight at most 1, then we may use the generator matrix
H̄ ′ and argue as in the previous paragraph to see again that nonzero c has
weight 4. 2

Assume now, as in the example and proposition, that A has been chosen to
have none of its entries equal to 0. The [12, 6,≥ 4] ternary code Ĉ gotten by
expanding C using the map a+ bi 7→ (a, b) is called an extended ternary Golay
code, as is anything monomially equivalent to it. (For different choices of A this extended ternary Golay code

construction will produce different codes Ĉ, but it turns out that they are all
monomially equivalent.)

If we puncture Ĉ at any coordinate position we get an [11, 6] linear code
which is called a ternary Golay code. ternary Golay code

(7.3.2) Theorem. (M. Golay, 1949.) (1) An extended ternary Golay code
is a self-dual [12, 6, 6] linear code over F3.

(2) A ternary Golay code is a perfect 2-error-correcting [11, 6] linear code
over F3.

Proof. Let x = (x1, . . . x6), y = (y1, . . . y6) ∈ F6
9 with xj = aj + bji and

yj = cj + dji. Then we easily find

x · ȳ = x̂ · ŷ + f i ,

for some f ∈ F3. In particular if x · ȳ = 0, then x̂ · ŷ = 0.
Since C⊥ equals C̄, the expanded code Ĉ is a self-dual ternary [12, 6] linear

code. By Problem 3.1.11(b) all weights of Ĉ are multiples of 3. By the Singleton
Bound 3.1.14 and Theorem 7.2.1

12− 6 + 1 = 7 ≥ dmin(Ĉ) ≥ 4 = dmin(C) ,

hence dmin = 6.
Puncturing Ĉ at any position, we find a code of minimum distance at least

5; so every ternary Golay code is a 2-error-correcting code. To complete (2)
and the theorem, we check equality in the Sphere Packing Condition 2.2.5 for a
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ternary Golay code:

311 ≥ 36
2∑
i=0

(
11
i

)
(3− 1)i

= 36
((11

0

)
+ +

(
11
1

)
2 +

(
11
2

)
4
)

= 36(1 + 22 + 220)
= 36(243) = 3635 = 311 . 2

7.3.2 Binary Golay codes

Here we have F = F8, K = F2, and m = 3 in Theorem 7.2.1.
Let α be a root in F8 of the primitive polynomial x3 +x+ 1 ∈ F2[x], and let

α = (0, 1, α, α2, . . . , α6) ∈ F8
8 .

In this subsection we begin with the code D = GRS8,4(α,1), which is a self-
dual code by Theorem 5.1.6 and Problem 5.1.5(b). As in Problem A.3.18 of the
Appendix, choose, as basis for F8 over F2, the elements

e1 = α3, e2 = α5, e3 = α6 .

Then, for each β = b1e1 + b2e2 + b3e3 in F8, we set

φ(β) = β̂ = (b1, b2, b3) .

Expand the [8, 4] code D over F8 = F23 to a [24, 12] code D̂ over F2 using
this map. Then D̂ or any code equivalent to it is called an extended binary
Golay code. If we puncture an extended binary Golay code at any coordinateextended binary Golay code

position we get a [23, 12] linear code which is called a binary Golay code.binary Golay code

(7.3.3) Theorem. (M. Golay, 1949.) (1) An extended binary Golay code is
a self-dual [24, 12, 8] linear code over F2.

(2) A binary Golay code is a perfect 3-error-correcting [23, 12] linear code
over F2.

Proof. We have already remarked that D is self-dual by Theorem 5.1.6
and Problem 5.1.5(b). Therefore by Theorem 7.2.1 and Problem A.3.18 of the
Appendix the extended Golay code D̂ is a self-dual binary [24, 12,≥ 5] linear
code. As D̂ is self-dual, dmin is even by Problem 3.1.11(a) and so at least 6.

Let G be the canonical generator matrix of D with rows g0,g1,g2,g3:

G =


1 1 1 1 1 1 1 1
0 1 α1 α2 α3 α4 α5 α6

0 1 α2 α4 α6 α1 α3 α5

0 1 α3 α6 α2 α5 α1 α4

 .
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As seen earlier, one generator matrix for D̂ has as rows the twelve codewords
ci,j = êjgi, for 1 ≤ j ≤ 3 and 0 ≤ i ≤ 3. Each c = ci,j consists of eight binary
triples:

c = (c(1); c(2); c(3); c(4); c(5); c(6); c(7); c(8)) .

If c = c0,j , then the c(a) are all equal and of weight one, hence c has weight 8.
If c = ci,j with i 6= 0, then

{ c(a) | 1 ≤ a ≤ 8 } = {000, 001, 010, 011, 100, 101, 110, 111} ,

and c has weight 12. Therefore in all cases c = ci,j has weight a multiple of
4. As these span the self-dual code D̂, Problem 3.1.11(a) guarantees that all
weights of D̂ must have weight a multiple of 4. Thus dmin(D̂) ≥ 8. We have
equality, since each c0,j has weight 8.

Puncturing D̂ at any position, we find a code of minimum distance at least
7; so every binary Golay code is a 3-error-correcting code. To complete (2)
and the theorem, we check equality in the Sphere Packing Condition 2.2.5 for a
binary Golay code:

223 ≥ 212
3∑
i=0

(
23
i

)
(2− 1)i

= 212
((23

0

)
+ +

(
23
1

)
+
(

23
2

)
+
(

23
3

))
= 212(1 + 23 + 253 + 1771)
= 212(2048) = 212211 = 223 . 2

7.3.3 Perfect codes

Although we will not at present devote much time to perfect codes, we emphasize
the speciality of the Golay codes by reporting

(7.3.4) Theorem. (Tietäväinen and Van Lint, 1971.) A perfect e-error-
correcting code C of length n over Fq satisfies one of:

(1) |C| = 1, e = n;
(2) |C| = qn, e = 0;
(3) |C| = 2, q = 2, n = 2e+ 1;
(4) |C| = 36, q = 3, e = 2, n = 11;
(5) |C| = 212, q = 2, e = 3, n = 23;
(6) |C| = qn−r, e = 1, n = (qr − 1)/(q − 1), any r > 0. 2

Notice that we make no assumption of linearity.
The codes of (1) and (2) are called trivial perfect codes. The repetition codes

are examples for (3) and are nearly trivial. The Golay codes are examples in
(4) and (5), and the Hamming codes occur under (6).

The codes of (1) through (5) are unique up to affine equivalence. This is
easy to prove for (1) through (3) but difficult for the Golay codes. In most cases
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there exist perfect codes with the same parameters as a Hamming code but not
affine equivalent to a Hamming code.

Best and Hong have proven that Theorem 7.3.4 remains valid for all finite
alphabets A, not just those of prime power order, provided e ≥ 3.

There are two basic tools in the proof of such theorems. One is the Sphere
Packing Condition 2.2.5, in the form

e∑
i=0

(
n

i

)
(q − 1)i | qn ,

of particular value when the alphabet size q is a prime power and e > 1. Indeed
the only solution to this equation for q (≤ 100) a prime power with n ≤ 1000
and 1 < e ≤ 1000, other than the ones implied by the existence of the perfect
codes above, is

1 +
(

90
1

)
+
(

90
2

)
= 212 ,

which would correspond to a perfect binary 2-error-correcting code of length 90
(but see Problem 7.3.5 below).

The second main tool for proving nonexistence of perfect codes is Lloyd’s
Theorem, which is proven below as Theorem 9.4.9. This is a deep result saying
that a certain polynomial, determined entirely by the parameters n, q, and e,
must have all its roots positive integers in order for there to exist a corresponding
perfect code. The analysis of the roots of the Lloyd polynomial is delicate but far
reaching. As q has more prime factors, the Sphere Packing Condition becomes
less restrictive; so Best and Hong’s proof must rely almost entirely on Lloyd’s
theorem.

As an example of the kind of argument that goes into Theorem 7.3.4 and its
relatives, we present the special case of binary, perfect 2-error-correcting codes
as Theorem 9.4.11 below.

( 7.3.5) Problem. (a) In a binary perfect e error-correcting code of length n we
must have n + 1 a multiple of e + 1. ( Hint: Assume that the code contains the 0-
vector. Consider the n − e words of weight e + 1, having common ones in a fixed set
of e coordinate positions, and the distribution of these words into spheres of radius e
around codewords.)

(b) Prove that a perfect binary 2-error-correcting code of length 90 does not exist.

( 7.3.6) Problem. Prove that a binary, perfect 1-error-correcting code of length 7 is
a coset of a Hamming code.

( 7.3.7) Problem. Let C be a binary, perfect 1-error-correcting code of length n that
contains 0.

(a) Prove that C contains n(n − 1)/6 codewords of weight 3. ( Hint: Every word
of weight 2 is inside a unique sphere of radius 1 around a codeword of weight 3.)

(b) Prove that C contains n(n−1)(n−3)/24 codewords of weight 4. ( Hint: Every
word of weight 3 is either a codeword or is inside a unique sphere of radius 1 around
a codeword of weight 4.)
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( 7.3.8) Problem. Explain how, in theory, one could find recursively the number of
codewords of any fixed weight in the perfect e-error-correcting code C (containing 0)
in terms of e, the length n, and the size q of the alphabet.

7.4 Subfield subcodes

An expanded code is longer than its parent code but has the same number of
codewords. Subfield subcodes have the same length but are smaller than their
parents.

Again let the field F have a subfield K, and let C be a code of length n over
F . Then the subfield subcode C|K equals C ∩ Kn, the set of those codewords subfield subcode

of C all of whose coordinate entries belong to the subfield K. As before, the
concept makes sense for nonlinear codes, but we shall concentrate on the linear
case.

Of course it initially seems possible that a subfield subcode will be too small
to be of use. For linear C, the subcode C|K contains the 0-vector, but does it
contain anything else? We shall respond to this by proving that, for H a check
matrix for C, the matrix Ȟ is a control matrix for C|K . This will give us an
upper bound for the redundancy of C|K and so a lower bound for its dimension.

The next lemma is used to prove this observation. As before we let e1, . . . , em
a basis for F over K. The a∗,j ∈ K are the entries of column α̌j of the matrix
α̌ and the vector α[i] is row i of the matrix.

(7.4.1) Lemma. For α = (α1, . . . , αn) ∈ Fn, let α̌j = (a1,j , . . . , am,j)>

(for 1 ≤ j ≤ n) and α[i] = (ai,1, ai,2, . . . , ai,n) (for 1 ≤ i ≤ m). For b =
(b1, . . . , bn) ∈ Kn,

α · b = 0 in Fn

if and only if
α[i] · b = 0 in Kn, for all 1 ≤ i ≤ m.

Proof.

α · b = 0 ⇐⇒
∑n
j=1 αjbj = 0

⇐⇒
∑n
j=1(

∑m
i=1 ai,jei)bj = 0

⇐⇒
∑m
i=1(

∑n
j=1 ai,jbj)ei = 0

⇐⇒
∑n
j=1 ai,jbj = 0 , for all i

⇐⇒ α[i] · b = 0 , for all i. 2

Let H be a check (or control) matrix for the code C over F . Thus

x ∈ C if and only if Hx> = 0 .

For a vector b with all its entries from K, we then have

b ∈ C|K if and only if Hb> = 0 ,
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which, by Lemma 7.4.1, is equivalent to

for b ∈ Kn, b ∈ C|K if and only if Ȟb> = 0 .

Therefore Ȟ is a control matrix for C|K , as claimed.

(7.4.2) Theorem. If C is an [n, k, d] linear code over F , then the subfield
subcode C|K = C ∩Kn is a [n, k′ ≥ n −mr, d′ ≥ d] linear code over K, where
r = n− k.

Proof. If a,b ∈ C|K and t, s ∈ K, then ta + sb is in Kn, as all entries are
from K, and is in C, since C is linear over F ≥ K. Therefore ta + sb ∈ C|K ,
and the subfield subcode is linear.

Clearly C|K has length n. Since it is contained within the linear code C,
we must have dmin(C|K) ≥ dmin(C). It remains to verify the bound on its
dimension. The redundancy of C is n−k = r, and that is the number of rows in
a check matrix H for C. We have above constructed from a H a control matrix
Ȟ for C|K , having m rows for each row of H. We can get a check matrix for
C|K by discarding any unneeded rows from Ȟ. Thus the redundancy of C|K is
at most mr, hence its dimension is at least n−mr, as claimed. 2

We shall see in the next section that the bounds on dimension and distance
in the theorem can be met and can be exceeded.

7.5 Alternant codes

If GRSn,k(α,v) is a generalized Reed-Solomon code over the field F and K is
a subfield of F , then the subfield subcode Kn ∩ GRSn,k(α,v) is an alternant
code. The code is strict if no αi equals 0. Clearly alternant codes can be decodedalternant code

strict as GRS codes, but a new type of decoding default is possible—decoding to a
codeword in the parent GRS code but not in the child alternant code. Recall
that the strict generalized Reed-Solomon codes were somewhat easier to decode
than those that are not strict.

An immediate consequence of Theorem 7.4.2 is

(7.5.1) Theorem. The alternant code Kn ∩ GRSn,k(α,v) is an [n, k′, d′]
linear code over K with k′ ≥ n− (n− k)m and d′ ≥ n− k + 1. 2

In our earlier work on generalized Reed-Solomon codes, the scaling vector
v played little role. It enlarged the family of codes to the point that we could
prove, in Theorem 5.1.6, that the dual of a generalized Reed-Solomon codes is
also a generalized Reed-Solomon code. Other than that, it has been benign;
and in most of our decoding examples we assumed it to be 1, the vector of 1’s.
Now in the study of alternant codes, the scaling vector v comes to life. Different
choices produce different codes.

Let α be a primitive element in the field F2m , and set

α = (1, α, α2, . . . , αj , . . . , αn−1) ,
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where n = 2m − 1 is the order of α and the length of the vector α. Let 1 be
the vector of length n consisting of n entries 1. Then by Theorem 5.1.6 and
Problem 5.1.5(c) (or direct calculation)

GRSn,a(α,α)⊥ = GRSn,b(α,1)

whenever a+ b = n.
We will consider some related subfield subcodes. In doing this, choose as

F2-basis for F2m the decreasing powers of α:

e1 = αm−1, . . . , ei = αm−i, . . . , em = 1 .

The code GRSn,n−1(α,α) has dimension n− 1 and minimum distance 2 =
n− (n− 1) + 1. It has as check matrix H the canonical generator matrix of its
dual GRSn,1(α,1), a code of dimension 1 spanned by the vector 1. Therefore

H = 1 and Ȟ = (1̌, 1̌, . . . , 1̌) ,

a matrix whose first m − 1 rows are 0 and whose last row is 1. The subfield
subcode Fn2 ∩GRSn,n−1(α,α) therefore has, as check matrix, the single vector
1 and is revealed as the parity check code of length n, also of minimum distance
2.

On the other hand, the code GRSn,n−1(α,1) also has dimension n− 1 and
minimum distance 2 but has as check matrix L the canonical generator matrix
α of its dual GRSn,1(α,α). We have

L = α and Ľ = (1̌, α̌, . . . , α̌j , . . . , α̌n−1) .

Now the subfield subcode Fn2 ∩GRSn,n−1(α,1) has, as check matrix, the matrix
Ľ in which each nonzero m-tuple appears exactly once as a column α̌j , for the
appropriate j. The subfield subcode Fn2 ∩ GRSn,n−1(α,1) is thus seen to be a
binary Hamming code.

In summary, the alternant codes

Fn2 ∩GRSn,n−1(α,α) and Fn2 ∩GRSn,n−1(α,1) ,

which differ only in the choice of scaling vector v, are very different codes. The
first is a parity check code. Its dimension is n − 1 (> n − m) and minimum
distance is 2, meeting the lower bound of Theorem 7.5.1 (and Theorem 7.4.2).
The second is a Hamming code. It has dimension n−m, meeting the bound of
Theorem 7.5.1 (and Theorem 7.4.2), and minimum distance 3 (> 2).

( 7.5.2) Problem. We have shown above that certain binary Hamming codes arise
as alternant codes. More generally, prove that all Hamming codes (binary or not) can
be realized as alternant codes.

( 7.5.3) Problem. Prove that extended alternant codes (that is, the subfield subcodes
coming from extended generalized Reed-Solomon codes) are strict alternant codes. In
particular, all generalized Reed-Solomon codes can be realized as strict alternant codes.
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Chapter 8

Cyclic Codes

Among the first codes used practically were the cyclic codes which were gen-
erated using shift registers. It was quickly noticed by Prange that the class
of cyclic codes has a rich algebraic structure, the first indication that algebra
would be a valuable tool in code design.

The linear code C of length n is a cyclic code if it is invariant under a cyclic cyclic code

shift:
c = (c0, c1, c2 . . . , cn−2, cn−1) ∈ C

if and only if
c̃ = (cn−1, c0, c1 . . . , cn−3, cn−2) ∈ C .

As C is invariant under this single right cyclic shift, by iteration it is invariant
under any number of right cyclic shifts. As a single left cyclic shift is the same
as n− 1 right cyclic shifts, C is also invariant under a single left cyclic shift and
hence all left cyclic shifts. Therefore the linear code C is cyclic precisely when
it is invariant under all cyclic shifts.

There are some obvious examples of cyclic codes. The 0-code is certainly
cyclic as is Fn. Less trivially, repetition codes are cyclic. The binary parity
check code is also cyclic, and this goes over to the sum-0 codes over any field.

Notice that this shift invariance criterion does not depend at all upon the
code being linear. It is possible to define nonlinear cyclic codes, but that is rarely
done. The history of cyclic codes as shift register codes and the mathematical
structure theory of cyclic codes both suggest the study of cyclic invariance in
the context of linear codes.

8.1 Basics

It is convenient to think of cyclic codes as consisting of polynomials as well as
codewords. With every word

a = (a0, a1, . . . , ai, . . . , an−2, an−1) ∈ Fn

101
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we associate the polynomial of degree less than n

a(x) = a0 + a1x+ · · ·+ aix
i + · · ·+ an−1x

n−1 ∈ F [x]n .

(We see here why in this chapter we index coordinates from 0 to n− 1.) If c is
a codeword of the code C, then we call c(x) the associated code polynomial.code polynomial

With this convention, the shifted codeword c̃ has associated code polynomial

c̃(x) = cn−1 + c0x+ c1x
2 + · · ·+ cix

i+1 + · · ·+ cn−2x
n−1 .

Thus c̃(x) is almost equal to the product polynomial xc(x). More precisely,

c̃(x) = xc(x)− cn−1(xn − 1) .

Therefore c̃(x) also has degree less than n and is equal to the remainder when
xc(x) is divided by xn − 1. In particular

c̃(x) = xc(x) (mod xn − 1) .

That is, c̃(x) and xc(x) are equal in the ring of polynomials F [x] (mod xn− 1),
where arithmetic is done modulo the polynomial xn − 1.

If c(x) is the code polynomial associated with some codeword c of C, then
we will allow ourselves to abuse notation by writing

c(x) ∈ C .

Indeed, if f(x) is any polynomial of F [x] whose remainder, upon division by
xn − 1, belongs to C then we may write

f(x) ∈ C (mod xn − 1) .

With these notational conventions in mind, we see that our definition of the
cyclic code C has the pleasing polynomial form

c(x) ∈ C (mod xn − 1)if and only ifxc(x) ∈ C (mod xn − 1) .

Since additional shifts do not take us out of the cyclic code C, we have

xic(x) ∈ C (mod xn − 1) ,

for all i. By linearity, for any ai ∈ F ,

aix
ic(x) ∈ C (mod xn − 1)

and indeed
d∑
i=0

aix
i c(x) ∈ C (mod xn − 1) ,

That is, for every polynomial a(x) =
∑d
i=0 aix

i ∈ F [x], the product a(x)c(x)
(or more properly a(x)c(x) (mod xn− 1) ) still belongs to C. This observation,
due to Prange, opened the way for the application of algebra to cyclic codes.
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(8.1.1) Theorem. Let C 6= {0} be a cyclic code of length n over F .
(1) Let g(x) be a monic code polynomial of minimal degree in C. Then g(x)

is uniquely determined in C, and

C = { q(x)g(x) | q(x) ∈ F [x]n−r } ,

where r = deg(g(x)). In particular, C has dimension n− r.
(2) The polynomial g(x) divides xn − 1 in F [x].

Proof. As C 6= {0}, it contains nonzero code polynomials, each of which
has a unique monic scalar multiple. Thus there is a monic polynomial g(x) in
C of minimal degree. Let this degree be r, unique even if g(x) is not.

By the remarks preceding the theorem, the set of polynomials

C0 = { q(x)g(x) | q(x) ∈ F [x]n−r }

is certainly contained in C, since it is composed of those multiples of the code
polynomial g(x) with the additional property of having degree less than n.
Under addition and scalar multiplication C0 is an F -vector space of dimension
n− r. The polynomial g(x) is the unique monic polynomial of degree r in C0.

To prove (1), we must show that every code polynomial c(x) is an F [x]-
multiple of g(x) and so is in the set C0. By the Division Algorithm A.2.5 we
have

c(x) = q(x)g(x) + r(x) ,

for some q(x), r(x) ∈ F [x] with deg(r(x)) < r = deg(g(x)). Therefore

r(x) = c(x)− q(x)g(x) .

By definition c(x) ∈ C and q(x)g(x) is in C0 (as c(x) has degree less than
n). Thus by linearity, the righthand side of this equation is in C, hence the
remainder term r(x) is in C. If r(x) was nonzero, then it would have a monic
scalar multiple belonging to C and of smaller degree than r. But this would
contradict the original choice of g(x). Therefore r(x) = 0 and c(x) = q(x)g(x),
as desired.

Next let
xn − 1 = h(x)g(x) + s(x) ,

for some s(x) of degree less than deg(g(x)). Then, as before,

s(x) = (−h(x))g(x) (mod xn − 1)

belongs to C. Again, if s(x) is not zero, then it has a monic scalar multiple
belonging to C and of smaller degree than that of g(x), a contradiction. Thus
s(x) = 0 and g(x)h(x) = xn − 1, as in (2). 2

The polynomial g(x) is called the generator polynomial for the code C. generator polynomial

The polynomial h(x) ∈ F [x] determined by

g(x)h(x) = xn − 1
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is the check polynomial of C.check polynomial

Under some circumstances it is convenient to consider xn − 1 to be the
generator polynomial of the cyclic code 0 of length n. Then by the theorem,
there is a one-to-one correspondence between cyclic codes of length n and monic
divisors of xn − 1 in F [x].

Example. Consider length 7 binary cyclic codes. We have the factor-
ization into irreducible polynomials

x7 − 1 = (x− 1)(x3 + x+ 1)(x3 + x2 + 1) .

Since we are looking at binary codes, all the minus signs can be replaced
by plus signs:

x7 + 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1) .

As there are 3 irreducible factors, there are 23 = 8 cyclic codes (in-
cluding 0 and F7

2). The 8 generator polynomials are:

(i) 1 = 1
(ii) x+ 1 = x+ 1

(iii) x3 + x+ 1 = x3 + x+ 1
(iv) x3 + x2 + 1 = x3 + x2 + 1
(v) (x+ 1)(x3 + x+ 1) = x4 + x3 + x2 + 1

(vi) (x+ 1)(x3 + x2 + 1) = x4 + x2 + x+ 1
(vii) (x3 + x+ 1)(x3 + x2 + 1) = x6 + x5 + x4 + x3 + x2 + x+ 1

(viii) (x+ 1)(x3 + x+ 1)(x3 + x2 + 1) = x7 + 1

Here in (i) the polynomial 1 generates all F7
2. In (ii) we find the parity

check code and in (vii) the repetition code. As mentioned before, in (viii)
we view the 0-code as being generated by x7 + 1.

The polynomials of (iii) and (iv) have degree 3 and so generate [7, 4]
codes, which we shall later see are Hamming codes. The [7, 3] codes of (v)
and (vi) are the duals of the Hamming codes.

( 8.1.2) Problem. How many cyclic codes of length 8 over F3 are there? Give a
generator polynomial for each such code.

( 8.1.3) Problem. Prove that there is no cyclic code that is (equivalent to) an [8, 4]
extended binary Hamming code.

( 8.1.4) Problem. Let cyclic code C have generator polynomial g(x). Prove that C
is contained in the sum-0 code if and only if g(1) = 0.

( 8.1.5) Problem. Let C be a cyclic code. Let C− be the code resulting from
shortening C at a single position, and let C− be the code resulting from puncturing C
at a single position.

(a) Give all C for which C− is cyclic.
(b) Give all C for which C− is cyclic.

The check polynomial earns its name by the following
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(8.1.6) Proposition. If C is the cyclic code of length n with check polynomial
h(x), then

C = { c(x) ∈ F [x]n | c(x)h(x) = 0 (mod xn − 1) } .

Proof. The containment in one direction is easy. Indeed if c(x) ∈ C, then
by Theorem 8.1.1 there is a q(x) with c(x) = q(x)g(x). But then

c(x)h(x) = q(x)g(x)h(x) = q(x)(xn − 1) = 0 (mod xn − 1) .

Now consider an arbitrary polynomial c(x) ∈ F [x]n with

c(x)h(x) = p(x)(xn − 1), say.

Then

c(x)h(x) = p(x)(xn − 1)
= p(x)g(x)h(x) ,

hence
(c(x)− p(x)g(x))h(x) = 0 .

As g(x)h(x) = xn − 1, we do not have h(x) = 0. Therefore

c(x)− p(x)g(x) = 0
and c(x) = p(x)g(x) ,

as desired. 2

If we are in possession of a generator polynomial g(x) =
∑r
j=0 gjx

j for the
cyclic code C, then we can easily construct a generator matrix for C. Consider

G =



g0 g1 · · · · · · · · · · · · gr−1 gr 0 0 . . . 0
0 g0 g1 · · · · · · · · · · · · gr−1 gr 0 . . . 0
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...
0 0 . . . 0 g0 g1 · · · · · · · · · · · · gr−1 gr


The matrix G has n columns and k = n − r rows; so the first row, row g0,
finishes with a string of 0’s of length k − 1. Each successive row is the cyclic
shift of the previous row: gi = g̃i−1, for i = 1, . . . , k− 1. As g(x)h(x) = xn− 1,
we have

g0h0 = g(0)h(0) = 0n − 1 6= 0 .

In particular g0 6= 0 (and h0 6= 0). Therefore G is in echelon form (although
likely not reduced). In particular the k = dim(C) rows of G are linearly inde-
pendent. Clearly the rows of G belong to C, so G is indeed a generator matrix
for C, sometimes called the cyclic generator matrix of C. cyclic generator matrix
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For instance, if C is a [7, 4] binary cyclic code with generator polynomial
1 + x+ x3, then the cyclic generator matrix is

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


Given the cyclic generator matrix G, cyclic encoding is the process of en-cyclic encoding

coding the message k-tuple m = (m0, . . . ,mk−1) into the codeword c = mG.
At the polynomial level, this corresponds to encoding the message polynomialmessage polynomial

m(x) =
∑k−1
i=0 mix

i into the code polynomial c(x) = m(x)g(x).
Since the cyclic generator G is in echelon form, the first k coordinate po-

sitions form an information set. Therefore cyclic C has a standard generator
matrix, although the cyclic generator matrix is almost never standard (or even
systematic).

( 8.1.7) Problem. (a) Describe all situations in which the cyclic generator matrix
for a cyclic code is the standard generator matrix.

(b) Describe all situations in which the cyclic generator matrix for a cyclic code is
systematic.

We next present for cyclic C a linear encoding method corresponding to the
standard generator matrix. Namely

m = (m0, . . . ,mk−1) 7→ c = (m0, . . . ,mk−1,−s0,−s1, . . . ,−sr−1) ,

where s(x) =
∑r−1
j=0 sjx

j is the remainder upon dividing xrm(x) by g(x). That
is,

xrm(x) = q(x)g(x) + s(x) ,

with deg(s(x)) < deg(g(x)) = r. To see that this is the correct standard encod-
ing, first note that

xrm(x)− s(x) = q(x)g(x) = b(x) ∈ C

with corresponding codeword

b = (−s0,−s1, . . . ,−sr−1,m0, . . . ,mk−1) .

As this is a codeword of cyclic C, every cyclic shift of it is also a codeword. In
particular the c given above is found after k right shifts. Thus c is a codeword of
C. Since C is systematic on the first k positions, this codeword is the only one
with m on those positions and so is the result of standard encoding. To construct
the standard generator matrix itself, we encode the k different k-tuple messages
(0, 0, . . . , 0, 1, 0, . . . , 0) of weight 1 corresponding to message polynomials xi, for
0 ≤ i ≤ k − 1. These are the rows of the standard generator matrix.

When we try this for the [7, 4] binary cyclic code with generator x3 + x+ 1
(so r = 7− 4 = 3), we find, for instance,

x3x2 = (x2 + 1)(x3 + x+ 1) + (x2 + x+ 1)
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so that the third row of the standard generator matrix, corresponding to message
polynomial x2, is

(m0,m1,m2,m3,−s0,−s1,−s2) = (0, 0, 1, 0, 1, 1, 1) .

Proceeding in this way, we find that the standard generator matrix is
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1


By Problem 4.1.9, C is a Hamming code (although this can also be checked
easily by hand).

This process of systematic encoding for cyclic codes is important in practice, systematic encoding

since a machine can be transmitting the information symbols from m during
the time it is calculating the check symbols sj .

( 8.1.8) Problem. (a) Find the cyclic and standard generator matrices for the [7, 4]
binary cyclic code D with generator polynomial x3 + x2 + 1.

(b) Find the cyclic and standard generator matrices for the [15, 11] binary cyclic
code E with generator polynomial x4 + x+ 1.

(c) Prove that D and E are Hamming codes.

A code equivalent to a cyclic code need not be cyclic itself. For instance,
there are 30 distinct binary [7, 4] Hamming codes; but, as we saw in the example
above, only two of them are cyclic.

One permutation does take cyclic codes to cyclic codes. The reverse code reverse code

C [−1] of a cyclic code C, gotten by reversing each codeword, is still cyclic. We
have

(c0, c1, . . . , ci, . . . , , cn−1) ∈ C ⇐⇒ (cn−1, . . . , cn−1−i, . . . , c1, c0) ∈ C [−1] .

In polynomial notation, this becomes

c(x) ∈ C ⇐⇒ xn−1c(x−1) ∈ C [−1] .

For the polynomial p(x) of degree d, we let its reciprocal polynomial be given by reciprocal polynomial

p[−1](x) =
d∑
i=0

pd−ix
i = xdp(x−1) .

The roots of the reciprocal polynomial are the reciprocals of the nonzero roots
of the original polynomial.

(8.1.9) Lemma. If g(x) generates cyclic C, then g−1
0 g[−1](x) generates C [−1],

the reverse code of C.
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Proof. Starting from the cyclic generator matrix for C, we reverse all the
rows and then write them from bottom to top. The result is

gr gr−1 · · · · · · · · · · · · g1 g0 0 0 . . . 0
0 gr gr−1 · · · · · · · · · · · · g1 g0 0 . . . 0
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...
0 0 . . . 0 gr gr−1 · · · · · · · · · · · · g1 g0

 .

The rows of this matrix certainly belong to C [−1]. As before, they are linearly
independent since g0 6= 0. Therefore we have a generator matrix for C [−1]. Its
first row visibly corresponds to a nonzero code polynomial of degree less than
r, which is seen to be g[−1](x). By Theorem 8.1.1 the monic scalar multiple
g−1

0 g[−1](x) is the generator polynomial. (In fact, we have a scalar multiple of
the cyclic generator matrix for C [−1].) 2

It is easy to see that the dual of a cyclic code C is again a cyclic code.
Proposition 8.1.6 suggests that the dual is associated with the check polynomial
of C.

Let the cyclic code C of length n have generator polynomial g(x) of degree
r and check polynomial h(x) of degree k = n− r = dimC. As h(x) is a divisor
of xn − 1, it is the generator polynomial for a cyclic code D of length n and
dimension n− k = n− (n− r) = r. We have

C = { q(x)g(x) | q(x) ∈ F [x]k }

and

D = { p(x)h(x) | p(x) ∈ F [x]r } .

Let c(x) = q(x)g(x) ∈ C, so that deg(q(x)) ≤ k − 1; and let d(x) =
p(x)h(x) ∈ D, so that deg(p(x)) ≤ r − 1. Consider

c(x)d(x) = q(x)g(x)p(x)h(x)
= q(x)p(x)(xn − 1)
= s(x)(xn − 1)
= s(x)xn − s(x) ,

where s(x) = q(x)p(x) with

deg(s(x)) ≤ (k − 1) + (r − 1) = r + k − 2 = n− 2 < n− 1 .

Therefore the coefficient of xn−1 in c(x)d(x) is 0. If c(x) =
∑n−1
i=0 cix

i and d(x) =∑n−1
j=0 djx

j , then in general the coefficient of xm in c(x)d(x) is
∑
i+j=m cidj . In
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particular, the two determinations of the coefficient of xn−1 in c(x)d(x) give

0 =
∑

i+j=n−1

cidj

=
n−1∑
i=0

cidn−1−i

= c0dn−1 + c1dn−2 + · · ·+ cidn−i + · · ·+ cn−1d0

= c · d∗ .

where

c = (c0, c1, . . . , ci, . . . , cn−1)andd∗ = (dn−1, dn−2, . . . , dn−i, . . . , d0) .

That is, each codeword c of C has dot product 0 with the reverse of each
codeword d of D.

Therefore C⊥ contains D[−1]. Also

dim(C⊥) = n− dim(C) = n− k = r = n− deg(h[−1](x)) = dim(D[−1]) ,

so from Lemma 8.1.9 we conclude

(8.1.10) Theorem. If C is the cyclic code of length n with check polynomial
h(x), then C⊥ is cyclic with generator polynomial h−1

0 h[−1](x). 2

8.2 Cyclic GRS codes and Reed-Solomon codes

For α a primitive nth root of unity in the field F , set

α(a) = ((α0)a, . . . , (αj)a, . . . , (αn−1)a)
= ((αa)0, . . . , (αa)j , . . . , (αa)n−1) .

In particular, α = α(1) and α(0) = 1, the all 1-vector.
The basic observation is that

α̃(a) = ((αn−1)a, (α0)a, . . . , (αj)a, . . . , (αn−2)a)
= α−a((α0)a, (α1)a, . . . , (αj)a, . . . , (αn−1)a)
= α−aα(a) .

Thus a cyclic shift of α(a) is always a scalar multiple of α(a).

(8.2.1) Proposition. GRSn,k(α,α(a)) is cyclic.

Proof. For 0 ≤ i ≤ k−1 and 0 ≤ j ≤ n−1, the (i, j)-entry of the canonical
generator matix is

vjα
i
j = (αj)a(αj)i

= αjaαji = (αj)a+i .
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Therefore the canonical generator matrix has as rows the k codewords α(a+i),
for i = 0, . . . , k − 1. We have seen above that shifting any of these only gives
scalar multiples, so the code itself is invariant under shifting. 2

A cyclic code GRSn,k(α,α(a)) as in Proposition 8.2.1 is a Reed-Solomon
code. It is said to be primitive if n = |F | − 1 and of narrow-sense if a = 0 (so Reed-Solomon code

primitive
narrow-sense

that v = α(a) = 1).

(8.2.2) Lemma. If αn = 1 and α = (α0, . . . , αn−1), then

GRSn,k(α,α(a))⊥ = GRSn,n−k(α,α(1−a)) .

Proof. By Theorem 5.1.6

GRSn,k(α,α(a))⊥ = GRSn,n−k(α,u) ,

where, for 0 ≤ j ≤ n−1 and v = α(a), we have uj = v−1
j Lj(αj)−1. By Problem

5.1.5(c), Lj(αj) = n(αj)−1 (6= 0). Thus

uj = ((αj)a)−1(n(αj)−1)−1

= n−1α−jaαj

= n−1(αj)1−a

Therefore u = n−1α(1−a), so by Problem 5.1.3(a)

GRSn,k(α,α(a))⊥ = GRSn,n−k(α, n−1α(1−a))

= GRSn,n−k(α,α(1−a))

as desired. 2

(8.2.3) Theorem. An [n, k] Reed-Solomon code over F is a cyclic code with
generator polynomial

t∏
j=1

(x− αj+b)

where t = n − k, the integer b is a fixed constant, and α is a primitive nth

root of unity in F . This Reed-Solomon code is primitive if n = |F | − 1 and
narrow-sense if b = 0.

Proof. Let C = GRSn,k(α,α(a)). The rows of the canonical generator
matrix of the dual code C⊥ are, by Lemma 8.2.2 and a previous calculation,
the vectors α(j−a), for 1 ≤ j ≤ t. Therefore, for c = (c0, . . . , ci, . . . , cn−1) and
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c(x) =
∑n−1
i=0 cix

i,

c ∈ C ⇐⇒ c ·α(j−a) = 0, 1 ≤ j ≤ t

⇐⇒
n−1∑
i=0

ci(αi)j−a = 0, 1 ≤ j ≤ t

⇐⇒
n−1∑
i=0

ci(αj−a)i = 0, 1 ≤ j ≤ t

⇐⇒ c(αj−a) = 0, 1 ≤ j ≤ t .

Thus, writing cyclic C in terms of polynomials, we have by Lemma A.2.8

c(x) ∈ C ⇐⇒ c(αj−a) = 0, 1 ≤ j ≤ t

⇐⇒
t∏

j=1

(x− αj+b)dividesc(x) ,

for b = −a. As
∏t
j=1(x − αj+b) is monic and has degree t = n − k, it is the

generator polynomial of C by Theorem 8.1.1.
Also α is a primitive element of F when n = |F | − 1; and C is narrow-sense

when a = 0, that is, when b = −a = 0. 2

In most places, the statement of Theorem 8.2.3 is taken as the definition
of a Reed-Solomon code. It is then proven that such a code is MDS with
dmin = t + 1 = n − k + 1. Our development is somewhat closer to the original
presentation of Reed and Solomon from 1960.

( 8.2.4) Problem. Prove that EGRSq+1,k(β,γ; w), where |F | = q, is monomially
equivalent to a cyclic code when q is even and to a negacyclic code when q is odd. Here
a code C is negacyclic provided negacyclic

(c0, c1, c2 . . . , cn−2, cn−1) ∈ C

if and only if

(−cn−1, c0, c1 . . . , cn−3, cn−2) ∈ C .

( Hint: See Theorem 6.3.4.)

8.3 Cylic alternant codes and BCH codes

Let K ≤ F be fields. Starting with the Reed-Solomon code GRSn,k(α,α(a))
over F , the cyclic, alternant code C = Kn ∩GRSn,k(α,α(a)) is called a BCH
code of designed distance t + 1, where t = n − k. C is primitive if n = |F | − 1
and narrow-sense if a = 0 (that is to say, v = 1).
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(8.3.1) Theorem. A BCH code C of length n and designed distance t + 1
over K is a cyclic code composed of all those code polynomials c(x) ∈ K[x] of
degree less than n satisfying

c(αb+1) = c(αb+2) = c(αb+3) = · · · = c(αb+t) = 0 ,

where b is a fixed integer and α is a primitive nth root of unity in the field
F ≥ K. The code is primitive if n = |F | − 1 and is narrow-sense if b = 0.

The code C is linear and cyclic with generator polynomial

lcm1≤j≤t {mαj+b,K(x)} .

It has minimum distance at least t + 1 and dimension at least n − mt, where
m = dimK F .

Proof. The first paragraph is an immediate consequence of Theorem 8.2.3
and the definitions. As C is the alternant code Kn ∩ GRSn,k(α,α(a)), it is
by Theorem 7.5.1 linear of minimum distance at least n − k + 1 = t + 1 and
dimension at least n −m(n − k) = n −mt. The form taken by the generator
polynomial follows from the first paragraph and Lemma A.3.19 of the Appendix.

2

As with Reed-Solomon codes, the first paragraph of this theorem consists of
the usual definition of a BCH code. Indeed, that is essentially the original def-
inition as given by Bose and Ray-Chaudhuri (1960) and Hocquenghem (1959).
(The codes were then given the somewhat inaccurate acronym as name.) It
then must be proven that the designed distance of a BCH code gives a lower
bound for the actual minimum distance. In many places Reed-Solomon codes
are defined as those BCH codes in which the fields F and K are the same.
Historically, the two classes of codes were discovered independently and the
connections only noticed later.

Sometimes one takes a different view of Theorem 8.3.1, viewing it instead
as a general bound on cyclic codes in terms of root patterns for the generator
polynomial.

(8.3.2) Corollary. (BCH Bound.) Let C be a cyclic code of length n over
K with generator polynomial g(x). Suppose that g(αj+b) = 0, for some fixed b
and 1 ≤ j ≤ t, where α is a primitive nth root of unity in the field F ≥ K.
Then dmin(C) ≥ t+ 1.

Proof. In this case, C is a subcode of a BCH code with designed distance
t+ 1. 2

This corollary admits many generalizations, the general form of which states
that a certain pattern of roots for the generator polynomial of a cyclic code
implies a lower bound for the minimum distance.
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( 8.3.3) Problem. Assume that the cyclic code C has generator polynomial g(x)
with g(1) 6= 0. Prove that (x−1)g(x) is the generator polynomial of the sum-0 subcode
of C (those codewords of C whose coordinate entries sum to 0).

The last sentence in the theorem gives us two lower bounds for BCH codes,
one for the minimum distance (the BCH bound) and one for the dimension.
As we prefer large distance and dimension, we would hope to find situations in
which one or both of these bounds are not met exactly. For any cyclic code,
the generator polynomial has degree equal to the redundancy of the code. In
Theorem 8.3.1 that degree/redundancy is bounded above by mt. This bound
will be met exactly if and only if each of the minimal polynomials mαj+b,K(x)
has the maximum possible degree m and, additionally, all of these polynomials,
for 1 ≤ j ≤ t, are distinct. This sounds an unlikely event but can, in fact,
happen. Conversely we often can make our choices so as to guarantee that the
degree of the generator is dramatically less than this maximum. We shall see
below that the two bounds of the theorem are independent and can be either met
or beaten, depending upon the specific circumstances. (Both bounds are tight
for Reed-Solomon codes, but there are other cases as well where this happens.)

(8.3.4) Corollary. (1) A binary, narrow-sense, primitive BCH code of
designed distance 2 is a cyclic Hamming code.

(2) A binary, narrow-sense, primitive BCH code of designed distance 3 is a
cyclic Hamming code.

Proof. Let n = 2m − 1 and K = F2 ≤ F2m = F . Let α be a primitive
element in F2m (so it has order n). Then the associated designed distance 2
code C2 has generator polynomial

m(x) = mα(x) = mα,F2(x)

of degree m, the minimal polynomial of α over the prime subfield F2. The
corresponding designed distance 3 code C3 has generator polynomial

lcm{mα(x),mα2(x)} .

From Theorem A.3.20 we learn that mα2(x) = mα(x). Therefore this lcm is
again equal to m(x), and C2 and C3 both have generator polynomial m(x) of
degree m. Thus C2 = C3 has dimension n −m = 2m − 1 −m and minimum
distance at least 3. It is therefore a Hamming code by Problem 4.1.3 or Problem
4.1.9. (Alternatively C2 is, by Lemma 8.2.2, equal to the alternant code Fn2 ∩
GRSn,1(α,α)⊥, which we have already identified as a Hamming code in Section
7.5.) 2

From this corollary we learn that it is possible to find BCH codes with
inequality in the distance bound (BCH bound) and equality in the dimension
bound of Theorem 8.3.1 (dmin(C2) = 3 > 1 + 1 and dim(C2) = n − m · 1)
and also BCH codes with equality in the distance bound and inequality in the
dimension bound (dmin(C3) = 3 = 2 + 1 and dim(C3) = n−m > n−m · 2).
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As in the corollary, narrow-sense codes frequently have better parameters
than those that are not. For instance, in the situation of the corollary, the
designed distance 2 code with b = −1 has generator polynomial mα1−1,F2(x) =
x − 1. This code is the parity check code with dmin indeed equal to 2 and
dimension n − 1 (> n − m). When n = 15 (so that m = 4), the designed
distance 2 code with b = 2 has generator polynomial

mα1+2,F2(x) = x4 + x3 + x2 + x+ 1 = (x5 − 1)/(x− 1) ,

since (α3)5 = α15 = 1. Therefore this code meets both bounds exactly, hav-
ing dimension 11 = 15 − 4 and minimum distance 2, as it contains the code
polynomial x5 − 1.

Consider next the binary, narrow-sense, primitive BCH code with length
15 and designed distance 5, defined using as primitive element α a root of the
primitive polynomial x4 +x+1. The generator polynomial is, by Theorem 8.3.1,

g(x) = lcm1≤j≤4 {mαj (x)} .

By definition mα(x) = x4 + x+ 1, and we found mα3(x) = x4 + x3 + x2 + x+ 1
above. By Theorem A.3.20 of the Appendix,

mα(x) = mα2(x) = mα4(x) ,

therefore

g(x) = mα(x)mα3(x) = (x4 + x+ 1)(x4 + x3 + x2 + x+ 1)
= x8 + x7 + x6 + x4 + 1 .

In particular, the code has dimension 15−8 = 7, whereas the bound of Theorem
8.3.1 is useless, claiming only that the dimension is at least 15 − 4 · 4 = −1.
Furthermore g(x) itself has weight 5, so in this case the designed distance 5 code
has minimum distance exactly 5. (Although the generator polynomial always
has relatively low weight, in general it will not have the minimum weight. Still it
is often worth checking.) We see again here the advantage of looking at narrow-
sense codes. By Theorem A.3.20, whenever αi is a root of m(x), then α2i is
as well (in the binary case). In particular, the binary, narrow-sense, designed
distance 2d code, given by roots αj , for 1 ≤ j ≤ 2d − 1, is also equal to the
designed distance 2d + 1 code, given by roots αj , for 1 ≤ j ≤ 2d, since αd

a root implies α2d is as well. (We saw a particular case of this in Corollary
8.3.4.) Similar but weaker statements can be made for nonbinary BCH codes
by appealing to Theorem A.3.20 or the more general Problem A.3.21.

We also see that Theorem A.3.20 and Problem A.3.21 can be used effec-
tively to calculate the parameters and generator polynomials of BCH codes.
Consider next a binary, narrow-sense, primitive BCH code C of length 31 with
designed distance 8. The previous paragraph already tells us that C is also the
corresponding designed distance 9 code, but more is true. We have generator
polynomial

g(x) = lcm1≤j≤8 {mαj (x)}
= mα(x)mα3(x)mα5(x)mα7(x) ,
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where α is an arbitrary but fixed primitive 31st root of unity in F32. By Theorem
A.3.20

mα(x) = (x− α)(x− α2)(x− α4)(x− α8)(x− α15) ;
mα3(x) = (x− α3)(x− α6)(x− α12)(x− α24)(x− α17) ;
mα5(x) = (x− α5)(x− α10)(x− α20)(x− α9)(x− α18) ;
mα7(x) = (x− α7)(x− α14)(x− α28)(x− α25)(x− α19) .

Therefore C has dimension 31−4 ·5 = 11. We also discover that we have gotten
the roots α9 and α10 ‘for free’, so that the designed distance 8(9) BCH code is
actually equal to the designed distance 11 code (so in this case, neither of the
bounds of Theorem 8.3.1 hold with equality). It is worth noting that we can
calculate this dimension and improved BCH bound without explicitly finding
the generator polynomial. The calculations are valid no matter which primitive
element α we choose. Examples below find explicit generator polynomials, using
similar calculations based upon Theorem A.3.20.

The good fortune seen in the previous paragraph can often be dramatic.
Berlekamp has noted that the binary, narrow-sense, primitive BCH code of
length 212− 1 and designed distance 768 is equal to the corresponding designed
distance 819 code. On the other hand, there are many situations where the
BCH bound still does not give the true minimum distance. Roos, Van Lint,
and Wilson have noted that the binary length 21 code with generator polynomial

mβ(x)mβ3(x)mβ7(x)mβ9(x) ,

which has as roots βj (β a 21st root of unity) for

j ∈ {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18} ,

has true minimum distance 8, whereas the BCH bound only guarantees distance
at least 5.

Examples. (i) Let α be a root of the primitive polynomial x4 +x3 + 1 ∈
F2[x]. What is the generator of the binary, narrow-sense, primitive BCH
code C1 of length 15 and designed distance 5?

The code is composed of all polynomials c(x) ∈ F2[x] that have each
of α1, α2, α3, α4 as a root. Therefore c(x) is divisible by

mα(x) = (x− α1)(x− α2)(x− α4)(x− α8) = x4 + x3 + 1

and also by

mα3(x) = (x− α3)(x− α6)(x− α12)(x− α9) = x4 + x3 + x2 + x+ 1.

So C1 has generator

g1(x) = (x4 + x3 + 1)(x4 + x3 + x2 + x+ 1) = x8 + x4 + x2 + x+ 1.
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As g1(x) has degree 8, the code has dimension 15 − 8 = 7. (Here again
the generator has weight 5, so the minimal distance of this code equals
5.)

(ii) Let α be a root of the primitive polynomial x5 +x2 +1 ∈ F2[x]. What
is the generator of the binary, narrow-sense, primitive BCH code C2 of
length 31 and designed distance 5?

Again the code is composed of all polynomials c(x) ∈ F2[x] that have
each of α1, α2, α3, α4 as a root. Therefore c(x) is divisible by

mα(x) = (x− α1)(x− α2)(x− α4)(x− α8)(x− α16) = x5 + x2 + 1

and also

mα3(x) = (x−α3)(x−α6)(x−α12)(x−α24)(x−α17) = x5+x4+x3+x2+1.

So C2 has generator

g2(x) = (x5+x2+1)(x5+x4+x3+x2+1) = x10+x9+x8+x6+x5+x3+1.

As g2(x) has degree 10, the code has dimension 31− 10 = 21. (But notice
that here the weight of the generator is larger than 5.)

(iii) Maintaining the notation of Example (ii), find the generator of the
BCH code C3 of length 31 with designed distance 7.

The code polynomials c(x) must satisfy

c(α1) = c(α2) = c(α3) = c(α4) = c(α5) = c(α6) = 0.

In particular c(x) must be a multiple of g2(x), calculated in the previous
example. But c(x) must also be a multiple of

mα5(x) = (x−α5)(x−α10)(x−α20)(x−α9)(x−α18) = x5+x4+x2+x+1.

(This calculation is done in detail in section A.3.3 of the Appendix on
algebra.) Thus the generator g3(x) for C3 is

g2(x)(x5+x4+x2+x+1) = x15+x11+x10+x9+x8+x7+x5+x3+x2+x+1.

This code has dimension 31− 15 = 16.

(iv) Let β be a root of the irreducible but imprimitive polynomial x3 +
2x + 2 ∈ F3[x] so that β is a 13th root of unity. We can, using β, find
the generator polynomial of the ternary, narrow-sense BCH code D1 of
length 13 with designed distance 4.

The code polynomials must have as roots β, β2, and β3. Thus they
must be multiples of

mβ(x) = mβ3(x) = (x− β)(x− β3)(x− β9) = x3 + 2x+ 2

and of

mβ2(x) = (x− β2)(x− β6)(x− β5) = x3 + x2 + x+ 2.
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Therefore D1 has generator

g4(x) = (x3 + 2x+ 2)(x3 + x2 + x+ 2) = x6 + x5 + x2 + 1.

In particular the code has dimension 13 − 6 = 7. Also its generator has
weight 4, so its minimal distance is equal to its designed distance 4.

( 8.3.5) Problem. Give the generator polynomial of the ternary, narrow-sense
BCH code D2 of length 13 with designed distance 5, using β of Example (iv) above as
a primitive 13th root of unity. What is the dimension of D2?

( 8.3.6) Problem. Give the generator polynomial of the ternary, narrow-sense,
primitive, BCH code D3 of length 26 with designed distance 4, using as primitive
element γ a root of the polynomial x3 + 2x+ 1 ∈ F3[x]. What is the dimension of D3?

( 8.3.7) Problem. (a) What is the dimension of a binary, narrow-sense, primitive
BCH code of length 63 and designed distance 17.

(b) Does this code contain any codewords of weight 17? Explain your answer.

( 8.3.8) Problem. Prove that a narrow-sense, primitive BCH code of length 24 over
F5 with designed distance 3 has minimum distance 3 and dimension 20 = 24−2(3−1).

8.4 Cyclic Hamming codes and their relatives

Cyclic binary Hamming codes and codes related to them are of particular in-
terest.

(8.4.1) Theorem. For every m, there is a cyclic, binary Hamming code of
redundancy m. Indeed any primitive polynomial of degree m in F2[x] generates
a cyclic Hamming code of redundancy m.

Proof. This is essentially equivalent to Corollary 8.3.4 (in view of Theorems
A.3.8 and A.3.10 on the general structure and existence of finite fields). 2

(8.4.2) Theorem. The polynomial g(x) ∈ F2[x] generates a cyclic, binary
Hamming code if and only if it is primitive.

Proof. In Theorem 8.4.1 we have seen that a binary primitive polynomial
generates a cyclic Hamming code.

Now let C be a binary, cyclic Hamming code of length 2m−1 = n. Let g(x) =∏r
i=1 gi(x), where the gi(x) are distinct irreducible polynomials of degree mi,

so that
∑r
i=1mi = m = deg g(x). Then gi(x) divides xni −1 with ni = 2mi −1,

hence g(x) divides xn0 − 1 where n0 =
∏r
i=1 ni. Now

n+ 1 = 2m − 1 + 1 =
r∏
i=1

2mi =
r∏
i=1

(ni + 1) .

If r 6= 1, then n > n0 and xn0 − 1 is a codeword of weight 2 in C, which is
not the case. Therefore g(x) = g1(x) is irreducible and divides xn − 1. Indeed
g(x) is primitive, as otherwise again there would be a code polynomial xp − 1
of weight 2. 2
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( 8.4.3) Problem. Prove that there exists a cyclic Hamming code of redundancy m
and length (qm − 1)/(q − 1) over Fq if gcd((qm − 1)/(q − 1), q − 1) = 1. ( Hint: For
construction try as before to find such a code as a subfield subcode of a Reed-Solomon
code.)

8.4.1 Even subcodes and error detection

(8.4.4) Lemma. Let F = F2m (m > 1), and let p(x) be a primitive polynomial
of degree m in F2[x]. The polynomial g(x) = (x + 1)p(x) generates the even
subcode E composed of all codewords of even weight in the Hamming code with
generator p(x). In particular, E has minimum weight 4.

Proof. The generator polynomial for E is a multiple of the generator
polynomial p(x) for the Hamming code, and so E is contained in the Hamming
code. For any

c(x) = a(x)q(x) = a(x)(x+ 1)p(x) ∈ E ,

we have
c(1) = a(1)(1 + 1)p(1) = 0 .

Therefore E is contained in the even subcode of the Hamming code. As the codes
have the same dimension, they are equal. The Hamming code has minimum
weight 3, so E has minimum weight 4. 2

The even cyclic Hamming subcodes like E have often been used for detecting
errors in computer applications. In that context, they are often called CRC
codes (for ‘cyclic redundancy checking’). We devote some time to detectionCRC codes

issues for general linear and cyclic codes.
We recall that error detection is the particularly simple type of error control

in which a received word is decoded to itself if it is a codeword and otherwise a
decoding default is declared. (See Problems 2.2.2 and 2.2.3.) For a linear code,
this can be gauged by whether or not the received word has syndrome 0.

(8.4.5) Lemma. Let C be a linear code.
(1) C detects any error pattern that is not a codeword.
(2) C detects any nonzero error pattern whose nonzero entries are restricted

to the complement of an information set.

Proof. An error pattern that is not a codeword has nonzero syndrome as
does any word in its coset.

If a codeword is 0 on an information set, then it is the 0 codeword. Thus
any nonzero word that is 0 on an information set is not a codeword. 2

(8.4.6) Lemma. A cyclic code of redundancy r detects all nonzero bursts of
length at most r.

Proof. By Lemma 8.4.5, we must show that a codeword that is a burst
of length r or less must be 0. Let c be such a codeword. Then it has a cyclic
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shift that represents a nonzero code polynomial of degree less than r. But by
Theorem 8.1.1, the generator polynomial is a nonzero polynomial of minimal
degree and that degree is r. Therefore c = 0, as desired. 2

The same argument shows that ‘wrap around’ burst errors, whose nonzero
errors occur in a burst at the front of the word and a burst at the end, are also
detected provided the combined length of the two bursts is at most r.

( 8.4.7) Problem. If C is a cyclic code of redundancy r, prove that the only bursts
of length r+ 1 that are codewords (and so are not detectable error patterns) are shifts
of scalar multiples of the generator polynomial.

( 8.4.8) Problem. Starting with a cyclic code C of redundancy r, shorten C in its
last s coordinates (or first s coordinates) by choosing all codewords that are 0 in those
positions and then deleting those positions.

Prove that the resulting code D still can be used to detect all bursts of length at
most r. ( Remark. The code D will no longer be cyclic and can not be relied upon for
detecting burst errors that ‘wrap around’.)

( 8.4.9) Problem. Have an existentialist discussion (or write such an essay) as to
whether or not linear codes should be said to detect the 0 error pattern.

Now we return to the CRC code E of Lemma 8.4.4, the even subcode of
a binary cyclic Hamming code. E has redundancy r = 1 + m, where m is the
redundancy of the Hamming code. Thus E can be used to detect:

(i) all odd weight errors,
(ii) all weight 2 errors,
(iii) most weight 4 errors,
(iv) all nonzero burst errors of length at most r,
(v) most burst errors of length r + 1.

Here C detects ‘most’ weight 4 errors because (at least for reasonably large r)
the codewords of weight 4 form only a small fraction of the total number of
words of weight 4. (See Problem 7.3.7; the total number of words of weight 4
is quartic in n = 2r−1 − 1, while the number of codewords of weight 4 is cubic
in n.) The only bursts of length r + 1 that are codewords are the n shifts of
the generator polynomial g(x). (See Problem 8.4.7.) So we see that the various
most likely error patterns are all detected.

Examples. (i) CRC-12 of length 2047 = 211 − 1 with generator poly-
nomial

(x+ 1)(x11 + x2 + 1) = x12 + x11 + x3 + x2 + x+ 1 .

(ii) CRC-ANSI of length 32767 = 215 − 1 with generator polynomial

(x+ 1)(x15 + x+ 1) = x16 + x15 + x2 + 1 .

(iii) CRC-CCITT of length 32767 = 215 − 1 with generator polyno-
mial

(x+ 1)(x15 +x14 +x13 +x12 +x4 +x3 +x2 +x+ 1) = x16 +x12 +x5 + 1 .
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The last two examples have generator polynomials of the minimum weight 4.
This is advantageous since the linear feedback circuitry required to implement
encoding and decoding is simpler for generator polynomials of small weight.

As in Problem 8.4.8 the detection properties (i)-(v) are not lost by shortening
E, so various shortened versions of even subcodes of binary cyclic Hamming
codes are also used as CRC codes. If the code is shortened in its last s positions,
then ‘cyclic’ encoding is still available, encoding the message polynomial a(x)
of degree less than k − s (the dimension of the shortened code) into the code
polynomial a(x)g(x) of degree less than r + k − s = n − s (the length of the
shortened code).

8.4.2 Simplex codes and pseudo-noise sequences

As there are cyclic, binary Hamming codes of every redundancy m, there are
also cyclic, binary dual Hamming codes of every dimension m. Recall that these
codes are called simplex codes (or shortened first order Reed-Muller codes).
They were studied previously in Section 4.3. By Theorem 8.4.2 they are precisely
those cyclic, binary codes whose check polynomials are primitive.

(8.4.10) Theorem. Let C be a cyclic simplex code of dimension m and length
n = 2m − 1. Then C is composed of the codeword 0 plus the n distinct cyclic
shifts of any nonzero codeword.

Proof. Let C have generator polynomial g(x) and primitive check poly-
nomial h(x), so that g(x)h(x) = xn − 1. Since |C| = 2m = n + 1, we need
only prove that the n cyclic shifts of g(x) are distinct. Suppose g(x) = xjg(x)
(mod xn − 1), for some 0 < j ≤ n. Thus

(xj − 1)g(x) = q(x)(xn − 1)
(xj − 1)g(x) = q(x)g(x)h(x)

xj − 1 = q(x)h(x) .

As h(x) is primitive, we must have j ≥ n hence j = n. Therefore the n shifts
xjg(x) (mod xn − 1), for 0 ≤ j < n, are all distinct, as desired. 2

(8.4.11) Corollary. Let 0 6= c ∈ C, a cyclic simplex code of dimension m.
Then, for every nonzero m-tuple m, there is exactly one set of m consecutive
coordinate entries in c (including those that wrap around) that is equal to m.

Proof. As C is cyclic, its first m coordinate positions form an information
set. Every m occurs in these positions in exactly one codeword b. By the theo-
rem, b is a cyclic shift of c when m is one of the 2m− 1 nonzero m-tuples. The
nonzero codeword c has only n = 2m−1 sets of m consecutive positions. There-
fore nonzero m occurs exactly once among the sets of m consecutive positions
in c. 2

The property described in the corollary can be thought of as a randomness
property. If we were to flip an unbiased coin any number of times, then no
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particular combination of m consecutive heads/tails would be expected to occur
more often than any other. We will call a binary sequence of length 2m − 1
in which each nonzero m-tuple occurs exactly once in consecutive positions a
pseudo-noise sequence or PN -sequence, for short. (Here and below, when we pseudo-noise sequence

PN -sequencespeak of consecutive positions, we allow these positions to wrap around from
the end of the word to the front.) We call it a sequence rather than word
because, when we repeat it any number of times, we get a sequence of 0’s and
1’s whose statistical properties mimic, in part, those of a random sequence, that
is, those of noise. The length n = 2m − 1 is then the period of the sequence. period

With these definitions in hand, the corollary can be restated as

(8.4.12) Corollary. A nonzero codeword from a cyclic simplex code of
dimension m is a PN -sequence of period 2m − 1. 2

There are other consequences of the PN definition that are similar to prop-
erties of random sequences. A run is a maximal set of consecutive entries con- run

sisting entirely of 0’s or entirely of 1’s. The length of a run is the number of its
entries. In a random sequence, one would expect, for a fixed length, the same
number of runs of 0’s as 1’s and that runs of length p would be twice as likely
as runs of length p+ 1.

(8.4.13) Proposition. Let s be a PN -sequence of period 2m − 1.
(1) (Run balance) There are exactly 2m−p−2 runs of 0’s of length p (≤ m−2)

and exactly 2m−p−2 runs of 1’s of length p (≤ m− 2). The sequence s contains
exactly 2m−1 runs.

(2) (General balance) If p is a nonzero p-tuple with p ≤ m, then p occurs
in consecutive positions of s exactly 2m−p times. If p is a p-tuple of 0’s, then
it occurs in consecutive positions exactly 2m−p − 1 times. In particular, s has
weight 2m−1.

Proof. For (2), the p-tuple p is the initial segment of 2m−p distinct m-
tuples. If p is nonzero, then each of these m-tuples occurs within s. If p = 0,
then the m-tuple 0 is the only completion of p that does not occur within s. In
particular, the 1-tuple 1 occurs exactly 2m−1 times, completing (2).

A run aa · · · aa of length p (≤ m−2) corresponds to a (p+2)-tuple baa · · · aab
with {a, b} = {0, 1} (which is never 0). Therefore by (2), the number of runs
aa · · · aa of length p is 2m−(p+2) = 2m−p−2.

If m = 1, then certainly there is only one run. For m ≥ 2, a transition
between two runs occurs precisely when we encounter either 01 or 10. By (2)
there are 2m−2 of each. Therefore the number of runs, being equal to the number
of transitions, is 2m−2 + 2m−2 = 2m−1. 2

Although pseudo-noise and pseudo-random sequences have been studied a
great deal, there is no consensus about the terminology or definitions. In some
places there is no distinction made between PN -sequences in general and those
special ones coming from simplex codes (so that Corollary 8.4.12 becomes the
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definition). We will call the nonzero codewords of cyclic simplex codes m-
sequences. (This is an abbreviation for maximal length feedback shift register m-sequences

sequences.)
It might seem more natural to consider sequences of length 2m in which every

m-tuple occurs. Such sequences are called DeBruijn cycles. The two conceptsDeBruijn cycles

are in fact equivalent. If in a PN -sequence s of period 2m − 1 we locate the
unique run of m − 1 0’s, then we can construct a DeBruijn cycle by inserting
one further 0 into the run. Conversely, if we delete a 0 from the unique run of m
0’s in a DeBruijn cycle, we are left with a PN -sequence. Given the connection
with simplex codes, we prefer the present formulation.

( 8.4.14) Problem. Prove that every PN-sequence of length 7 is an m-sequence.
( Remark. Up to cycling, there are 16 PN-sequences of length 15, only 2 of which are
m-sequences.)

An important property of m-sequences is not shared by all PN -sequences.

(8.4.15) Lemma. (Shift-and-add property) If s is an m-sequence and s′ is
a cyclic shift of s, then s + s′ is also a cyclic shift of s (or 0). In particular
nonzero s + s′ is itself an m-sequence.

Proof. This is a direct consequence of Theorem 8.4.10. 2

( 8.4.16) Problem. Prove that a PN-sequence possessing the shift-and-add property
must be an m-sequence.

One last property is more striking if we change to the ±-version of the
simplex code, as described in Section 4.3. With each binary sequence s we
associate the±1-sequence s∗ by replacing each 0 with the real number 1 and each
1 with the real number −1. If s is an m-sequence, then we abuse terminology
by also referring to the associated sequence s∗ as an m-sequence.

(8.4.17) Proposition. (Perfect autocorrelation)
If (s0, . . . , sn−1) = s∗ ∈ {±1}n ⊂ Rn is an m-sequence with n = 2m − 1, then∑n−1

i=0 sisi+p = n forp = 0
= −1 for0 < p < n ,

where indices are all read modulo n.

Proof. The summation is the dot product of s∗ with a cyclic shift of itself.
The associated binary vectors are also cyclic shifts and are either equal (when
p = 0) or at Hamming distance 2m−1 by Proposition 8.4.13(2) and Lemma
8.4.15. By Lemma 4.3.4 the dot product is n (= 2m − 1) when p = 0 and
otherwise (2m−1)−2 ·2m−1 = −1 . (In fact this proposition is nearly equivalent
to Lemma 4.3.5.) 2

The function a(p) =
∑n−1
i=0 sisi+p, for 0 ≤ p < n, of the proposition is

the autocorrelation function for s∗. As n is odd, the sequences could never beautocorrelation function
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orthogonal; so the proposition says, in a sense, that s∗ and its shifts are as close
to being orthogonal as possible. This is why the autocorrelation function is
called perfect.

Thus the ±1 m-sequences are very unlike nontrivial shifts of themselves. For
this reason, they are at times used for synchronization of signals. They are also
used for modulation of distinct signals in multiple user situations. This is an
example of spread spectrum communication. The idea is that multiplication
by a PN -sequence will make a coherent signal look noise-like (taking its usual
spiked frequency spectrum and spreading it out toward the flat spectrum of
noise).

For such applications, it is often helpful to have not just one sequence with
good autocorrelation properties but large families of them with good crosscor-
relation properties. The constructions of such families may start from nice
m-sequences. Their investigation is of on-going interest.

Pseudo-random binary sequences are also important for cryptography. In
that context m-sequences are bad, since the shift-and-add property implies that
they have low computational complexity.
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Chapter 9

Weight and Distance
Enumeration

The weight and distance enumerators record the weight and distance informa-
tion for the code. In turn they can be analyzed to reveal properties of the code.
The most important result is MacWilliams’ Theorem, which we prove several
times. We also prove the related Delsarte Bound and Lloyd’s Theorem.

9.1 Basics

The basic definitions are:

Definition. Let code C ⊆ Fn (F a field) contain ci codewords of weight i,
for i = 1, . . . n. Then the weight enumerator is weight enumerator

WC(z) =
∑
c∈C

zwH(c) =
n∑
i=0

ciz
i ∈ Z[z] .

The homogeneous weight enumerator is homogeneous weight
enumerator

WC(x, y) = xnWC(y/x) =
n∑
i=0

cix
n−iyi ∈ Z[x, y] .

Actually these definitions make sense whenever the alphabet admits addition,
an example of interest being F = Zs.

Definition. The distance enumerator of the code A is given by distance enumerator

WA(z) = |A|−1
∑

c,d∈A

zdH(c,d) ∈ Q[z] .

This can be defined for any alphabet. The notation does not greatly conflict with
that above, since the distance enumerator of A equals the weight enumerator

125
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of A when A is linear. (Indeed, for a code defined over an alphabet admitting
addition, we can translate each codeword to the 0-word and get an associated
weight enumerator. The distance enumerator is then the average of these weight
enumerators.) One could also define a homogeneous distance enumerator.

The basic results are that of MacWilliams:

(9.1.1) Theorem. (MacWilliams’ Theorem.) Let C be a [n, k] linear
code over Fs. Set

WC(z) =
n∑
i=0

ci z
i and WC⊥(z) =

n∑
i=0

c⊥i z
i .

Then
(1) WC(z) = |C⊥|−1

∑n
i=0 c

⊥
i (1 + (s− 1)z)n−i(1− z)i , and

(2) WC(x, y) = |C⊥|−1WC⊥(x+ (s− 1)y, x− y) .

and its nonlinear relative due to Delsarte:

(9.1.2) Theorem. (Delsarte’s Theorem.) Let A be a code in Fn with
distance enumerator WA(z) =

∑n
i=0 aiz

i. Define the rational numbers bm by

|A|−1
n∑
i=0

ai(1 + (s− 1)z)n−i(1− z)i =
n∑

m=0

bmz
m .

Then bm ≥ 0, for all m.

These two results are related to Lloyd’s Theorem 9.4.9, which states that cer-
tain polynomials associated with perfect codes must have integral roots. Lloyd’s
Theorem is the most powerful tool available for proving nonexistence results for
perfect codes.

9.2 MacWilliams’ Theorem and performance

In this section we relate weight enumerators to code performance. This leads to
a first proof of MacWilliams’ Theorem. For easy of exposition, we shall restrict
ourselves to the consideration of binary linear codes on the BSC(p) throughout
this section. Let C be a binary [n, k] linear code. (See Theorem 9.4.8 below for
the general case of MacWilliams’ Theorem 9.1.1.)

We begin with performance analysis for the binary linear code C on the
BSC(p) under the basic error detection algorithm SS0 = D:

Algorithm D:
receive r;
if r ∈ C, then decode to r;
otherwise decode to ∞.
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As before, we view the received vector r as being the sum of the transmitted
codeword c and an error word e, that is, r = c + e. There are three things that
can happen:

correct decoding (error vector e = 0),
error detected (error vector e 6∈ C),
and false decoding (error vector e ∈ C, e 6= 0).

The probability of correct decoding is qn (where q = 1− p). The probability of
the other two events can be calculated using the weight enumerator of C. We
calculate them in terms of the probability that decoding results in a guess at a
codeword, whether or not that guess is correct.

(9.2.1) Proposition. Let PD be the probability of detecting an error, PE the
probability of false decoding, and PR the probability of getting a decoding result.

(1) PR = qn + PE.
(2) PR + PD = 1.
(3) PR =

∑n
i=0 ci q

n−ipi = WC(q, p).

Proof. The first two parts are clear. For the third, observe that we have a
decoding result precisely when the error word is a codeword. The chance of a
given word of weight w occuring as an error word is qn−wpw. 2

Next we use the dual code C⊥ to calculate PR in a different way. MacWilliams’
Theorem results from equating the two probabilities. (This proof of MacWilliams’
Theorem follows Chang and Wolf, 1980.)

Set M = 2n−k, and let C⊥ = {h1,h2, . . . ,hj , . . . ,hM}. For any r ∈ Fn2 , we
let sj(r) = hj · r and

S(r) = (s1(r), s2(r), . . . , sj(r), . . . , sM (r)) ∈ FM2 ,

the “total syndrome” of r. We have

r gives a result ⇐⇒ r ∈ C ⇐⇒ e ∈ C
⇐⇒ S(r) = 0 ⇐⇒ S(e) = 0

and

r gives a detected error ⇐⇒ r 6∈ C ⇐⇒ e 6∈ C
⇐⇒ S(r) 6= 0 ⇐⇒ S(e) 6= 0
⇐⇒ sj(r) 6= 0, some j ⇐⇒ sj(e) 6= 0, some j .

Of course, for a fixed e and j, the probability that S(e) 6= 0 or that sj(e) 6= 0
is either 0 or 1. Indeed

(9.2.2) Lemma.

Prob(S(e) 6= 0 | e) = Prob(sj(e) 6= 0, some j | e)

=
1

2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | e, j) .
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Proof. The sum is exactly the weight of S(e). The number of entries 0 in
S(e) is the cardinality of e⊥ ∩ C⊥, and so is M = 2n−k if e ∈ C and is M/2 =
2n−k−1 if e 6∈ C. Therefore wH(S(e)) 6= 0 if and only if wH(S(e)) = 2n−k−1. 2

From the lemma we get

PD = Prob(S(e) 6= 0)

=
∑
e∈Fn

2

Prob(e)Prob(S(e) 6= 0 | e)

=
∑
e∈Fn

2

Prob(e)
1

2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | e, j)

=
1

2n−k−1

M∑
j=1

∑
e∈Fn

2

Prob(e)Prob(sj(e) 6= 0 | e, j)

=
1

2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | j)

Therefore of interest is

(9.2.3) Lemma. For wH(hj) = wj,

Prob(sj(e) 6= 0 | j) =
wj∑
odd
i=0

(
wj
i

)
qwj−ipi

= (1− (q − p)wj )/2 .

Proof. Let l1, . . . , lwj
be the nonzero coordinate positions of hj . Then

sj(e) = hj · e 6= 0 if and only if there are an odd number of 1’s among the
positions eli for i = 1, . . . , wj . This gives the first equality. The rest follows
from Lemma 9.2.4 below, as q + p = 1. 2

(9.2.4) Lemma. (1)
∑w
i=0

(
w
i

)
aw−ibi = (a+ b)w .

(2)
∑w
i=0

(
w
i

)
(−1)iaw−ibi = (a− b)w .

(3)
∑w

odd i=0

(
w
i

)
aw−ibi = ((a+ b)w − (a− b)w)/2 . 2
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Lemma 9.2.3 and the previous calculation now give

PR = 1− PD

= 1−

 1
2n−k−1

M∑
j=1

Prob(sj(e) 6= 0 | j)


= 1−

 1
2n−k−1

M∑
j=1

(1− (q − p)wj )/2


= 1−

 1
2n−k

M∑
j=1

(1− (q − p)wj )


= 1− 1

2n−k

M∑
j=1

1 +
1

2n−k

M∑
j=1

(q − p)wj

=
1

2n−k

M∑
j=1

(q − p)wj

=
1

2n−k

n∑
i=0

c⊥i (q − p)i ,

where
∑n
i=0 c

⊥
i z

i = WC⊥(z).

Comparing this with Proposition 9.2.1, we obtain

(9.2.5) Proposition.
∑n
i=0 ci q

n−ipi = PR = 1
2n−k

∑n
i=0 c

⊥
i (q − p)i. 2

Proof of MacWilliams’ Theorem 9.1.1 (Binary Case):
In the equation of the proposition, replace p by z

1+z and q = 1 − p by 1
1+z to

get

n∑
i=0

ci

(
1

1 + z

)n−i(
z

1 + z

)i
=

1
(1 + z)n

n∑
i=0

ci z
i 1
2n−k

n∑
i=0

c⊥i

(
1− z
1 + z

)i
,

hence
n∑
i=0

ci z
i =

1
2n−k

n∑
i=0

c⊥i (1 + z)n−i(1− z)i .

These two polynomial functions are equal when evaluated at any 0 ≤ p < 1,
hence for all z ≥ 0. We conclude that the equality is still valid in the polynomial
ring Q[z]. This gives a first proof of MacWilliams’ Theorem 9.1.1 in the binary
case. 2

Remark. The full version of MacWilliams’ Theorem 9.1.1 for linear codes
over Fs can be proven with exactly the same approach, evaluating in two ways
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the performance of error detection on the sSC(p). A proof of MacWilliams’
Theorem in full generality is given below in Theorem 9.4.8(2).

Next we consider performance at the other end of the decoding spectrum—
maximum likelihood decoding for error correction. The weight enumerator of
a linear code can still be used to help us bound the probability of decoding
falsehood PE = PC(MLD).

(9.2.6) Theorem. When decoding the binary linear code C on the BSC(p)
(with p ≤ 1

2) under MLD, we have

PC(MLD) ≤
n∑

w=1

cw Ew ,

where

Ew =
w∑

i=dw/2e

(
w

i

)
pi(1− p)w−i .

In particular
PC(MLD) ≤WC

(
2
√
p(1− p)

)
− 1 .

Proof. For a given nonzero codeword x of weight w, Ew is the probability
that the error vector e is at least as close to x as it is to 0. This must be the
case if, when decoding r = c + e, MLD incorrectly prefers c + x to c + 0 = c.
This gives the first bound on PC(MLD). (It is very unlikely to be tight, since
a given e might be closer to several codewords than it is to 0.)

As p ≤ 1
2 , we have

Ew =
w∑

i=dw/2e

(
w

i

)
pi(1− p)w−i ≤ pw/2(1− p)w/2

w∑
i=dw/2e

(
w

i

)

≤ pw/2(1− p)w/2
w∑
i=1

(
w

i

)
= pw/2(1− p)w/22w

=
(

2
√
p(1− p)

)w
.

Therefore

PC(MLD) ≤
n∑

w=1

cw Ew ≤
n∑

w=1

cw

(
2
√
p(1− p)

)w
= WC

(
2
√
p(1− p)

)
− 1,

as desired. 2

This theorem is an example of the Union Bound, and our treatment follows
McEliece and Van Tilborg.
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9.3 Delsarte’s Theorem and bounds

We use a version of the Plotkin Bound to prove a “nonlinear MacWilliams’
Theorem,” due originally to Delsarte. Delsarte’s Theorem (9.1.2, 9.3.5, 9.4.8(1))
then leads to other important bounds.

For integers m,n, s with 0 ≤ m ≤ n and s ≥ 2, define the s-ary Krawtchouk
polynomial Krawtchouk polynomial

Km(x;n, s) =
m∑
j=0

(−1)j
(
x

j

)(
n− x
m− j

)
(s− 1)m−j ,

where, by definition, (
x

j

)
=
x(x− 1) · · · (x− j + 1)

j!
,

for x ∈ R. For fixed m,n, s, the Krawtchouk polynomial Km(x;n, s) has degree
(at most) m in x. In particular, it is uniquely determined (using, say, Lagrange
interpolation) by its values at the integers i ∈ {0, 1, . . . , n}. Indeed its degree
in x is exactly m, since the coefficient of xm is

m∑
j=0

(−1)j
1j

j!
(−1)m−j

(m− j)!
(s− 1)m−j =

(−1)m

m!

m∑
j=0

(
m

j

)
(s− 1)m−j =

(−s)m

m!
.

For us, the point of introduction to these interesting polynomials is

(9.3.1) Proposition. The Krawtchouk polynomial Km(x;n, s) has degree m
in x. For i ∈ {0, 1, . . . , n}, Km(i;n, s) is the coefficient of zm in

(1 + (s− 1)z)n−i(1− z)i .

Proof. The first remark was proven above. Calculating the convolution,
we see that the coefficient of zm in this product is

m∑
j=0

((
n− i
m− j

)
(s− 1)m−jzm−j

)((
i

j

)
(−1)jzj

)
. 2

(9.3.2) Corollary. (1) K0(i;n, s) = 1.
(2) K1(i;n, s) = (n− i)(s− 1)− i = (s− 1)n− si.
(3) Km(0;n, s) = (s− 1)n

(
n
m

)
. 2

These could also be calculated directly.

(9.3.3) Corollary. For 1 ≤ m ≤ n and 1 ≤ i ≤ n, we have the recursion

Km(i;n, s) = Km(i− 1;n, s)−Km−1(i− 1;n, s)− (s− 1)Km−1(i;n, s) .
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Proof. If we evaluate the coefficient of zm on both sides of

((1+(s−1)z)n−i(1−z)i)(1+(s−1)z) = ((1+(s−1)z)n−(i−1)(1−z)i−1)(1−z) ,

then we find

Km(i;n, s) + (s− 1)Km−1(i;n, s) = Km(i− 1;n, s)−Km−1(i− 1;n, s) . 2

Corollary 9.3.3 gives an easy recursive method for calculating the Krawtchouk
coefficients, with Corollary 9.3.2(1) and (3) providing initialization.

The proposition allows us to reformulate MacWilliams’ Theorem as

(9.3.4) Theorem. (MacWilliams’ Theorem in Krawtchouk form.)
Let A and B be Fs-linear codes of length n with B = A⊥. Set WA(z) =∑n
i=0 ai z

i and WB(z) =
∑n
i=0 bi z

i. Then

|A|−1
n∑
i=0

Km(i;n, s)ai = bm .

Proof. Set A = C⊥ and B = C in MacWilliams’ Theorem 9.1.1. Then bm
is the coefficient of zm in

WB(z) = |A|−1
n∑
i=0

ai(1 + (s− 1)z)n−i(1− z)i ,

and the result follows from Proposition 9.3.1. 2

We will prove Delsarte’s Theorem 9.1.2 in its Krawtchouk form:

(9.3.5) Theorem. (Delsarte’s Theorem in Krawtchouk form.) Let
A be a code of length n over an alphabet of size s, and set WA(z) =

∑n
i=0 ai z

i.
Then, for 0 ≤ m ≤ n,

n∑
i=0

Km(i;n, s) ai ≥ 0 .

In view of Theorem 9.3.4, Delsarte’s Theorem can be thought of as a “nonlinear”
version of MacWilliams’ Theorem. Our proof here of Delsarte’s Theorem follows
Simonis and DeVroedt (1991). For linear codes A we also recover MacWilliams’
Theorem (in its Krawtchouk form, Theorem 9.3.4) in the process, giving us a
second proof of that result.

Let A be a code of length n with size |A| = M , and let WA(z) =
∑n
i=0 ai z

i

be its distance enumerator. In the next lemma s is arbitrary, but after that
we will restrict our attention again to the binary case s = 2. As before, this
restriction is only for the sake of clarity. The arguments readily extend to larger
alphabets. (See Theorem 9.4.8(1) below for the general case.)

(9.3.6) Lemma. (1)
∑n
i=0 ai = M .

(2) M
∑n
i=0 i ai =

∑
c,d∈A dH(c,d) .
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Proof. We have

WA(z) = M−1
∑

c,d∈A

zdH(c,d) =
n∑
i=0

ai z
i ;

so

WA(1) = M−1
∑

c,d∈A

1dH(c,d) =
n∑
i=0

ai ,

giving (1). Similarly

WA(1)′ = M−1
∑

c,d∈A

dH(c,d) 1dH(c,d)−1 =
n∑
i=0

i ai ,

giving (2). 2

Again direct arguments are available. The given proof of the lemma illustrates
how standard generating function methods can be used with weight and distance
enumerators.

Lemma 9.3.6(1) is a strong form of the 0’th Delsarte inequality:

n∑
i=0

K0(i;n, s) ai =
n∑
i=0

1 · ai = M ≥ 0 .

For linear A, this could be phrased as
∑n
i=0 K0(i;n, s) ai = Mb0, where b0 = 1

is the number of words of weight 0 in A⊥.
At this point, we assume additionally that A is a binary code.

(9.3.7) Lemma. (First binary Delsarte inequality.) We have

n∑
i=0

K1(i;n, 2) ai =
n∑
i=0

(n− 2i)ai ≥ 0 .

Indeed, if A is binary and linear, then this sum is Mb1, where b1 is the number
of words of weight 1 in A⊥.

Proof. Let G be an M ×n matrix whose rows are the codewords of A, and
let wj be the weight of the j’th column of G. In Lemma 9.3.6

M

n∑
i=0

i ai =
∑

c,d∈A

dH(c,d)

effectively counts pairwise distances in A by examining G row-by-row. To count
instead by columns, observe that in column j a 0 of row x and 1 of row y
contribute twice to the sum, once for each of dH(x,y) and dH(y,x). Thus∑

c,d∈A

dH(c,d) = 2
n∑
j=1

wj(M − wj) .
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Therefore

n∑
i=0

i ai = 2M−1
n∑
j=1

wj(M − wj)

≤ 2M−1
n∑
j=1

M2

4

=
n

2
M

=
n

2

n∑
i=0

ai ,

and so

0 ≤ 2

(
n

2

n∑
i=0

ai −
n∑
i=0

i ai

)

=
n∑
i=0

(n− 2i)ai .

This proves the first Delsarte inequality.

If A is linear, then the various wj are either 0 or M/2. Indeed wj is 0 only
when there is in A⊥ a word of weight 1 whose nonzero entry is at position j,
the number of such positions being b1. Therefore

n∑
i=0

i ai = 2M−1
n∑
j=1

wj(M − wj)

= (n− b1)M/2

and

n∑
i=0

(n− 2i)ai = nM − (n− b1)M = b1M . 2

(9.3.8) Corollary. (Binary Plotkin bound.) If A is a binary code with
minimum distance d and length n < 2d, then

|A| ≤ 2d
2d− n

.
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Proof. The first Delsarte inequality yields

0 ≤
n∑
i=0

(n− 2i)ai

= n+
n∑
i=d

(n− 2i)ai

≤ n+ (n− 2d)
n∑
i=d

ai

= n+ (n− 2d)(|A| − 1)
= n− (n− 2d) + (n− 2d)|A|
= 2d+ (n− 2d)|A| .

This implies (2d− n)|A| ≤ 2d and so proves the Plotkin bound. 2

In Lemmas 9.3.6(1) and 9.3.7 we have the Delsarte inequalities for m = 0, 1
(and the corresponding linear interpretation). We next attack the m’th Delsarte
inequality.

For a fixed m, consider a new code A[m] = { c[m] | c ∈ C } of length N =
(
n
m

)
.

Starting with a codeword c ∈ A, we construct the codeword c[m] ∈ A[m], whose
entries c[m]

J are indexed by the m-subsets of {1, . . . , n}, and are given by

c
[m]
J =

∑
j∈J

cj ,

for each m-subset J .

(9.3.9) Lemma.

(1) If x + y = z, then x[m] + y[m] = z[m].
(2) If wH(x) = i, then wH(x[m]) =

∑
jodd

(
i
j

)(
n−i
m−j

)
.

Proof. The first part is immediate. For the second part, let I be the subset
of {1, . . . , n} whose positions hold the 1’s of x. Then the entry x

[m]
J is 0 or 1

as |I ∩ J | = j is even or odd. For a fixed j, there are
(
i
j

)
choices for I ∩ J and(

n−i
m−j

)
ways of completing this choice to an appropriate m-subset of {1, . . . , n}.

2

A particular consequence of Lemma 9.3.9 is that A[m] has the same number
of codewords as A. The weight in (2) depends only on the original weight i, so
we can define

w[m](i) =
m∑

odd
j=0

(
i

j

)(
n− i
m− j

)
.
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If dH(x,y) = i, then dH(x[m],y[m]) = w[m](i). Therefore, for WA[m](z) =∑
r a

[m]
r zr, we have

a[m]
r =

∑
w[m](i)=r

ai .

The definition of w[m](i) is to be compared with the well-known binomial
identity (

n

m

)
=

m∑
j=0

(
i

j

)(
n− i
m− j

)
,

proved by counting m-subsets of a two-colored n set according to how many
elements of each color have been selected.

Proof of Delsarte’s Theorem 9.3.5 (Binary Case):
By the first Delsarte inequality for A[m], we have

0 ≤
N∑
r=0

(N − 2r)a[m]
r

=
N∑
r=0

(N − 2r)
∑

w[m](i)=r

ai

=
N∑
r=0

∑
w[m](i)=r

(N − 2w[m](i))ai

=
n∑
i=0

((
n

m

)
− 2w[m](i)

)
ai

=
n∑
i=0


 m∑
j=0

(
i

j

)(
n− i
m− j

)− 2

 m∑
odd
j=0

(
i

j

)(
n− i
m− j

)
 ai

=
n∑
i=0

 m∑
j=0

(−1)j
(
i

j

)(
n− i
m− j

) ai

=
n∑
i=0

Km(i;n, 2) ai . 2

In the case that A is linear, A[m] is also linear by Lemma 9.3.9(1). The sum
counts |A[m]| = |A| times the number of weight 1 words in A[m]⊥. Let x be
a word of weight 1 in FN2 , and suppose its unique nonzero entry is in position
J , where J is an m-subset of {1, . . . , n}. Then x will be in A[m]⊥ when all
codewords of A[m] have J-entry 0. This happens when every codeword c of A
has an even number of 1’s in the positions of J . That is, when the word of Fn2
with 1’s in the positions of J belongs to A⊥. Therefore words of weight 1 in
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A[m]⊥ correspond exactly to words of weight m in A⊥, and we have recovered
MacWilliams’ Theorem in its Krawtchouk form 9.3.4.

(9.3.10) Theorem. (Linear Programming Bound.) Let A be a code of
length n over an alphabet of size s with dmin(A) ≥ d. Then

|A| ≤ max

{
n∑
i=0

Ai

∣∣∣∣∣ A0 = 1, Ai = 0, 1 ≤ i ≤ d,

Am ≥ 0 ,
n∑
i=0

AiKm(i;n, s) ≥ 0, 1 ≤ m ≤ n

}
.

If s = 2 and d is even, then we can also assume that Ai = 0, for all odd i.

Proof. For WA(z) =
∑n
i=0 ai z

i, the choice Ai = ai solves all the inequali-
ties by Delsarte’s Theorem 9.3.5. It has

∑n
i=0Ai = |A|, by Lemma 9.3.6(1).

If s = 2 and d is even, then when we first puncture and then extend A, the
resulting code A∗ (even in the nonlinear case) has |A∗| = |A| and dmin(A∗) ≥ d.
Furthermore, the coefficients a∗i of WA∗(z) satisfy the same inequalities as the
ai and additionally have a∗i = 0, for odd i. 2

As our proof of the Plotkin bound in Corollary 9.3.8 suggests, these methods
can be used to find general bounds; but new bounds of this type are very difficult
to prove. On the other hand, the linear programming bound is remarkably
effective in specific cases, as the following example suggests.

Example. Let C be a binary linear code of length 8 with dmin(C) ≥
4. We prove that |C| ≤ 16 (the extended Hamming code providing an
example that has exactly 16 codewords).

We have A0 = 1, A2 = A3 = A5 = A7 = 0, and also A4 ≥ 0, A6 ≥ 0,
and A8 ≥ 0. The Delsarte inequalities for m and 8 −m are equal under
these circumstances, so only m = 1, 2, 3, 4 can be of help. In fact, those
for m = 1 and m = 2 are all we need. We have (using Corollaries 9.3.2
and 9.3.3)

0 ≤
8X
i=0

AiK1(i;n, s) = 8 + 0A4 − 4A6 − 8A8 ;

0 ≤
8X
i=0

AiK2(i;n, s) = 28− 4A4 + 4A6 + 28A8 .

The first inequality gives

A6 ≤ 2− 2A8,

so that in particular A8 ≤ 1. Adding the two inequalities produces

A4 ≤ 9 + 5A8 .
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Therefore

|C| ≤
8X
i=0

A8

= A0 +A4 +A6 +A8

≤ 1 + (9 + 5A8) + (2− 2A8) +A8

= 12 + 4A8

≤ 16 ,

as claimed. Indeed, in order for the sum to be 16 we must have A8 = 1,
in which case 0 ≤ A6 ≤ 2− 2A8 yields A6 = 0. Also A4 ≤ 9 + 5A8 = 14.
As

8X
i=0

A8 = A0 +A4 +A6 +A8

≤ 1 + 14 + 0 + 1

≤ 16 ,

there is a unique solution to the linear programming problem, namely

A0 = 1, A1 = A2 = A3 = A5 = A6 = A7 = 0, A4 = 14, A8 = 1 .

This corresponds to the weight enumerator 1 + 14z4 + z8 for the extended
binary Hamming code of length 8.

Of course this toy example could also be handled by more combinatorial meth-
ods, but the linear programming approach has better scaling properties. For
instance, codes with lengths in the teens can still be handled very easily, while
combinatorial approaches can already at that point require extensive case-by-
case analysis.

9.4 Lloyd’s theorem and perfect codes

We present MacWilliams’ theorem a third time, Delsarte’s theorem a second
time, and Lloyd’s theorem a first time.

In this section, we will be concerned with codes defined over a finite alphabet
F that has the structure of a commutative ring with a multiplicative identity 1.
Our main examples are fields Fs and rings of modular integers Zs = Z (mod s).
It is important to realize that any code over a finite alphabet of s letters can be
viewed as a code over Zs (merely by assigning each letter a unique value from
Zs). In particular, our proof here of Delsarte’s Theorem in Theorem 9.4.8(1)
does not suffer any loss of generality by restricting attention to codes over Zs.

In this situation we have an additive structure on Fn with identity element
0, and we have natural scalar multiplication given by

r(a1, . . . , aj , . . . , an) = (ra1, . . . , raj , . . . , ran) ,

for arbitrary r ∈ F . Therefore we can still talk about ra + tb, c ·d, wH(e), and
so forth.
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An F -linear code of length n will be, as before, any nonempty subset C ofF -linear code

Fn that is closed under addition and scalar multiplication. The code C⊥ dual
to C is also defined as before:

C⊥ = {v ∈ Fn | v · c = 0, for all c ∈ C } ,

and is F -linear even if C is not.
A linear character χ of (F,+) is a map χ : F −→ C∗ with linear character

χ(a+ b) = χ(a)χ(b) for all a, b ∈ F .

For finite F the image of χ will be in the roots of unity, and we must have

χ(0) = 1 and χ(−a) = χ(a)−1 = χ(a) .

A basic example is the trivial character 1F (a) = 1, for all a ∈ F . Later we will
make a specific choice for χ, but for the moment χ can be any linear character
of (F,+).

We next define, for u,v ∈ V = Fn, the related notation

χ(u|v) = χ(u · v) = χ

(
n∑
i=1

uivi

)
=

n∏
i=1

χ(uivi) .

For n = 1, χ(u|v) = χ(uv); and the first two parts of the next lemma are con-
sequences of the commutativity of F , while the third part is just a restatement
of the defining property for a character. The general case follows directly.

(9.4.1) Lemma. (1) χ(u|v) = χ(v|u);
(2) for a ∈ F , χ(u|av) = χ(au|v) = χ(a|u · v);
(3) χ(a + b|v) = χ(a|v)χ(b|v). 2

We thus see that χ(·|·) is symmetric and biadditive on Fn.
More generally, for subsets A,B of V , we define

χ(A|B) =
∑

a∈A,b∈B

χ(a|b) .

We have before encountered the notation

A+B = {a + b | a ∈ A ,b ∈ B } ,

and we further write A ⊕ B for A + B if every element of A + B has a unique
expression as a + b, for a ∈ A and b ∈ B.

The defining property of a character χ and biadditivity then extend to

(9.4.2) Lemma. χ(A⊕B|v) = χ(A|v)χ(B|v)
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Proof.

χ(A⊕B|v) =
∑

a∈A,b∈B

χ(a + b|v)

=
∑

a∈A,b∈B

χ(a|v)χ(b|v)

=
∑
a∈A

χ(a|v)
∑
b∈B

χ(b|v)

= χ(A|v)χ(B|v) 2

Remark. The lemma and proof remain valid for all A and B if we view
A+B as a multiset, keeping track of the number of different ways each element
can be written as a + b. This is the “group algebra” approach, which can be
very effective.

The next two lemmas are elementary but fundamental for what we are doing
in this section.

(9.4.3) Lemma. Consider the property:

(ND) F is a commutative ring with identity, and (F,+) possesses
a linear character χ such that, for each 0 6= v ∈ F , there is an
av ∈ F with χ(avv) 6= 1.

Then Fs and Zs both have the property (ND).

Proof. For F = Zs, let ζ be a primitive s’th root of 1 in C. (That is,
ζs = 1 but ζi 6= 1, for 0 < i < s.) Then χ(i) = ζi has the desired properties
with respect to av = 1, for all v 6= 0.

Let F = Fs with s = pd, a power of the prime p. In fact, every nontrivial
linear character χ has the desired property. We give a concrete construction. Let
ζ be a primitive p’th root of 1. Realize F as Fp[x] (mod m(x)) for an irreducible
polynomial m(x) of degree d in Fp[x]. Each element of F is represented by a
unique polynomial f(x) ∈ Fp[x] of degree less than d. Then χ(f(x)) = ζf(0) has
the desired properties. (Each f(0) is in Fp = Zp and can be thought of as an
integer.) For each v 6= 0, we can choose av = v−1. 2

If we view χ(·|·) as a symmetric, biadditive form on Fn, then Property (ND)
of the lemma says that, at least for F 1, the form is nondegenerate:

0 = { v ∈ F 1 | χ(a|v) = 1, for all a ∈ F 1 } .

The next lemma continues this line of thought.
From now on we will assume that the alphabet F has a character χ of (F,+)

satisfying Property (ND) of Lemma 9.4.3. We choose and fix such a character
χ. Our main examples remain Zs and Fs.
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(9.4.4) Lemma. Let v ∈ V .
(1) Always

χ(V |v) = |V | if v = 0
= 0 otherwise.

(2) If W is an F -linear code in V , then

χ(W |v) = |W | if v ∈W⊥

= 0 otherwise.

Proof. If 0 6= v ∈ V , then by Property (ND) of Lemma 9.4.3 there is a
word a ∈ V with weight 1 and a · v 6= 0. Therefore V ⊥ = {0}, and (1) is a
special case of (2).

For (2), if v ∈W⊥, then

χ(W |v) =
∑

w∈W
1 = |W | .

Therefore to complete (2) and the lemma we may assume that there is a w ∈W
with v = w · v 6= 0.

By Property (ND) of Lemma 9.4.3, there is an a = av ∈ F with χ(av) 6= 1.
Therefore, for a = aw,

χ(a|v) = χ(a|w · v) = χ(a|v) 6= 1 ,

by Lemma 9.4.1(2).
Now we have

χ(W |v) = χ(W ⊕ a|v)
= χ(W |v)χ(a|v)

by Lemma 9.4.2. Therefore

0 = χ(W |v)(χ(a|v)− 1) ,

and χ(W |v) = 0, as required. 2

(9.4.5) Corollary. Suppose that, for some set of constants αu,∑
u∈V

αu χ(u|v) = 0 ,

for all 0 6= v ∈ V . Then αu = α is constant, for all u ∈ V .

Proof. By Lemma 9.4.4(1), a constant choice αu = α does have the stated
property. In particular, after subtracting an appropriate constant α from each
coefficient, we could assume that

∑
u∈V αu χ(u|v) = 0 holds for all v, including

0. We do so, and then aim to prove that each αu equals 0.
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For fixed but arbitrary z ∈ V , we have

0 =
∑
v∈V

0 · χ(z|v)

=
∑
v∈V

(∑
u∈V

αu χ(u|v)

)
χ(z|v)

=
∑
u∈V

αu

(∑
v∈V

χ(u|v)χ(z|v)

)
=

∑
u∈V

αu

∑
v∈V

χ(u− z|v)

= αz|V |

by Lemma 9.4.4(1). 2

(9.4.6) Proposition. For all v ∈ V with wH(v) = i,∑
u∈V

zwH(u)χ(u|v) = (1 + (s− 1)z)n−i(1− z)i .

Proof. For all (v1, . . . , vn) = v ∈ V , we have

∑
u∈V

zwH(u)χ(u|v) =
∑
u∈V

n∏
j=1

zwH(uj)χ(uj |vj)

=
n∏
j=1

∑
u∈F

zwH(u)χ(u|vj)

by distributivity. Here∑
u∈F

zwH(u)χ(u|vj) = 1 + z χ(F \ {0} |vj)

which, by the case n = 1 of Lemma 9.4.4(1), is 1 + (s− 1)z when vj = 0 and is
1− z when vj 6= 0. Therefore

∑
u∈V

zwH(u)χ(u|v) =
n∏
j=1

∑
u∈F

zwH(u)χ(u|vj)

= (1 + (s− 1)z)n−wH(v)(1− z)wH(v) ,

as claimed. 2

Let Ym = {x ∈ V | wH(x) = m }, so that the sphere of radius e centered at
0, Se = Se(0), is the disjoint union of the Ym, for m = 1, . . . , e.
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(9.4.7) Corollary. Let wH(v) = i.

(1) χ(Ym|v) = Km(i;n, s),

(2) χ(Se|v) =
∑e
m=0 Km(i;n, s).

Proof. By the proposition, χ(Ym|v) is the coefficient of zm in

(1 + (s− 1)z)n−i(1− z)i .

By Proposition 9.3.1 this coefficient is also Km(i;n, s). This gives (1), and (2)
follows directly. 2

(9.4.8) Theorem. Let A be a code in Fn with distance enumerator WA(z) =∑n
i=0 aiz

i. Define the rational numbers bm by

|A|−1
n∑
i=0

ai(1 + (s− 1)z)n−i(1− z)i =
n∑

m=0

bmz
m .

Then

(1) (Delsarte’s Theorem 9.1.2.) bm ≥ 0, for all m. (Indeed we have
bm = |A|−2

∑
wH(u)=m |χ(u|A)|2.)

(2) (MacWilliams’ Theorem 9.1.1.) If A is an F -linear code, then
WA⊥(z) =

∑n
m=0 bmz

m .

Proof. We calculate

∑
c,d∈A

∑
u∈V

zwH(u)χ(u|c− d)

in two different ways.

By Proposition 9.4.6,

∑
c,d∈A

∑
u∈V

zwH(u)χ(u|c− d) =
∑

c,d∈A

(1 + (s− 1)z)n−wH(c−d)(1 + z)wH(c−d)

= |A|
n∑
i=0

ai(1 + (s− 1)z)n−i(1 + z)i ,

which is |A|2 times the lefthand side of the definition.
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On the other hand∑
c,d∈A

∑
u∈V

zwH(u)χ(u|c− d) =
∑
u∈V

zwH(u)
∑

c,d∈A

χ(u|c− d)

=
∑
u∈V

zwH(u)
∑

c,d∈A

χ(u|c)χ(u| − d)

=
∑
u∈V

zwH(u)χ(u|A)χ(u| −A)

=
∑
u∈V

zwH(u)χ(u|A)χ(u|A)

=
∑
u∈V

zwH(u)|χ(u|A)|2

=
n∑

m=0

 ∑
wH(u)=m

|χ(u|A)|2
 zm .

We conclude that

|A|
n∑
i=0

ai(1 + (s− 1)z)n−i(1 + z)i =
n∑

m=0

 ∑
wH(u)=m

|χ(u|A)|2
 zm .

Therefore
bm = |A|−2

∑
wH(u)=m

|χ(u|A)|2 ≥ 0 ,

proving Delsarte’s Theorem.
Furthermore, if A is linear, then by Lemma 9.4.4(2)

χ(u|A) = |A| if u ∈ A⊥

= 0 otherwise.

Therefore

bm = |A|−2
∑

wH(u)=m

|χ(u|A)|2

= |A|−2
∑

wH(u)=m

u∈A⊥

|A|2

= |{u | wH(u) = m,u ∈ A⊥ }| ,

proving MacWilliams’ Theorem. 2

This proof of MacWilliams’ Theorem is essentially one of the two given in
the original paper (and thesis) of MacWilliams for linear codes over fields. Its
modification to prove Delsarte’s Theorem as well is due to Welch, McEliece, and
Rumsey (1974).
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Here we have proved MacWilliams’ Theorem for a more general class of
codes than the linear codes of Theorem 9.1.1, namely for those codes that are
F -linear, where F has Property (ND) of Lemma 9.4.3. Many properties of
linear codes over fields go over to these codes. For instance, substituting 1 into
the equations of Theorem 9.4.8, we learn that, for the F -linear code A,

|A|−1 sn = |A|−1
n∑
i=0

ai(1 + (s− 1)1)n−i(1− 1)i =
n∑

m=0

bm1m = |A⊥| .

That is, |A||A⊥| = |V |, whence A⊥⊥ = A (things that could also be proved
directly).

(9.4.9) Theorem. (Lloyd’s Theorem.) Let C ⊆ Fn be a perfect e-error-
correcting code. Then the polynomial

Ψe(x) =
e∑
i=0

Ki(x;n, s)

of degree e has e distinct integral roots in {1, . . . , n}.

Proof. The basic observation is that, since C is a perfect e-error-correcting
code,

Se ⊕ C = V .

Therefore, by Lemma 9.4.2

χ(Se|v)χ(C|v) = χ(V |v) ,

for all v ∈ V . As V = Sn, we have by Corollary 9.4.7

Ψe(x)χ(C|v) = Ψn(x) ,

where x = wH(v) and Ψj(x) =
∑j
i=0 Ki(x;n, s).

By Proposition 9.3.1, Ki(x;n, s) is a polynomial of degree i in x, so Ψj(x)
has degree j in x. In particular, Ψn(x) = χ(V |v) has degree n. But by Lemma
9.4.4(1) it has roots x = 1, . . . , n. Therefore

Ψn(x) = c(x− 1)(x− 2) · · · (x− n) ,

for an appropriate constant c (which can be calculated using Corollary 9.3.2).
We conclude that

Ψe(x)χ(C|v) = c(x− 1)(x− 2) · · · (x− n) ,

for x = wH(v).
As the polynomial Ψe(x) has degree e in x, the theorem will be proven once

we can show that, for at least e values of m 6= 0, there are words v ∈ Ym
with χ(C|v) 6= 0. By Theorem 9.4.8(1), this is equivalent to proving that
|{m 6= 0 | bm 6= 0 }| ≥ e. But this is immediate from Proposition 9.4.10 below.

2
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(9.4.10) Proposition. For the e-error-correcting code A with the bm defined
as in Theorem 9.4.8, we have

|{m 6= 0 | bm 6= 0 }| ≥ e .

Proof. Let N(A) = {m 6= 0 | bm 6= 0 } and g = |N(A)|, and assume
that g ≤ e. Define the polynomial a(x) =

∏
m∈N(A)(x − m), of degree g (an

empty product being taken as 1). Therefore a(m) = 0 when m ∈ N(A), whereas
χ(A|v) = 0 whenever 0 6= m = wH(v) 6∈ N(A), by Theorem 9.4.8(1).

As each Ki(x;n, s) has degree i in x (by Proposition 9.3.1), there are con-
stants αi (not all 0) with

a(x) =
g∑
i=0

αi Ki(x;n, s) .

Using Corollary 9.4.7(1), we get, for all v 6= 0,

0 = a(wH(v))χ(A|v)

=

(
g∑
i=0

αi χ(Yi|v)

)
χ(A|v)

=
g∑
i=0

αi χ(Yi ⊕A|v)

=
g∑
i=0

∑
y∈Yi,a∈A

αi χ(y + a|v) .

From Corollary 9.4.5 we learn αi = α is a nonzero constant function of i and
that every element u ∈ V is equal to some y + a. In particular, it must be
possible to write the word e at distance e from a codeword c in the form y + a.
As A is an e-error-correcting code, the only possibility is e = (e− c) + c, with
e− c ∈ Ye, hence g ≥ e, as claimed. 2

Remarks. 1. The proposition is also due to MacWilliams and Delsarte.
In MacWilliams’ version for linear codes, |{m 6= 0 | bm 6= 0 }| is the number
of nonzero weights in the dual code (as is evident from our proof of Theorem
9.4.8(2)).

2.We could combine Lloyd’s Theorem and the proposition, with the rephrased
proposition saying that equality holds if and only if A is perfect, in which case
the appropriate polynomial has the appropriate roots. This might shorten the
proof somewhat but also make it more mysterious.

3. Recall that the covering radius g = cr(A) of the code A ⊆ Fn is the
smallest g such that Fn =

⋃
a∈A Sg(a). That is, it is the smallest g with

V = Sg +A. A more careful proof of the proposition gives

|{m 6= 0 | bm 6= 0 }| ≥ cr(A) .
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Lloyd’s Theorem and the Sphere Packing Condition are the main tools used
in proving nonexistence results for perfect codes and other related codes. The
Sphere Packing Condition has a natural derivation in the present language:

|Se| |C| = χ(Se|0)χ(C|0) = χ(Se ⊕ C|0) = χ(V |0) = |V | ,

for the perfect e-error-correcting code C in V .
The following simple example of a nonexistence result for perfect codes is a

good model for more general results of this type.

(9.4.11) Theorem. If C is a binary perfect 2-error-correcting code of length
n ≥ 2, then either n = 2 and C = F2

2 or n = 5 and C = {x,y | x + y = 1 }.

Proof. We do this in three steps:

Step 1. Sphere Packing Condition: There is a positive integer r with
2 + n + n2 = 2r+1. If n ≤ 6, then we have one of the examples of
the theorem. Therefore we can assume that n ≥ 7, and in particular
8n < 2r+1.

By the Sphere Packing Condition we have

1 + n+
(
n

2

)
= 2r ,

where r is the redundancy of the code. This simplifies to 2 + n + n2 = 2r+1.
We record the first few values:

n 2 3 4 5 6
2 + n+ n2 8 14 22 32 44

Only n = 2, 5 can occur, and in these cases we easily find the examples described.
Therefore we may assume from now on that n ≥ 7, in which case

2 + n(7 + 1) ≤ 2 + n(n+ 1) = 2r+1 .

Step 2. Lloyd’s Theorem: n ≡ 3 (mod 4) .

Ψ2(x) = K1(x;n, 2) + K1(x;n, 2) + K2(x;n, 2)
= 1 + (n− 2x) +

+
(

(−1)0

(
x

0

)(
n− x

2

)
+ (−1)1

(
x

1

)(
n− x

1

)
+ (−1)2

(
x

2

)(
n− x

0

))
=

1
2

(4x2 − 4(n+ 1)x+ (2 + n+ n2))



148 CHAPTER 9. WEIGHT AND DISTANCE ENUMERATION

By Step 1. 2+n+n2 = 2r+1; so if we substitute y for 2x, then Lloyd’s Theorem
9.4.9 says that the quadratic polynomial

y2 − 2(n+ 1)y + 2r+1

has two even integer roots in the range 2 through 2n. Indeed

y2 − 2(n+ 1)y + 2r+1 = (y − 2a)(y − 2b) ,

for positive integers a, b with a+ b = r + 1 and 2a + 2b = 2(n+ 1).
We next claim that 2a and 2b are not 2 or 4. If y = 2 is a root, then

4− 2(n+ 1)2 + 2r+1 = 0 hence 2r+1 = 4n < 8n .

Similarly if y = 4 is a root, then

16− 2(n+ 1)4 + 2r+1 = 0 hence 2r+1 = 8n− 8 < 8n ;

and in both cases we contradict Step 1.
Therefore a, b ≥ 3, and

n+ 1 = 2a−1 + 2b−1 ≡ 0 (mod 4) ,

as desired.

Step 3. Conclusion.

Let n = 4m+ 3 and substitute into the Sphere Packing Condition:

2r+1 = 2 + (4m+ 3) + (4m+ 3)2

= 2 + 4m+ 3 + 16m2 + 24m+ 9
= 14 + 28m+ 16m2

The lefthand side is congruent to 0 modulo 4, while the righthand side is con-
gruent to 2 modulo 4. This contradiction completes the proof. 2

Remark. For n = 2, we find

y2 − 2(n+ 1)y + 2r+1 = y2 − 6y + 8 = (y − 2)(y − 4) ;

and, for n = 5, we find

y2 − 2(n+ 1)y + 2r+1 = y2 − 12y + 32 = (y − 4)(y − 8) .
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9.5 Generalizations of MacWilliams’ Theorem

In Sections 9.2 and 9.3, for ease of exposition we only presented proofs of
MacWilliams’ Theorem 9.1.1 in the case of binary linear codes. On the other
hand, in Section 9.4, once we had introduced the appropriate machinery, we
were easily able to prove MacWilliams’ Theorem for a class of codes larger than
that of all linear codes over finite fields. It seems to have been Gleason (1971)
who first fully appreciated the strength and generality of MacWilliams’ proof
using characters.

Initially in this section F is a ring that satisfies Property (ND) of Lemma
9.4.3, but we mainly concentrate on the case F = Z4 as it is of indepen-
dent interest. We only give examples of two of the many generalizations that
MacWilliams’ Theorem admits.

Let V = Fn, and let f : V −→ R be a map to any vector space over C. Then
the (discrete) Fourier transform (or Hadamard transform) of f is f̂ : V −→ R Fourier transform

given by

f̂(v) =
∑
u∈V

f(u)χ(u|v) .

(9.5.1) Proposition. (Poisson summation formula.)
If A is an F -linear code then

∑
u∈A⊥

f(u) = |A|−1
∑
v∈A

f̂(v) .

Proof. We use Lemma 9.4.4(2) to calculate

|A|−1
∑
v∈A

f̂(v) = |A|−1
∑
v∈A

(∑
u∈V

f(u)χ(u|v)

)

= |A|−1
∑
u∈V

f(u)

(∑
v∈A

χ(u|v)

)
= |A|−1

∑
u∈A⊥

f(u) |A|

=
∑

u∈A⊥
f(u) ,

as desired. 2

This calculation was embedded in our proof of Theorem 9.4.8 for the partic-
ular choice of map f(u) = zwH(u) ∈ C[z]. Using the proposition and Proposition
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9.4.6 in that case, we find

WA⊥(z) =
∑

u∈A⊥
f(u) = |A|−1

∑
v∈A

f̂(v)

= |A|−1
∑
v∈A

(∑
u∈V

f(u)χ(u|v)

)
= |A|−1

∑
v∈A

(1 + (s− 1)z)n−wH(v)(1− z)wH(v)

= |A|−1
n∑
i=0

ai(1 + (s− 1)z)n−i(1− z)i .

This is MacWilliams’ Theorem. (This can not really be described as a fourth
proof but rather a rewording of the third proof.)

Remember that the homogeneous weight enumerator of A is

WA(x, y) =
∑
a∈A

xn−wH(a)ywH(a) .

Thus, for a given a = (a1, . . . , aj , . . . , an), we have in xn−wH(a)ywH(a) factors
x, one for each aj = 0, and factors y, one for each aj 6= 0. Different nonzero
coefficients make the same contribution. If instead we wish to note the con-
tribution of each member of F , we look at the (homogeneous) complete weight
enumerator CA(x1, . . . , xs) for A, a polynomial in s = |F | commuting variables,complete weight enumerator

one to count occurrences of each member of the alphabet. (For the binary al-
phabet, the complete weight enumerator is just the usual homogeneous weight
enumerator.)

At this point we specialize to F = Z4. For the word v = (v1, . . . , vj , . . . , vn)
of V , we write w0(v) for the number of 0’s among the vj , w1(v) for the number
of 1’s, w2(v) for the number of 2’s, and w3(v) for the number of 3’s among the
vj . Thus w0(v)+w1(v)+w2(v)+w3(v) = n. The complete weight enumerator
for A is then

CA(x, y, z, w) =
∑
v∈A

xw0(v) yw1(v) zw2(v) ww3(v) .

If we want a version of MacWilliams’ Theorem for complete weight enumerators,
we do not have to retrace our steps in the previous sections. We just apply
Poisson summation and the Fourier transform to a different base function f .

For F = Z4, we set f(u) = xw0(u) yw1(u) zw2(u) ww3(u). Then, as before, we
have

CA⊥(x, y, z, w) =
∑

u∈A⊥
f(u) = |A|−1

∑
v∈A

f̂(v) .
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To compute the Fourier transform, we follow Proposition 9.4.6:

f̂(v) =
∑
u∈V

f(u)χ(u|v)

=
∑
u∈V

xw0(u) yw1(u) zw2(u) ww3(u)χ(u|v)

=
∑
u∈V

 n∏
j=1

xw0(uj) yw1(uj) zw2(uj) ww3(uj)χ(uj |vj)


=

n∏
j=1

(∑
u∈F

xw0(u) yw1(u) zw2(u) ww3(u)χ(u|vj)

)

=
n∏
j=1

(xχ(0|vj) + y χ(1|vj) + z χ(2|vj) + wχ(3|vj)) .

The value of each factor will depend upon that of vj :

vj xχ(0|vj) + y χ(1|vj) + z χ(2|vj) + wχ(3|vj)
0 x+ y + z + w
1 x+ iy − z − iw
2 x− y + z − w
3 x− iy − z + iw

Hence finally

f̂(v) = (x+ y + z + w)w0(v) (x+ iy − z − iw)w1(v)

(x− y + z − w)w2(v) (x− iy − z + iw)w3(v) .

When inserted into the summation formula, this gives MacWilliams’ Theo-
rem for complete weight enumerators over Z4:

(9.5.2) Theorem. If A is a Z4-linear code, then

CA⊥(x, y, z, w) = |A|−1 CA(x+ y + z + w, x+ iy − z − iw,
x− y + z − w, x− iy − z + iw) . 2

Although this is quite complicated, it is also relatively powerful. For in-
stance we regain the usual homogeneous Z4-version of MacWilliams’ Theorem
by specializing to y = z = w.

WA⊥(x, y) = CA⊥(x, y, y, y)
= |A|−1 CA(x+ y + y + y, x+ iy − y − iy,

x− y + y − y, x− iy − y + iy)
= |A|−1 CA(x+ 3y, x− y, x− y, x− y)
= |A|−1 WA(x+ 3y, x− y) .
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In certain situations there are metrics on Fn that are more appropriate than
the Hamming metric. For instance, when reading time from a clock with hands
but no numbers, it will be easier to mistake 3 o’clock for 2 or 4 than for 8
o’clock. The Lee metric on Zs sets the Lee distanceLee metric

dL(i, j) = min(|i− j|, s− |i− j|) ,

for i, j ∈ Zs, and the Lee weight

wL(i) = dL(i, 0) .

Thus, on Z4, we have

wL(0) = 0, wL(1) = wL(3) = 1, and wL(2) = 2 .

This is the first new case, since the Lee metric on Z2 and Z3 is the same as the
Hamming metric.

As before, two words v = (v1, . . . , vn) and w = (w1, . . . , wn) from Zns have
Lee distance given by

dL(v,w) =
n∑
j=1

dL(vj , wj)

and Lee weight wL(v) = dL(v,0).
The Lee weight enumerator of A ⊆ Zns is thenLee weight enumerator

LA(z) =
∑
v∈A

zwL(v) .

As the largest weight of a word in Zns is t n, where t = bs/2c, the homogeneous
Lee weight enumerator ishomogeneous Lee weight

enumerator
LA(x, y) =

∑
v∈A

xtn−wL(v)ywL(v) .

When F = Z4, the homogeneous Lee weight enumerator is

LA(x, y) =
∑
v∈A

x2n−wL(v)ywL(v) .

For a particular word v ∈ Zn4 we see that

x2n−wL(v)ywL(v) = (x2)w0(v)(xy)w1(v)(y2)w2(v)(xy)w3(v) ,

and therefore
LA(x, y) = CA

(
x2, xy, y2, xy

)
.

(9.5.3) Theorem. If A is a Z4-linear code, then

LA⊥(x, y) = |A|−1LA(x+ y, x− y) .
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Proof. We use Theorem 9.5.2.

LA⊥(x, y) = CA⊥
(
x2, xy, y2, xy

)
= |A|−1 CA

(
x2 + xy + y2 + xy, x2 + ixy − y2 − ixy,
x2 − xy + y2 − xy, x2 − ixy − y2 + ixy

)
= |A|−1 CA

(
(x+ y)2, x2 − y2, (x− y)2, x2 − y2

)
= |A|−1 LA(x+ y, x− y) . 2

It is notable (and significant) that the transformation

x −→ x+ y y −→ x− y ,

which takes the homogeneous Lee weight enumerator of the Z4-linear code A to
|A| times that of its dual, is the same transformation that takes the homogeneous
weight enumerator of the binary linear code A to |A| times that of its dual. (See
Theorem 9.1.1(2).)
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Appendix A

Some Algebra

This appendix is broken into three sections.

The first section discusses doing basic arithmetic and vector algebra over
arbitrary fields of coefficients, rather than restricting to the usual rational, real,
or complex fields. Anyone who has had contact with some abstract algebra at
college level should be comfortable with this material. Those already familiar
with it should be aware that the section contains some of the definitions that
we shall be using, so it can not be skipped entirely.

The second section deals with the fundamentals of polynomial algebra with
coefficients from an arbitrary field. This material is more advanced but most
should again look familiar, particularly to students who have had an undergrad-
uate level abstract algebra sequence.

The final section covers more specialized topics that may not seem familiar.

A-155
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A.1 Basic Algebra

A.1.1 Fields

In doing coding theory it is advantageous for our alphabet to have a certain
amount of mathematical structure. We are familiar at the bit level with boolean
addition (EXCLUSIVE OR) and multiplication (AND) within the set {0, 1}:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

We wish to give other alphabets, particularly finite ones, a workable arithmetic.
The objects we study (and of which the set {0, 1} together with the above
operations is an example) are called fields. A field is basically a set that possesses
an arithmetic having (most of) the properties that we expect — the ability to
add, multiply, subtract, and divide subject to the usual laws of commutativity,
associativity, and distributivity. The typical examples are the field of rational
numbers (usually denoted Q), the field of real numbers R, and the field of
complex numbers C; however as just mentioned not all examples are so familiar.
The integers do not constitute a field because in general it is not possible to
divide one integer by another and have the result still be an integer.

A field is, by definition, a set F , say, equipped with two operations, + (addi-field

tion) and · (multiplication), which satisfy the following seven usual arithmetic
axioms:

(1) (Closure) For each a and b in F , the sum a+ b and the product
a · b are well-defined members of F .

(2) (Commutativity) For all a and b in F , a+b = b+a and a·b = b·a.

(3) (Associativity) For all a, b, and c in F , (a+ b) + c = a+ (b+ c)
and (a · b) · c = a · (b · c).

(4) (Distributivity) For all a, b, and c in F , a · (b+ c) = a · b+ a · c
and (a+ b) · c = a · c+ b · c.

(5) (Existence of identity elements) There are distinct elements 0 and
1 of F such that, for all a in F , a+0 = 0+a = a and a ·1 = 1 ·a = a.

(6) (Existence of additive inverses) For each a of F there is an ele-
ment −a of F such that a+ (−a) = (−a) + a = 0.

(7) (Existence of multiplicative inverses) For each a of F that does
not equal 0, there is an element a−1 of F such that a · (a−1) =
(a−1) · a = 1.

It should be emphasized that these common arithmetic assumptions are the
only ones we make. In particular we make no flat assumptions about operations
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called “subtraction” or “division”. These operations are best thought of as the
“undoing” respectively of addition and multiplication and, when desired, can be
defined using the known operations and their properties. Thus subtraction can
be defined by a− b = a+ (−b) using (6), and division defined by a/b = a · (b−1)
using (7) (provided b is not 0).

Other familiar arithmetic properties that are not assumed as axioms either
must be proven from the assumptions or may be false in certain fields. For
instance, it is not assumed but can be proven that always in a field (−1)·a = −a.
(Try it!) A related, familiar result which can be proven for all fields F is
that, given a and b in F , there is always a unique solution x in F to the
equation a+x = b. On the other hand the properties of positive and/or negative
numbers familiar from working in the rational field Q and the real field R do
not have a place in the general theory of fields. Indeed there is no concept at
all of “negative” or “positive” number for the complex field C or the field {0, 1}
discussed above.

The only thing keeping the integers Z from being a field is the axiom (7)
concerning multiplicative inverses. Axioms (1)-(6) are valid for Z, but (7) fails
miserably; indeed 1 and −1 are the only integers that possess multiplicative
inverses that are also integers. The integers do satisfy two axioms weaker than
(7) but still useful.

(7′) (Cancellation) If a is not 0 and a · b = a · c, then b = c.

(7′′) (No Zero Divisors) If a · b = 0, then a = 0 or b = 0.

Axiom (7′) is a direct consequence of (7), because multiplying both sides of
a · b = a · c by a−1 leaves b = c. However (7) is not a consequence of (7′) as (7′)
is true in Z while (7) is not. Similarly axiom (7′′) is a consequence of (7). If
one of a or b is not zero, then multiplying the lefthand side of a · b = 0 by its
inverse reveals the other as equal to 0. Again (7′′) is true in Z while (7) is not,
so that (7) is not a consequence of (7′′).

In fact axioms (7′) and (7′′) are equivalent in the following sense: if the set
R has operations + and · that satisfy (1) through (6), then either both axioms
(7′) and (7′′) hold or neither does. To see that (7′) implies (7′′), apply (7′) to
a · b = a · 0. On the other hand, to see that (7′′) implies (7′), apply (7′′) to
a · (b− c) = 0.

We are interested mainly in finite fields, those fields with a finite number finite fields

of elements of which {0, 1} is our only example so far. The most familiar way
of giving a reasonable arithmetic to a finite set is to do modular arithmetic
in the integers. For a fixed positive integer n, called the modulus we give the modulus

set Zn = {0, 1, . . . , n − 1} an arithmetic by first performing the usual integer
addition or multiplication and then reducing the result modulo n back into the
set Zn by subtracting off multiples of n. This is “clock arithmetic” when n = 12
(or, these days, when n = 24).

The question arises as to whether Zn is a field. The field {0, 1} already
mentioned several times is nothing other than the integers mod 2, Z2. It is not
difficult to check that Zn with modular arithmetic satisfies axioms (1) through
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(6). On the other hand, the answer as to whether Zn satisfies (7) or the weaker
(7′) and (7′′) depends upon the particular value of the modulus n. For instance,
all are true when n = 2. For n = 6 we have 2 ·3 = 0 (mod 6) (whence 2 ·3 = 2 ·0
(mod 6)); yet neither 2 nor 3 equals 0 in the integers mod6. Therefore each of
(7), (7′), and (7′′) is false in Z6.

Although the arithmetics of Z and Z6 do not make them into fields, the
structures clearly are of interest. A set F equipped with an addition and multi-
plication that satisfy (1) through (6) we shall call a commutative ring. (“Com-commutative ring

mutative” because the multiplication satisfies the commutative law.) A ringring
satisfies each of (1) through (6) with the possible exception of the commuta-
tivity of multiplication. If the commutative ring F additionally satisfies the
equivalent axioms (7′) and (7′′), then it is called an integral domain (in honorintegral domain

of the integers!). Clearly all fields and all integral domains are commutative
rings. As (7) implies (7′) and (7′′), every field is also an integral domain while
the integers provide the prime example of an integral domain that is not a field.
Z6 is an example of a commutative ring that is not an integral domain and so
certainly not a field.

An element of a ring that has an inverse, as in (7), is called a unit; so fieldsunit

are exactly those commutative rings in which every nonzero element is a unit.

(A.1.1) Lemma. Let n be an integer larger than 1. The following are equiv-
alent:

(1) n is a prime;
(2) Zn is an integral domain;
(3) Zn is a field.

Proof. (1) implies (2): Assume n is a prime, and that a · b = 0 in Zn.
Then the integer ab is a multiple of n. As n is prime, it divides either a or b;
hence either a or b is 0 in Zn. This verifies axiom (7′′).

(2) implies (1): As with our example of Z6, if n is not prime, then each
factorization ab = n in Z with 1 < a, b < n gives rise to an equality a · b = 0 in
Zn with neither a nor b equal to 0. Thus if n is not a prime, then Zn does not
satisfy (7′′) and so is not an integral domain.

(3) implies (2) as axiom (7) implies axioms (7′) and (7′′).
(2) implies (3): Let Z]n = {1, . . . , n − 1}, the set of nonzero elements of

Zn. Choose a ∈ Z]n. As (by assumption) Zn is an integral domain, for distinct
elements z1, z2 ∈ Z]n, the products a · z1 and a · z2 are also distinct by (7′).
Therefore the set aZ]n = {a · z|z ∈ Z]n} contains n− 1 distinct members of Zn.
Indeed 0 6∈ aZ]n by (7′′), so aZ]n is a subset of Z]n. Thus aZ]n is a subset of Z]n
containing the same number of elements as Z]n. We conclude that Z]n = aZ]n.
In particular, 1 ∈ Z]n = aZ]n; and there is a z in Z]n with a · z = 1. Therefore
all the nonzero members of Zn have multiplicative inverses in Zn, and Zn is a
field. 2

(A.1.2) Problem. Extend the argument of Lemma A.1.1 that (2) implies (3) to
prove the more general result that every finite integral domain is in fact a field. (The
integers of course provide an example of an infinite integral domain that is not a field.)
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If F is a field and K is a subset of F , K is said to be a subfield of F provided subfield

that the set K equipped with the addition and multiplication of F is a field in
its own right. If this is the case, then we write K ≤ F or F ≥ K. The addition
and multiplication of K will be commutative, associative, and distributive as
they already are in F ; so the crucial requirements are that K be closed under
addition and multiplication and contain the additive and multiplicative inverses
of all its elements. As examples, the rational field Q is a subfield of the real
field R, which in turn is a subfield of the complex field C.

If K is a subfield of F , then we call F an extension field of K. Thus C is an extension field

extension field of R, and both C and R are extension fields of Q. As we shall
mainly be concerned with finite fields, important examples of subfields for us
are provided by the next result.

(A.1.3) Lemma. Let F be a finite field, and consider the subset K of F
composed of all elements of F that can be written as a sum of 1’s:

K = {1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, . . . }.

Then K is a subfield Zp of F , for some prime p.

Proof. Notice that by definition K is closed under addition, while an
easy application of the distributive law in F shows that K is closed under
multiplication.

As F is finite, so is K. Therefore there are distinct positive integers m and
n (m larger than n) with the sum of m 1’s equal to the sum of n 1’s. (Indeed,
there are many such pairs m,n.) Equivalently the sum of m− n 1’s equals 0 in
F and K, m− n a positive integer. Let p be the smallest positive integer such
that 0 is a sum of p 1’s in F and K. We conclude that K is composed precisely
of the p distinct elements

1, 1 + 1, . . . ,
p∑
i=1

1 =

p times︷ ︸︸ ︷
1 + · · ·+ 1 = 0.

The set K is therefore a copy of Zp. As K is contained in the field F , no
two nonzero members of K have product 0; so by Lemma A.1.1 p is a prime,
completing the result. 2

The prime p of Lemma A.1.3 is called the characteristic of the field F , and characteristic

K is (for obvious reasons) called the prime subfield of F . prime subfield
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A.1.2 Vector spaces

The passage from the real line to real, Euclidean, three-dimensional space is the
most familiar case of the passage from a field to a vector space over a field. If
F is a field and n is any positive integer, we may use the arithmetic structure
of F to give the set Fn of n-tuples from F ,

Fn = {(a1, a2, . . . , an) | ai ∈ F},

additive and multiplicative structures as well. We define “vector addition” of
members of Fn via

(a1, a2, . . . , an)⊕ (b1, b2, . . . , bn) = (c1, c2, . . . , cn)

where ci = ai + bi (addition in F ), for each i = 1, . . . , n. We define “scalar
multiplication” of members of Fn by members of F via

α ? (a1, a2, . . . , an) = (α · a1, α · a2, . . . , α · an)

where α · ai is the usual multiplication in the field F . These two operations
make Fn into a vector space over F .

Given a field F , a vector space V over F is, by definition, a set V (whosevector space

members are called the vectors of V ) equipped with two operations ⊕ (vector
addition) and ? (scalar multiplication), satisfying the following:

(1) (Closure) For each v and w in V , v⊕w is a well-defined member
of V . For each α in F and v in V , α ?v is a well-defined member of
V .

(2) (Commutativity) For each v and w in V , v ⊕w = w ⊕ v.

(3) (Associativity) For each u,v,w in V , (u⊕v)⊕w = u⊕ (v⊕w.
For each α, β in F and v in V , (α · β) ? v = α ? (β ? v).

(4) (Distributivity) For each α, β in F and v,w in V , (α+ β) ? v =
(α ? v)⊕ (β ? v) and α ? (v ⊕w) = (α ? v)⊕ (α ?w).

(5) (Existence of vector identity) There is a vector 0 of V such that,
for each v of V , v ⊕ 0 = 0⊕ v = v.

(6) (Existence of vector inverses) For each v of V there is a vector
−v of V such that v ⊕ (−v) = (−v)⊕ v = 0.

(7) (Scalar identity properties) For each v of V , 1 ? v = v and
0 ? v = 0.

For brevity, we sometimes say that V is an F -vector space or even an F -space.F -space

Note that scalar multiplication ? is not multiplication of one vector by another
but multiplication of a vector in V by a member of the field F . (F is usually
called the scalar field of the vector space V , and its members are scalars.)scalar field

scalars
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The set Fn with the operations defined above is now easily seen to be a vector
space over F . The similarity between the above axioms and those of Section
A.1.1 explains the fact that F may be thought of as a vector space over itself.
(After all, the distinction between F and F 1 is merely a pair of parentheses.)
Many examples of vector spaces do not resemble the space of n-tuples at all.
For instance, the set of all continuous and differentiable functions on the real
line is a vector space over the real numbers.

Most of the vector spaces we shall study will naturally sit inside vector spaces
Fn (because the spaces Fn are the natural universes for the codes we study).
A subset W of the vector space V over F is a subspace of V if the operations subspace

of V give W the structure of a vector space over F in its own right. In this
case we shall write W ≤ V or V ≥ W . As most of the axioms (2)-(7) will
have already been checked within V , the main force of this definition is in the
assumption that W is closed as in (1). In fact, the subset W of V will be a
subspace of V if and only if, for all α in F and all v,w in W , α ? v is in W
and v ⊕ w is in W . Thus V itself and {0} are rather trivial subspaces of V .
More typical is the subspace of Fn composed of all vectors (a1, a2, . . . , an) with
a1 + a2 + · · ·+ an = 0.

(A.1.4) Problem. Prove that the nonempty subset W of the F -vector space V is a
subspace if and only if αv + w ∈W , for all v,w ∈W and α ∈ F .

If W is a subspace of V , then a cosets of W in V is a translate of W by some cosets

fixed vector. If we translate each vector of W by the vector v, we get the coset
x +W = {x + w | w ∈ W }. You should convince yourself that if y ∈ x +W ,
then y +W = x +W ; so two cosets are either disjoint or equal. As an example,
a typical subspace of dimension 2 in 3-dimensional Euclidean space is a plane
through the origin, while a typical coset is a translate of such a subspace and
so is a plane that need not be through the origin.

One way of constructing a subspace of the F -vector space V is by taking
the span 〈S〉 of a nonempty subset S of V . This is, by definition, the smallest span

subspace of V that contains S; however this may not be the best way of thinking
of 〈S〉. We usually view 〈S〉 instead as the subspace composed of all linear
combinations of members of S:

〈S〉 = {
∑
v∈S

αvv |αv ∈ F}.

You should convince yourself that these two definitions of 〈S〉 are equivalent. If
V = 〈S〉, then S is a called a spanning set in V . spanning set

A basis of the vector space V is a minimal spanning set for V , a set that basis
spans V but no proper subset of it spans V .

(A.1.5) Theorem. If the vector space V has a finite basis B, then every basis
of V contains the same number of vectors as B.

This theorem will be proven in the following subsection. (The theorem is in fact
true without the assumption that B is finite.) The common size for the bases
of V is the dimension of V . dimension
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A set ∆ of vectors from V is called linearly dependent if there is a set oflinearly dependent

coefficients αv, for v ∈ ∆, such that the linear combination
∑

v∈∆ αvv equals
0. The equation ∑

v∈∆

αvv = 0

is then called a linear dependence of ∆.linear dependence

A subset ∆ is linearly independent if it is not linearly dependent. The max-linearly independent
imal linearly independent subsets of V are precisely the bases of V . (Check!)
In particular, every linearly independent subset of V belongs to a basis. (For
infinite dimensional spaces, this is the best way to see that a basis exists.)

(A.1.6) Problem.
(a) Let E be an extension field of F . Prove that E is a vector space over F with

scalar multiplication induced by the field multiplication of E.
(b) Using (1), show that every finite field has a prime power number of elements.

If q is a power of a prime, we often write GF (q) or Fq for a field containingGF (q)

Fq q elements.

Remarks on notation

Notice that in vector spaces we have two concepts of “addition” ( + in F and
⊕ in V ) and two of “multiplication” ( · in F and ? in V ) and that for formal
precision we must distinguish between them. (See, for instance, axioms (3) and
(4) above.) Often to simplify notation we adopt the usual practice of denoting
all forms of addition by + and all forms of multiplication by juxtaposition; so
for α, β in F and v,w in V we usually write

αβ for α · β ; v + w for v ⊕w ; and αv for α ? v.

In doing this we risk ambiguity. To counter this possibility we often adopt other
conventions which may already have been noticed. For instance, we usually write
vectors in boldface thus: v.
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A.1.3 Matrices

Just as we can examine vector spaces over arbitrary fields, so can we define
matrices with entries from an arbitrary field. If K is a field, we denote by
Km,n the collection of all m× n matrices with entries from K. Notice that the
vector space Kn of row vectors of length n is equal to K1,n. The vector space
of column vectors of length m is Km,1. The usual componentwise addition and
subtraction is defined on Km,n and has all the expected properties. Together
with scalar multiplication, these give Km,n the structure of a vector space over
K of dimension mn.

Matrix multiplication is also defined by the familiar formula (i.e., entries of
the product being the dot product of rows of the first matrix with columns of
the second). Matrix multiplication also has all the expected properties — as-
sociativity, distributivity over addition, block multiplication. Because the most
usual matrix manipulations involve only addition, subtraction, and multiplica-
tion, the entries need not always be restricted to a field but might instead be
from an integral domain (or even a ring).

You may notice that the set Kn,n of square matrices together with the
operations of matrix addition and multiplication satisfies all the axioms (1)
through (6) with the exception of commutativity of multiplication. Thus Kn,n

is an example of a noncommutative ring.
If A is an m× n matrix with entries from the field K, then the row space of row space

A, RS(A), is the subspace of Kn that is spanned by the rows of A. (We shall
often look at codes that have been defined as the row space of certain matrices.)
Similarly the column space of A, CS(A), is the subspace of Km,1 spanned by column space

the columns of A. The null space of A, NS(A), is the space of column vectors null space
x ∈ Kn,1 such that Ax = 0. (Notice that the null space can be thought of as
the space of all linear dependencies on the set of columns.) The dimension of
the row space of A is the row rank of A, and the dimension of the column space row rank

of A is the column rank of A. The dimension of NS(A) is the nullity of A. column rank
nullityMore complicated but familiar matrix processes can also be done over arbi-

trary fields. In particular, Gauss-Jordan elimination is still available. That is,
by sequences of elementary row operations on a matrix it is possible to transform
the matrix into reduced row echelon form. Several of the standard consequences
of Gaussian elimination then become available. In particular we have:

(A.1.7) Theorem. Let A be an m× n matrix with entries from the field K.
(1) The row rank of A equals the column rank of A. (This common dimension

being called the rank of A.) rank

(2) The rank of A plus the nullity of A equals n, the number of columns of
A.

Before proving this theorem, we give a detailed discussion of echelon form
and its properties. The leading entry of a row is its first nonzero entry, reading leading entry

from left to right.
The matrix A is said to be in row echelon form if it satisfies: row echelon form
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(1) the leading entry of each row is to the right of the leading entries
of previous rows;

(2) all rows composed entirely of zeros are at the bottom of the
matrix.

The matrix A is said to be in reduced row echelon form RREF, if it additionallyreduced row echelon form
RREF satisfies:

(3) the leading entry of each row equals 1 and is the only nonzero
entry in its column.

The various leading entries of the matrix RREF(A) are also sometimes called
the pivot entries of RREF(A) and the columns containing them are the pivotpivot entries

columns of RREF(A) and A. The row rank of RREF(A) (indeed any matrixpivot columns
in row echelon form) is particularly easy to calculate; it is just the number of
nonzero rows. It only takes a few seconds more to realize that this is also equal
to the column rank of RREF(A). We will reduce the proof of Theorem A.1.7
to this special case, where we have just seen that the theorem (or at least its
first part) is evident.

Elementary row operations have one of three forms:

(i) subtracting a multiple of one row from another;

(ii) interchanging two rows;

(iii) multiplying a row by a nonzero constant.

The usual elimination techniques then give:

(A.1.8) Theorem. Every matrix A with entries from a field can be trans-
formed by a sequence of elementary row operations into a matrix RREF(A)
that is in reduced row echelon form. 2

The verification is routine, but it is important that the matrix entries are from
a field. For more general rings the result may not be true. (Imagine what could
be done by integer row operations to a matrix with entries from Z whose first
column contained only even integers.)

The notation suggests that RREF(A) is uniquely determined. This is indeed
the case.

(A.1.9) Problem. Prove that the matrix A ∈ Km,n, K a field, has a unique
row reduced echelon form. ( Hint: Prove that every vector of RS(A) has its leftmost
nonzero entry in a pivot column, then either (i) try to write the rows of a second
RREF as linear combinations of the rows of the first, or (ii) observe that the pivot
columns are the leftmost columns that form a basis for CS(A).)

As expected, each elementary row operation can be accomplished through
left multiplication by an appropriate elementary matrix. Let aεi,j be the matrix
that has a in its (i, j)-entry and 0’s elsewhere (and write εi,j for 1εi,j), and let
I be the identity matrix. Then left multiplication by
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(i) I + aεi,j adds a times row j to row i;

(ii) I − εi,i − εj,j + εi,j + εj,i interchanges rows i and j;

(iii) I + (a− 1)εi,i multiplies row i by a.

The inverse of I + aεi,j is I − aεi,j ; I − εi,i − εj,j + εi,j + εj,i is its own inverse;
and I + (a−1 − 1)εi,i is the inverse of I + (a − 1)εi,i for nonzero a. Therefore
each elementary matrix is invertible. In particular we have XA = RREF(A),
where the invertible matrix X is the product of those elementary matrices that
correspond to the elementary row operations that take A to RREF(A).

(A.1.10) Problem. Let Y be an invertible k × k matrix with entries from the field
K, and let A be the k × 2k matrix

`
Y | I

´
, the columns of Y followed by the columns

of a k × k identity matrix. Prove that RREF(A) =
`
I |Y −1

´
.

(A.1.11) Problem. Let Y be a k × k matrix with entries from the field K. Prove
that the following are equivalent:

(a) Y is invertible;
(b) NS(Y ) = 0;
(c) Y has rank k;
(d) RREF(Y ) = I.

(A.1.12) Proposition. Let A be an m×n matrix with entries from the field
K.

(1) The column rank of RREF(A) equals the row rank of RREF(A).
(2) RS(RREF(A)) = RS(A);
(3) NS(RREF(A)) = NS(A);
(4) dim(CS(RREF(A)) = dim(CS(A)), that is, RREF(A) has column rank

equal to the column rank of A.

Proof. (1) Both numbers are equal to the number of pivot entries in
RREF(A). Each of (2), (3), and (4) can be proven using the fact that there
is an invertible matrix X with XA = RREF(A). For (4) it should be noted
that (whether X is invertible or not) we have CS(XA) = XCS(A) = {Xa |a ∈
CS(A) }. 2

(A.1.13) Problem. Prove completely parts (2), (3), and (4) of the proposition.
Give an example that shows that CS(RREF(A)) and CS(A) need not be equal.

If Σ is a set of vectors in Fn, then we can easily find a basis for 〈Σ〉 by
forming the matrix A whose rows are the members of Σ and then passing to
RREF(A) with its nonzero rows giving the desired basis. This observation is
the basis for our proof of Theorem A.1.5: a vector space V with a finite basis
B has all of its bases of size |B|.

Proof of Theorem A.1.5.
Choose B = {b1, . . . ,bd} to be a basis for V of smallest size (necessarily

finite). Let C = {c1, . . . , cd , . . . } be a second basis of V . Note that |C| ≥ d = |B|
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by choice. (If we encounter a second basis that is infinite, then for C we instead
choose a finite subset of the basis that has at least d+ 1 members.)

For each i, write ci as a linear combination of members of B:

ci =
d∑
j=1

ai,jbj ;

and let the matrix A have (i, j)-entry ai,j . As C is linearly independent, the row
rank of A equals |C|. However by Proposition A.1.12 the row rank of A equals
the row rank of RREF(A) which is at most d, the number of columns of A.
Therefore |C| ≤ d, completing the proof. 2

For any matrix A, another advantage to having R = RREF(A) available
is the ease with which its null space (and so that of A) can be calculated. Let
the (i, j)-entry of R be ri,j , and assume that the pivot entries are ri,p(i) = 1,
for i = 1, . . . , r, (r being the row rank of A). Set P = { p(i) | i = 1, . . . , r}, the
indices of the pivot columns of R.

For each nonpivot column k 6∈ P we construct a null vector nk of R with a
1 in position k and 0 in all other nonpivot columns. The j-entry of nk is given
by:

(nk)j = 1 if j = k;
(nk)j = 0 if j 6= k and j 6∈ P;
(nk)j = −ri,k if j = p(i) ∈ P.

This produces n − r linearly independent vectors of NS(R). It is easy to see
that 0 is the only null vector of R (and A) that is 0 in all nonpivot columns.
Thus {nk | k 6∈ P} is a basis of NS(R) = NS(A).

(A.1.14) Problem. Check that each nk is indeed a null vector of R, and supply the
remaining details of the proof that these vectors form a basis for NS(R).

In particular we have just proven that the nullity of A is equal to the number of
nonpivot columns in RREF(A). This together with Proposition A.1.12 allows
us to prove Theorem A.1.7 easily.

Proof of Theorem A.1.7.
For part (1), we have:

row rank of A = row rank of RREF(A) by A.1.12(2)
= column rank of RREF(A) by A.1.12(1)
= column rank of A by A.1.12(4).

For part (2), if n is the number of columns in A (and RREF(A)), then

rank of A = number of pivot columns in RREF(A) by A.1.12(1)
= n minus number of nonpivot columns in RREF(A)
= n minus the nullity of A by the above.

Thus both parts of the theorem are proved. 2

We are familiar with the fact that division by matrices is a much trickier
process than the other three arithmetic operations. In particular some concept
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of determinant is usually needed to talk about matrix inverses. Again the usual
theory of determinants carries over to square matrices over arbitrary fields (and
even rings). The standard formula gives a multiplicative function from Kn,n

into K. We shall have little need for this and leave the most elementary case as
an exercise.

(A.1.15) Problem. For a 2× 2 matrix A =

»
a b
c d

–
with entries from a commu-

tative ring R, we define the determinant det(A) = ad− bc. determinant
(a) Prove that if A and B are both 2 × 2 matrices with entries from R then

det(AB) = det(A) det(B).
(b) Prove that A has a matrix inverse with entries from R if and only if det(A)

has an inverse in R.
(c) Prove that when R is a field, A has a matrix inverse with entries from R if and

only if det(A) 6= 0.
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A.2 Polynomial Algebra over Fields

A.2.1 Polynomial rings over fields

We have introduced fields in order to give arithmetic structure to our alphabet
F . Our next wish is then to give arithmetic structure to words formed from
our alphabet. Additive structure has been provided by considering words as
members of the vector space Fn of n-tuples from F for appropriate n. Scalar
multiplication in Fn does not however provide a comprehensive multiplication
for words and vectors. In order to construct a workable definition of multipli-
cation for words, we introduce polynomials over F .

Let F be a field, and let x be a symbol not one of those of F , an indetermi-
nate. To any n-tupleindeterminate

(a0, a1, a2, . . . , an−1)

of members of F we associate the polynomial in x :polynomial

a0x
0 + a1x

1 + a2x
2 + · · ·+ an−1x

n−1.

In keeping with common notation we usually write a0 for a0x
0 and a1x for a1x

1.
Also we write 0 · xi = 0 and 1 · xi = xi. We sometimes use summation notation
for polynomials:

d∑
i=0

aix
i = a0x

0 + a1x
1 + a2x

2 + · · ·+ adx
d.

We next define F [x] as the set of all polynomials in x over F :F [x]

F [x] = {
∞∑
i=0

aix
i | ai ∈ F, ai = 0 for all but a finite number of i}.

Polynomials are added in the usual manner:

∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)xi.

This addition is compatible with vector addition of n-tuples in the sense that
if the vector a of Fn is associated with the polynomial a(x) and the vector b
is associated with the polynomial b(x), then the vector a + b is associated with
the polynomial a(x) + b(x).

Polynomial multiplication is also familiar:

∞∑
i=0

aix
i ·
∞∑
j=0

bjx
j =

∞∑
k=0

ckx
k,

where the coefficient ck is given by convolution: ck =
∑
i+j=k aibj . This multi-

plication is the inevitable consequence of the distributive law provided we require



A.2. POLYNOMIAL ALGEBRA OVER FIELDS A-169

that axi · bxj = (ab)xi+j always. (As usual we shall omit the · in multiplication
when convenient.)

The set F [x] equipped with the operations + and · is the polynomial ring in polynomial ring

x over the field F . F is the field of coefficients of F [x]. coefficients
Polynomial rings over fields have many of the properties enjoyed by fields.

F [x] is closed and distributive nearly by definition. Commutativity and additive
associativity for F [x] are easy consequences of the same properties for F , and
multiplicative associativity is only slightly harder to check. The constant poly-
nomials 0x0 = 0 and 1x0 = 1 serve respectively as additive and multiplicative
identities. The polynomial ax0 = a, for a ∈ F , is usually referred to as a con-
stant polynomial or a scalar polynomial. Indeed if we define scalar multiplication constant polynomial

scalar polynomialby α ∈ F as multiplication by the scalar polynomial α(= αx0), then F [x] with
polynomial addition and this scalar multiplication is a vector space over F , a
basis for which is the subset {1, x, x2, x3, . . . , xi, . . .}. (Note that (−1) · a(x) is
the additive inverse of the polynomial a(x).)

We therefore see that, as with the integers, the only thing that keeps F [x]
from being a field is the lack of multiplicative inverses. Every nonzero scalar
polynomial in F [x] has a multiplicative inverse, but as we shall see below no
other polynomial of F [x] does. Again like the integers, F [x] does satisfy the
cancellation law and so is an integral domain. These last two claims follow from
some results of independent interest. To prove them we first need a (once again
familiar) definition. The degree of the polynomial a(x) of F [x] is the largest degree

power of x occurring in a(x) with a nonzero coefficient. Thus a(x) =
∑d
i=0 aix

i

has degree d provided that ad is not 0. In this case we write deg(a(x)) = d.
This defines a degree for all nonzero polynomials. By convention we define the
degree of the scalar polynomial 0 to be −∞.

Every polynomial a(x) of degree d not equal to −∞ has a unique scalar
multiple whose xd term has coefficient 1. (Indeed if a(x) =

∑d
i=0 aix

i, then the
appropriate multiple is a−1

d a(x).) A polynomial whose highest degree term has
coefficient 1 is called monic. monic

(A.2.1) Proposition. Let a(x) and b(x) be polynomials of F [x], for F a
field.

(1) deg(a(x)) + deg(b(x)) = deg(a(x)b(x));
(2) deg(a(x) + b(x)) ≤ max

(
deg(a(x)),deg(b(x))

)
. 2

(A.2.2) Problem. Prove the proposition.

(A.2.3) Corollary. Let F be a field.
(1) An element of F [x] has a multiplicative inverse if and only if it has degree

0.
(2) If a(x) · b(x) = 0, then a(x) = 0 or b(x) = 0.
(3) If a(x) is nonzero and a(x)b(x) = a(x)c(x) in F [x], then b(x) = c(x).

Proof. (1) We have already mentioned that polynomials of degree 0 (i.e.,
nonzero scalars) have inverses. Suppose that b(x) is the inverse of the polynomial
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a(x). Then a(x)b(x) = 1, so examining degrees we have deg(a(x))+deg(b(x)) =
0. The two terms on the left must be either −∞ or nonnegative integers. We
see that the only possibility is that both are 0, as claimed.

(2) The righthand side has degree −∞, so at least one of the factors on the
lefthand side has degree −∞ as well.

(3) Apply (2) to the equation a(x)(b(x)− c(x)) = 0. 2

(A.2.4) Problem. Let a(x), b(x), c(x), d(x) be nonzero polynomials in F [x], for F
a field. Suppose that a(x) = b(x)c(x) and b(x) = a(x)d(x). Prove that c(x) = c is a
constant polynomial and that d(x) = c−1 is also constant.
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A.2.2 The division algorithm and roots

In the previous section we noted that, like the integers, polynomial rings over
fields are integral domains. Continuing the parallel with the integers, we note
that although in general polynomials do not have inverses, we can still perform
division with remainder terms.

(A.2.5) Theorem. ( The Division Algorithm.) Let F be a field, and let
a(x) and b(x) be two polynomials of F [x], b(x) not 0. Then there are unique
polynomials q(x) and r(x) satisfying

(1) a(x) = b(x)q(x) + r(x);
(2) deg(r(x)) < deg(b(x)). 2

This is to be compared with the standard result in the integers that for
integers a, b with b 6= 0 there are unique q and r with a = bq + r and 0 ≤
r < b. The division algorithm is absolutely essential for us, but its proof is
largely mechanical, composed of a verification that standard “polynomial long-
division” works, as expected. There is a subtlety here, however. In particular,
the division algorithm is not valid for polynomials with coefficients from the
integers rather than fields. The difficulty is not hard to see. If a(x) =

∑m
i=0 aix

i

and b(x) =
∑n
j=0 bjx

j , where m = deg(a(x)) is larger than n = deg(b(x)), then
to carry out the first step of the long-division we must subtract from a(x) the
multiple (am/bn)xm−nb(x) of b(x). This requires the ability to divide by bn in
F , and this for arbitrary nonzero bn in F , if the division algorithm is to be true
in general.

Of course, the most important case is when the remainder term r(x) is 0. If,
for nonzero polynomials a(x) and b(x) of F [x], there is a polynomial q(x) ∈ F [x]
with a(x) = b(x)q(x), then we say that b(x) is a factor of a(x), that a(x) is a factor

multiple of b(x), and that b(x) divides a(x). multiple

divides
(A.2.6) Problem. Prove Theorem A.2.5.
( Hint: For existence, subtract (amb

−1
n )xm−nb(x) from a(x), then use induction to

divide b(x) into the resulting polynomial of smaller degree than a(x). For uniqueness
subtract one such answer from the other to get 0, and from this conclude first that
the two remainder terms are equal and then that the two dividends are equal. It is
important here that F [x] is an integral domain.)

For an α in F and polynomial p(x) =
∑
i pix

i in F [x], we write p(α) for∑
i piα

i. We call this evaluation of p(x) at α, or, more loosely, substituting α evaluation

for x in p(x).

(A.2.7) Problem. Prove that if p(x) + q(x) = a(x) and p(x)q(x) = b(x) in F [x],
then p(α) + q(α) = a(α) and p(α)q(α) = b(α) in F .

An easy consequence of the division algorithm is

(A.2.8) Lemma. For p(x) a polynomial of F [x], F a field, and α ∈ F ,
p(x) = (x− α)q(x) + p(α).
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Proof. By the Division Algorithm A.2.5 there are polynomials q(x) and
r(x) such that p(x) = (x−α)q(x) + r(x) with deg(r(x)) < deg(x− a) = 1. The
polynomial r(x) must therefore be a constant r. We find the exact value of r
by substituting α for x: p(α) = (α− α)q(α) + r = 0 + r = r. 2

Notice that a particular consequence of Lemma A.2.8 is that p(α) is 0 if and
only if x− α is a factor of p(x). If this is the case, then we say that α is a rootroot

of p(x).

(A.2.9) Lemma. Let p(x) = a(x)b(x) where a(x), b(x), p(x) are polynomials
of F [x] for F a field. If α ∈ F is a root of p(x), then it is a root of either a(x)
or b(x).

Proof. 0 = p(α) = a(α)b(α). As F is a field, this forces either a(α) = 0 or
b(α) = 0. 2

(A.2.10) Proposition. Let p(x) be a nonzero polynomial in F [x], F a field,
of degree d. Then p(x) has at most d distinct roots in F .

Proof. The proof proceeds by induction on d. The result is clearly true
for d = 0, 1. Assume now that d > 1 and that the proposition is true for all
polynomials of degree less than d. Consider a polynomial p(x) of degree d. If
p(x) has no roots in F , then the proposition clearly holds for p(x) (as 0 < d).
Thus we may assume that p(x) has at least one root, α say. Then by Lemma
A.2.8 p(x) = (x− α)q(x), for some q(x) of degree d− 1 (by Proposition A.2.1).
By Lemma A.2.9 any root of p(x) other than α must also be a root of q(x).
However by induction q(x) has at most d− 1 roots. Therefore p(x) has at most
1 + (d− 1) = d roots, as claimed. This completes the induction. 2

(A.2.11) Theorem. ( Lagrange Interpolation.) Let f(x) be a polynomial
of degree d in F [x], F a field. Assume that, for distinct α1, . . . , αn of F with
d < n, we have f(αi) = βi. Then

f(x) =
n∑
i=1

βi

∏
j 6=i

x− αj
αi − αj


Proof. Let g(x) be the righthand side of the equation, a polynomial of

degree at most n − 1 with g(αi) = βi, for i = 1, . . . , n. Therefore f(x) − g(x)
has degree at most n − 1 but has at least n distinct roots α1, . . . , αn. Thus
f(x)− g(x) is the zero polynomial by Proposition A.2.10. That is, f(x) = g(x).

2

(A.2.12) Problem. Let a0, . . . , am, b0, ..., bm be elements of the field F with the ai
nonzero. Then the columns of the matrix

P =

26664
a0b

0
0 a1b

0
1 · · · amb

0
m

a0b
1
0 a1b

1
1 · · · amb

1
m

...
...

. . .
...

a0b
m
0 a1b

m
1 · · · amb

m
m

37775
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are linearly independent over F if and only if the bj are distinct. ( Hint: By Propo-
sition A.1.12 the columns of square P are linearly independent if and only if its rows
are linearly independent. Prove that a linear dependence of the rows of P corresponds
to a polynomial that has each bj as a root.)

Remark. If in P we choose ai = 1, for all i, the result is the usual matrix
of Vandermonde type. Then Problem A.2.12 asserts the well-known fact that
the determinant of a Vandermonde matrix is nonzero. The matrix P can also
be viewed as a generalization of the usual discrete Fourier transform matrix.
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A.2.3 Modular polynomial arithmetic

Starting with the infinite integral domain Z we found finite rings by doing
arithmetic modulo specific fixed integers. This gave us finite alphabets with
good arithmetic structure. We would now like to extend this by giving structure
to strings of alphabet members. This is achieved by doing arithmetic in the
integral domain F [x], F a field, modulo a specific fixed polynomial.

Let d be any positive integer. For any field F , let F [x]d be the set of all
polynomials of F [x] of degree less than d, that is,

F [x]d = {f0 + f1x+ f2x
2 + · · · + fd−1x

d−1 | f0, f1, f2, . . . , fd−1 ∈ F}.

Then with the usual scalar multiplication and polynomial addition F [x]d is a
vector space over F of dimension d. Can we define a multiplication on F [x]d
to make it into a ring? Using the division algorithm we can (in fact in several
different ways).

Let m(x) be a fixed polynomial of F [x] of degree d. By the Division Algo-
rithm A.2.5, for any polynomial p(x) there is a unique polynomial r(x) deter-
mined by:

(i) deg(r(x)) < d;
(ii) p(x)− r(x) is a multiple of m(x) in F [x].
Now we may define a multiplication on F [x]d. For a(x), b(x) in F [x]d we

define multiplication modulo m(x) by

a(x) · b(x) = r(x) (mod m(x))

where r(x) is the remainder of a(x)b(x) upon division by m(x). We write F [x]
(mod m(x)) for the set F [x]d equipped with the operations of usual polynomialF [x] (mod m(x))

addition and multiplication modulo the polynomial m(x) of degree d. It is now
routine to check that these operations satisfy the first six axioms of Section
A.1.1, giving:

(A.2.13) Lemma. For any nonconstant polynomial m(x), F [x] (mod m(x))
is a commutative ring. 2

It should be noted that Lemma A.2.13 is not a purely trivial observation, but
its subtlety is largely embedded in the original definition. The least obvious fact
is that we are able to define multiplication consistently. The division algorithm
is required to do that. Checking multiplicative associativity and distributivity
also requires some care.

For the integers we found that modular arithmetic produced a field (indeed
an integral domain) precisely when the modulus was a prime. What is the
counterpart to a prime for polynomial rings? A polynomial m(x) ∈ F [x] of
degree d (> 0) is a prime polynomial if whenever m(x) divides the productprime polynomial

a(x)b(x) of the two polynomials a(x) and b(x), then in fact it divides at least
one of a(x) and b(x).

The following theorem is the counterpart for polynomial rings over fields of
the earlier result Theorem A.1.1 for the integers.
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(A.2.14) Theorem. Let F be a finite field and m(x) a nonconstant polyno-
mial of F [x]. The following are equivalent:

(1) m(x) is prime;
(2) F [x] (mod m(x)) is an integral domain;
(3) F [x] (mod m(x)) is a field.

Proof. (3) implies (2) by the definitions, and (2) implies (3) by Exer-
cise A.1.2, since the integral domain under discussion is finite with |F |deg(m(x))

elements.
(2) implies (1): Ifm(x) divides the product a(x)b(x), then it must also divide

the product a1(x)b1(x), where a1(x) is the remainder of a(x) upon division by
m(x) and b1(x) is the remainder of b(x) upon division by m(x). Here both a1(x)
and b1(x) have smaller degree than m(x). But then we have a1(x) · b1(x) = 0
(mod m(x)), so either a1(x) = 0 (mod m(x)) or b1(x) = 0 (mod m(x)) in the
integral domain F [x] (mod m(x)). One of the remainders is 0, and m(x) divides
a(x) or b(x).

(1) implies (2): Let g(x) and h(x) be members of F [x] (mod m(x)), that
is, polynomials of degree less than that of the prime polynomial m(x). If
g(x)h(x) = 0 (mod m(x)), then the product g(x)h(x) is a multiple of m(x).
Since m(x) is prime, either g(x) or h(x) is a multiple of m(x). That is, g(x) = 0
(mod m(x)) or h(x) = 0 (mod m(x)).

The theorem is in fact true without the assumption that |F | is finite, a fact
used here only in the proof that (2) implies (3). A strengthened version of the
theorem will appear later as Theorem A.2.22.

Related to the modular arithmetic statement

p(x) = q(x) (mod m(x)) in F [x] (mod m(x))

is the modular congruence statement modular congruence

p(x) ≡ q(x) (mod m(x)) in F [x] ,

which, by definition, says that

p(x)− q(x) = f(x)m(x) ,

for some polynomial f(x) ∈ F [x]. That is, p(x) and q(x) are congruent modulo
m(x) precisely when their difference is a multiple of m(x). Equivalently, p(x)
and q(x) have the same remainder upon division by m(x).

We are familiar with congruence statements over the integers, where, for
instance, the even integers are precisely those integers congruent to 0 modulo 2
and the odd integers consist of those integers congruent to 1 modulo 2. Arith-
metic in the integers modulo 2, Z2, can be interpreted as making statements
about the relationship between the set of even integers (represented by 0) and
the set of odd integers (represented by 1). For instance, we have

“The sum of an odd integer and an even integer is odd.”
“The product of two odd integers is odd.”
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Similar statements hold for arithmetic done modulo any integer:

“The product of two numbers each 2 more than a multiple of 3
is a number that is 1 more than a multiple of 3.”

That is, the product of two numbers, each congruent to 2 modulo 3 is a number
congruent to 1 modulo 3.

Polynomial modular arithmetic has a similar relationship to polynomial
modular congruences, as the following problem demonstrates.

(A.2.15) Problem.
Prove that, if a1(x) ≡ a(x) (mod m(x)) and b1(x) ≡ b(x) (mod m(x)), then

(a) a1(x) + b1(x) ≡ a(x) + b(x) (mod m(x)); and
(b) a1(x)b1(x) ≡ a(x)b(x) (mod m(x)).

We see that the statement

a(x) + b(x) = c(x) (mod m(x))

is a special case of

a(x) + b(x) ≡ c(x) (mod m(x)) ;

and, similarly,
a(x)b(x) = c(x) (mod m(x))

is a special case of
a(x)b(x) ≡ c(x) (mod m(x)) .

With this in mind, we will usually use the symbol = in place of ≡ , abusing
our notation by writing

a(x)b(x) = c(x) (mod m(x))

even when the polynomials a(x), b(x), and c(x) have degree larger than that of
m(x).
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A.2.4 Greatest common divisors and unique factorization

We introduce the important concept of the greatest common divisor of a pair
(or set) of polynomials.

(A.2.16) Theorem. In F [x], F a field, let a(x) and b(x) be two polynomials
not both equal to 0. Then there is a unique monic polynomial g(x) in F [x] such
that:

(i) a(x) and b(x) are multiples of g(x);
(ii) if n(x) divides both a(x) and b(x) then g(x) is a multiple of n(x).

Indeed g(x) is the unique monic polynomial of minimal degree in the set

G = { s(x)a(x) + t(x)b(x) | s(x), t(x) ∈ F [x]} .

Proof. Choose in the set G a monic polynomial g(x) = s(x)a(x) + t(x)b(x)
of smallest degree. This determines g(x) uniquely, since if g∗(x) = s∗(x)a(x) +
t∗(x)b(x) were a different monic polynomial in G of the same degree as g(x),
then

g(x)− g∗(x) =
(
s(x)− s∗(x)

)
a(x) +

(
t(x)− t∗(x)

)
b(x)

would have a monic multiple of smaller degree that still belonged to G.
If n(x) divides a(x) and b(x), then it certainly divides g(x) = s(x)a(x) +

t(x)b(x), giving (ii).
It remains to check (i). By the Division Algorithm A.2.5 there are polyno-

mials q(x) and r(x) with a(x) = q(x)g(x) + r(x) and deg(r(x)) < deg(g(x)).
Here

r(x) = a(x)− q(x)g(x)
= 1 · a(x)− q(x)(s(x)a(x) + t(x)b(x))
=

(
1− q(x)s(x)

)
a(x) +

(
− q(x)t(x)

)
b(x) .

Therefore r(x) is a member of G with smaller degree than that of g(x). Our
choice of g(x) now forces r(x) = 0. Thus a(x) = q(x)g(x) is a multiple of g(x),
as desired. Similarly, b(x) is a multiple of g(x), giving (i). 2

The polynomial g(x) of Theorem A.2.16 is called the greatest common divisor greatest common divisor

of a(x) and b(x). In this case we often write g(x) = gcd(a(x), b(x)). Notice
that, for nonzero a(x), gcd(a(x), 0) is the unique monic scalar multiple of a(x).
If a(x) = b(x) = 0, then g(x) = 0 satisfies (1) and (2) trivially, so we set
gcd(0, 0) = 0 (even though it is not monic).

If gcd(a(x), b(x)) = 1, we say that a(x) and b(x) are relatively prime. We relatively prime

have immediately

(A.2.17) Corollary. The polynomials a(x), b(x) ∈ F [x] are relatively prime
if and only if there are s(x), t(x) ∈ F [x] with s(x)a(x) + t(x)b(x) = 1. 2

The corollary implies that

s(x)a(x) = 1 (mod b(x)) ,
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that is, s(x) is the multiplicative inverse of a(x) modulo b(x); and we sometimes
then even write

s(x) = a(x)−1 =
1

a(x)
(mod b(x)) .

To repeat, if a(x) and b(x) are relatively prime, then we can invert a(x) modulo
b(x). Indeed a(x) is invertible modulo b(x) if and only if a(x) and b(x) are
relatively prime.

An argument similar to that of Theorem A.2.16 gives the more general and
fundamental result

(A.2.18) Theorem. Let F be a field and

S = {fi(x) | i ∈ I}

a (possibly infinite) set of polynomials in F [x], not all equal to 0. Consider the
set

G =

{∑
i∈I

aifi(x) | ai ∈ F

}
Here, when the index set I is infinite, it should be understood that all but a finite
number of the ai must be 0 in any particular sum. Then

(1) G contains a unique monic polynomial g(x) of minimal degree;
(2) g(x) has the two properties:

(i) every member of S is a multiple of g(x);
(ii) if n(x) divides every member of S then g(x) is a multiple of n(x). 2

The polynomial g(x) of Theorem A.2.18 is called the greatest common divisorgreatest common divisor

of the set of polynomials S, and we write g(x) = gcd(S). By convention, the
gcd of any empty set of polynomials is 1, and again gcd({0}) = 0.

(A.2.19) Problem. Let F be a field and

S = {f1(x), . . . , fi(x), . . . , fm(x)}

a finite set of polynomials in F [x], not all equal to 0.

Set

L = {f(x) | f(x) is a multiple of fi(x), for i = 1, . . . ,m} ,

and let l(x) be the greatest common divisor of the set L. Prove that l(x) has the two
properties:

(i) l(x) is a multiple of fi(x) for i = 1, . . . , n;

(ii) if n(x) is a multiple of fi(x) for i = 1, . . . , n, then n(x) is a multiple of l(x).

This polynomial l(x) is called the least common multiple of S, written lcm(S).least common multiple

(A.2.20) Lemma. Let F be a field, and let p(x), q(x),m(x) ∈ F [x]. Sup-
pose m(x) divides the product p(x)q(x) but m(x) and p(x) are relatively prime,
gcd(m(x), p(x)) = 1. Then m(x) divides q(x).
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Proof. By Corollary A.2.17 there are polynomials s(x) and t(x) such that
1 = s(x)m(x) + t(x)p(x). Therefore

q(x) = 1 · q(x)

=
(
s(x)m(x) + t(x)p(x)

)
q(x)

=
(
s(x)q(x)

)
m(x) + t(x)

(
p(x)q(x)

)
.

Here m(x) divides both terms of the righthand side, so m(x) divides q(x). 2

Let m(x) be a polynomial in F [x] of degree d > 0. Then m(x) is reducible reducible

in F [x] if there are polynomials a(x) ∈ F [x] with 0 < deg(a(x)) < d and
b(x) ∈ F [x] with 0 < deg(b(x)) < d such that m(x) = a(x)b(x). That is, m(x)
is reducible if it can be written as a product of polynomials of smaller degree.
Otherwise m(x) is irreducible. (Constant polynomials are neither reducible nor irreducible

irreducible.) If irreducible m(x) = a(x)b(x), then one of the factors is a nonzero
constant, say a(x) = a, and the other factor b(x) = a−1m(x) has the same
degree as m(x).

Recall that in Section A.2.3 we defined m(x) to be prime if whenever m(x)
divides the product a(x)b(x), it must in fact divide one of a(x) and b(x). If
prime m(x) = a(x)b(x), then m(x) must divide either a(x) or b(x); so they can
not both have degree less than that of m(x). Thus every prime is irreducible.
We use Lemma A.2.20 to prove the converse.

(A.2.21) Lemma. In F [x] with F a field, every irreducible polynomial is
prime.

Proof. Suppose irreducible m(x) divides the product a(x)b(x). If we have
gcd(m(x), a(x)) = 1, then by Lemma A.2.20 the polynomial b(x) is divisible by
m(x), as required. So we may assume that m(x) and a(x) are not relatively
prime. As m(x) is irreducible, its divisor gcd(m(x), a(x)) 6= 1 must therefore be
c ·m(x), for some constant c. In particular, m(x) = c−1 gcd(m(x), a(x)) divides
a(x). 2

We are now in a position to give the strengthened version of Theorem A.2.14.

(A.2.22) Theorem. Let F be a field and m(x) a nonconstant polynomial of
F [x]. The following are equivalent:

(1) m(x) is irreducible;
(2) F [x] (mod m(x)) is an integral domain;
(3) F [x] (mod m(x)) is a field.

Proof. By Lemma A.2.21 the present (1) is equivalent to that of Theorem
A.2.14.

In Theorem A.2.14 we assumed that the field F was finite; but, as noted
there, the assumption was only used in the proof that (2) implies (3). In par-
ticular from Theorem A.2.14 we know that (3) implies (2) and (2) implies (1).



A-180 APPENDIX A. SOME ALGEBRA

We now prove that (1) implies (3), giving the theorem. Let f(x) ∈ F [x]
of degree less than that of m(x). This implies that f(x) and irreducible m(x)
are relatively prime. There exist polynomials s(x) and t(x) with f(x)s(x) +
m(x)t(x) = 1. Therefore f(x)s(x) = 1 (mod m(x)). If g(x) is the remainder
of s(x) upon division by m(x), then again f(x)g(x) = 1 in F [x] (mod m(x)).
That is, f(x) is invertible in F [x] (mod m(x)), as required for (3). 2

In the integers, we have unique factorization into primes. To be precise,
every nonzero integer is plus or minus a product of positive prime numbers,
this factorization being unique up to the order in which the primes appear.
Essentially the same result is true for polynomial rings over fields.

(A.2.23) Theorem. (Unique factorization of polynomials.) Let F be
a field, and f(x) a nonzero member of F [x]. Then f(x) can be written as a
product f(x) = c

∏n
i=1 fi(x) of a nonzero constant c and a collection of monic

irreducible polynomials fi(x). This factorization is unique up to the order in
which the irreducibles fi(x) are taken. 2

We sketch a proof with the details left to Problem A.2.24. The existence of
factorizations into irreducibles is easy to see, as is the uniqueness of factorization
into primes. Since, by Lemma A.2.21, in this situation all irreducibles are
primes, the result follows.

(A.2.24) Problem. Prove Theorem A.2.23.
( Hint: Deal first with existence. Every nonzero polynomial f(x) is a product

cg(x) with c a nonzero constant and g(x) monic, so assume that f(x) is monic. If
f(x) is not irreducible, then it can be factored as a product g1(x)g2(x) of two monic
polynomials of smaller degree. Either they are irreducible or they can be split further
as products. Proceed in this fashion; use induction. As the degrees decrease at each
stage, this process must stop with f(x) written as a product of irreducible polynomials.

Now consider uniqueness. Let f(x) = d
Qm
j=1 gj(x) be a second factorization into

monic irreducibles. Then c = d is the coefficient of the highest degree term. The monic
irreducible f1(x) divides the product g1(x)(

Qm
j=2 gj(x)). By Lemma A.2.21 irreducibles

are prime, so either f1(x) = g1(x) or f1(x) divides
Qm
j=2 gj(x). In the second case

f1(x) divides
Qm
j=2 gj(x) = g2(x)(

Qm
j=3 gj(x)); so as before either f1(x) equals g2(x) or

it divides
Qm
j=3 gj(x). Proceeding in this fashion, f1(x) is equal to one of the irreducible

monic factors gj(x); use induction again. A similar argument shows that f2(x) is also
equal to one of the gj(x), and indeed that each fi(x) is equal to one of the gj(x).
Compare degrees to conclude finally that n = m.)

(A.2.25) Problem. Let

S = {f1(x), ..., fi(x), ..., fm(x)}

be a finite set of polynomials, as in Problem A.2.19 above. Suppose there are constants
ci, distinct monic irreducible polynomials pj(x), and nonnegative integers ei,j, 1 ≤ j ≤
n, such that, for each i,

fi(x) = ci

nY
j=1

pj(x)ei,j .

For each j, let dj = maxi(ei,j). Prove that lcm(S) =
Qn
j=1 pj(x)dj .
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(A.2.26) Problem. For the polynomial p(x) =
Pk
i=0 pix

i ∈ F [x], define the formal

derivative of p(x), denoted p ′(x), by p ′(x) =
Pk
i=1 ipix

i−1. Prove the usual product formal derivative
rule for derivatives: (a(x)b(x))′ = a(x)b ′(x) + a ′(x)b(x).

(A.2.27) Problem. Consider the polynomial ring F [x], F a field; and let α ∈ F be
a root of p(x) ∈ F [x]. Prove that (x−α)2 divides p(x) if and only if x−α divides the
formal derivative p ′(x).

(A.2.28) Problem. A polynomial f(x) is square free in F [x] if there are no square free
nonconstant polynomials g(x) ∈ F [x] for which g(x)2 divides f(x). Prove that in F [x],
the polynomial f(x) is square free if and only if we have gcd(f(x), f ′(x)) = 1.

In particular, over F2 all derivatives are squares.
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A.3 Special Topics

A.3.1 The Euclidean algorithm

Let F be a field. In Theorem A.2.16 we gave a nonconstructive proof for the
existence of the greatest common divisor of two polynomials a(x) and b(x) of
F [x]. The Euclidean algorithm is an algorithm that constructs gcd(a(x), b(x))
explicitly. The basic method is simple. If q(x) is any polynomial, then

gcd(a(x), b(x)) = gcd(a(x)− q(x)b(x), b(x)).

In particular, a(x) can be replaced in the calculation by its remainder r(x) upon
division by b(x). Assuming that a(x) has degree at least as big as that of b(x),
the remainder r(x) will have smaller degree than a(x); so the gcd of the original
pair of polynomials will be equal to the gcd of a new pair with smaller total
degree. We can continue in this fashion decreasing the degree of the remainder
at each stage until the process stops with remainder 0, and at this point the gcd
becomes clear.

In fact the approach we take is a little different. From our proof of Theorem
A.2.16 we know that gcd(a(x), b(x)) is the monic polynomial of minimal degree
within the set

G = { s(x)a(x) + t(x)b(x) | s(x), t(x) ∈ F [x] }

Thus we examine all equations of the form

p(x) = s(x)a(x) + t(x)b(x) ,

looking for one in which nonzero p(x) has minimal degree. The unique monic
scalar multiple of this p(x) is then equal to gcd(a(x), b(x)).

If we have two suitable equations:

m(x) = e(x)a(x) + f(x)b(x) ; (A.1)
n(x) = g(x)a(x) + h(x)b(x) ; (A.2)

then we can find a third with lefthand side of smaller degree. Assume that the
degree of m(x) is at least as big as that of n(x). By the Division Algorithm A.2.5
there are q(x) and r(x) with m(x) = q(x)n(x)+r(x)and deg(r(x)) < deg(n(x)).
Subtracting q(x) times equation (2) from equation (1) we have the desired

r(x) = m(x)− q(x)n(x) = (A.3)(
e(x)− q(x)g(x)

)
a(x) +

(
f(x)− q(x)h(x)

)
b(x).

Next we may divide r(x) into n(x) and, using equations (2) and (3), further
reduce the degree of the lefthand side. Continuing as before we must ultimately
arrive at an equation with 0 on the left. The lefthand side of the previous
equation will then have the desired minimal degree. A benefit of this method of
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calculation is that the appropriate polynomials s(x) and t(x) are produced at
the same time as the gcd.

To succeed with this approach we must have two equations to begin with.
These are provided by:

a(x) = 1 · a(x) + 0 · b(x); (A.4)
b(x) = 0 · a(x) + 1 · b(x). (A.5)

(A.3.1) Theorem. ( The Euclidean Algorithm.)
Assume that deg(a(x)) ≥ deg(b(x)) with a(x) 6= 0. At Step i we construct the
equation

Ei : ri(x) = si(x)a(x) + ti(x)b(x).

Equation Ei is constructed from Ei−1 and Ei−2, the appropriate initialization
being provided by (4) and (5):

r−1(x) = a(x); s−1(x) = 1; t−1(x) = 0;
r0(x) = b(x); s0(x) = 0; t0(x) = 1.

Step i. Starting with ri−2(x) and ri−1(x) (6= 0) use the Division
Algorithm A.2.5 to define qi(x) and ri(x):

ri−2(x) = qi(x)ri−1(x) + ri(x) with deg(ri(x)) < deg(ri−1(x)).

Next define si(x) and ti(x) by:

si(x) = si−2(x)− qi(x)si−1(x);
ti(x) = ti−2(x)− qi(x)ti−1(x).

We then have the equation

Ei : ri(x) = si(x)a(x) + ti(x)b(x).

Begin with i = 0. If we have ri(x) 6= 0, then proceed to Step i+1. Eventually
there will be an i with ri(x) = 0. At that point halt and declare gcd(a(x), b(x))
to be the unique monic scalar multiple of the nonzero polynomial ri−1(x).

Proof. For each i, ri(x) = ri−2(x) − qi(x)ri−1(x); so Ei holds. This also
shows that

gcd(ri−1(x), ri(x)) = gcd(ri−2(x), ri−1(x))
= · · · = gcd(r−1(x), r0(x)) = gcd(a(x), b(x)).

As long as i ≥ 0 and ri(x) 6= 0, deg(ri+1(x)) < deg(ri(x)). Thus in at most
deg(b(x)) steps ri(x) = 0 is reached. Then gcd(ri−1(x), 0) = gcd(a(x), b(x)) is
the unique monic multiple of ri−1(x), completing verification of the algorithm.

2
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(A.3.2) Problem.
(a) Prove that qi(x) of Theorem A.3.1 has positive degree, for all i ≥ 2.
(b) Prove that deg(si(x)) and deg(ti(x)) are increasing functions of i ≥ 1.

We can think of the Euclidean algorithm as finding a new equation Ei from
the previous two via

Ei = −qi(x)Ei−1 + Ei−2 .

This provides the entry to another presentation of the Euclidean algorithm that
for certain purposes is quite helpful.

Consider the matrix with entries from F [x]

R0 =
[
a(x) 1 0
b(x) 0 1

]
.

We wish, by elementary row operations over F [x], to reduce this matrix to
echelon form

R =
[
p(x) ∗ ∗

0 ∗ ∗

]
,

where in fact p(x) = gcd(a(x), b(x)). For each i > 1, set

Qi =
[

0 1
1 −qi(x)

]
=
[

0 1
1 0

] [
1 −qi(x)
0 1

]
,

a product of the matrices for two elementary row operations. Then after defining

Ri =
[
ri−1(x) si−1(x) ti−1(x)
ri(x) si(x) ti(x)

]
,

we find that Ri = QiRi−1, for all i ≥ 1. Therefore left multiplication by Qi
can be thought of as accomplishing Step i of the Euclidean algorithm. Because
(1,−a(x),−b(x))> is a null vector of R0, it is also a null vector of each Ri. That
is, for each i we have the equation

Ei : ri(x) = si(x)a(x) + ti(x)b(x).

When first ri(x) = 0, then ri−1(x) is a scalar multiple of gcd(a(x), b(x)); so the
desired matrix R can be realized as a scalar multiple of Ri.

For each i ≥ 1, set Si =
∏i
j=1Qj , so that SiR0 = Ri. Each Qj has deter-

minant equal to −1 (see Problem A.1.15), so Si has determinant (−1)i. If, for
each i, we define Ri(r, t) (respectively, Ri(s, t)) to be the 2× 2 submatrix of Ri
composed of the r- and t-columns (resp., s- and t-columns), then we have

Si

[
a(x) 0
b(x) 1

]
= SiR0(r, t) = Ri(r, t) =

[
ri−1(x) ti−1(x)
ri(x) ti(x)

]
.

Similarly

Si

[
1 0
0 1

]
= SiR0(s, t) = Ri(s, t) =

[
si−1(x) ti−1(x)
si(x) ti(x)

]
.

Calculating determinants, we have a proof of
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(A.3.3) Lemma. (1) ri−1(x)ti(x)− ri(x)ti−1(x) = (−1)ia(x), for i ≥ 0.
(2) si−1(x)ti(x)− si(x)ti−1(x) = (−1)i, for i ≥ 0. 2

(A.3.4) Corollary. gcd(si(x), ti(x)) = 1, for all i ≥ −1.

Proof. This follows from Lemma A.3.3(2) and Theorem A.2.16. 2

(A.3.5) Problem. Prove that deg(ri−1(x)) + deg(ti(x)) = deg(a(x)), for all i ≥ 0.
( Hint: use Problem A.3.2(b) and Lemma A.3.3(1).)

(A.3.6) Problem.
(a) Prove that ri−1(x)si(x)− ri(x)si−1(x) = (−1)i+1b(x), for all i ≥ 0.
(b) Prove that deg(ri−1(x)) + deg(si(x)) = deg(b(x)), for all i ≥ 1.
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A Euclidean Algorithm example

We calculate gcd(x4, 4x3 +3x2 +5x) = x over F7 using the Euclidean algorithm.
At Step i we define qi(x), ri(x), si(x), and ti(x) using

ri−2(x) = qi(x)ri−1(x) + ri(x)
si(x) = si−2(x)− qi(x)si−1(x)
ti(x) = ti−2(x)− qi(x)ti−1(x) .

Step i qi(x) ri(x) si(x) ti(x)
−1 − x4 1 0
0 − 4x3 + 3x2 + 5x 0 1
1 2x+ 2 5x2 + 4x 1 5x+ 5
2 5x+ 5 6x 2x+ 2 3x2 + 6x+ 4
3 2x+ 3 0 3x2 + 4x+ 2 x3

Step 1.

2x +2 = q1(x)
r0(x) = 4x3 +3x2 +5x x4 = r−1(x)

x4 +6x3 +3x2

x3 +4x2

x3 +6x2 +3x
5x2 +4x = r1(x)

r−1(x) = q1(x)r0(x) + r1(x)
x4 = (2x+ 2)(4x3 + 3x2 + 5x) + (5x2 + 4x)

q1(x) = 2x+ 2
r1(x) = 5x2 + 4x

s1(x) = s−1(x)− q1(x)s0(x)
s1(x) = 1− (2x+ 2)0 = 1

t1(x) = t−1(x)− q1(x)t0(x)
t1(x) = 0− (2x+ 2)1 = 5x+ 5
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Step 2.

r0(x) = q2(x)r1(x) + r2(x)
4x3 + 3x2 + 5x = (5x+ 5)(5x2 + 4x) + 6x

q2(x) = 5x+ 5
r2(x) = 6x

s2(x) = s0(x)− q2(x)s1(x)
s2(x) = 0− (5x+ 5)1 = 2x+ 2

t2(x) = t0(x)− q2(x)t1(x)
t2(x) = 1− (5x+ 5)(5x+ 5) = 3x2 + 6x+ 4

Step 3.

r1(x) = q3(x)r2(x) + r3(x)
5x2 + 4x = (2x+ 3)(6x) + 0

q3(x) = 2x+ 3
r3(x) = 0

s3(x) = s1(x)− q3(x)s2(x)
s3(x) = 1− (2x+ 3)(2x+ 2) = 3x2 + 4x+ 2

t3(x) = t1(x)− q3(x)t2(x)
t3(x) = (5x+ 5)− (2x+ 3)(3x2 + 6x+ 4)

= (5x+ 5)− (6x3 + 5x+ 5) = −6x3 = x3

As r3(x) = 0, gcd(x4, 4x3 + 3x2 + 5x) is the unique monic scalar multiple of
r2(x) = 6x. Thus x = gcd(x4,4x3 + 3x2 + 5x), as claimed.

We should also have r2(x) = s2(x)x4 + t2(x)(4x3 + 3x2 + 5x) and therefore
x = 6r2(x) = 6s2(x)x4 + 6t2(x)(4x3 + 3x2 + 5x). We check:

6r2(x) = 6s2(x)x4 + 6t2(x)(4x3 + 3x2 + 5x)
= 6(2x+ 2)x4 + 6(3x2 + 6x+ 4)(4x3 + 3x2 + 5x)
= (5x+ 5)x4 + (4x2 + x+ 3)(4x3 + 3x2 + 5x)
= (5x5 + 5x4) + (2x5 + 5x4 + 6x3) +

+(4x4 + 3x3 + 5x2) + (5x3 + 2x2 + x)
= x !!
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A.3.2 Finite Fields

Consider a finite field F of characteristic p. (Remember from Lemma A.1.3 that
this says 1 lies in a subfield of F that is a copy of Fp.) Let α be any element of
F . Any subfield (indeed any subring) of F that contains both the subfield Fp
and α must contain the set E of all polynomials in α with coefficients in Fp:

E = { a0 + a1α+ a2α
2 + · · ·+ akα

k | ai ∈ Fp, k > 0}.

Notice however that in this instance α is not an indeterminate; there are going
to be various different polynomials f(x) in Fp[x] that represent the same element
f(α) of F . Indeed as F is finite while Fp[x] is infinite, this must be the case.
As in the proof of Lemma A.1.3 this forces the set

I = { all polynomials f(x) ∈ Fp[x] with f(α) = 0 }

to contain polynomials other than the constant polynomial 0. As in Theorem
A.2.18, the greatest common divisor of the set I, m(x) = gcd(I), is called
the minimal polynomial of α over Fp and is usually denoted mα(x) (but alsominimal polynomial

sometimes mα,Fp(x)). The set I then consists of all members of F [x] that are
multiples of mα(x). That is, the polynomial mα(x) is uniquely determined in
Fp[x] as a monic polynomial with α as a root that divides all polynomials with
α as a root. We observe that a minimal polynomial must always be irreducible.
Indeed if m(x) = f(x)g(x), then 0 = m(α) = f(α)g(α) whence f(α) = 0 or
g(α) = 0. Therefore at least one of f(x) and g(x) is in I, but the greatest
common divisor m(x) of I has minimal degree among the nonzero elements of
I.

Let us now examine the set E. E is closed under addition and multiplication
and contains 0 and 1. Thus E is at least a subring of F . Furthermore no two
nonzero members of E have product 0, as this is true in F itself. Thus E is
moreover a sub-integral domain of F . Now Problem A.1.2 shows that E is in
fact a subfield of F , indeed the smallest subfield of F that contains α. (All
subfields contain 1 and so all of Fp.) What is the arithmetic of the subfield E?

Let us assume that the minimal polynomial m(x) has degree d (greater than
0). Then by the division algorithm every polynomial f(x) of Fp[x] has a unique
remainder r(x) of degree less than d upon division by m(x), and f(α) = r(α)
as m(α) = 0. Thus in fact

E = { r(α) | r(x) ∈ Fp[x] of degree < d }.

Furthermore two distinct polynomials r1(x), r2(x) ∈ Fp[x]d can not have r1(α) =
r2(α), because their difference would then be a nonzero polynomial of degree
less than d having α as a root. Such a polynomial would belong to I, whereas
m(x) has minimal degree among all nonzero members of I. In particular E
has exactly pd elements. Note also that for polynomials a(x), b(x) ∈ Fp[x] we
have in E that a(α)b(α) = r(α), where r(x) is the remainder of a(x)b(x) upon
division by m(x). Thus the arithmetic of E is exactly that of Fp[x] (mod m(x)).
Indeed we have:
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(A.3.7) Lemma. Let F be a finite field of characteristic p, and let α be an
arbitrary element of F . Then the smallest subfield E of F that contains α is a
copy of the field Fp[x] (mod mα(x)) where mα(x) is the minimal polynomial of
α over Fp. 2

We next examine a result of great theoretical and practical importance.

(A.3.8) Theorem. Let F be a finite field with |F | = q. Then there is an
element α in F with the property that

F − {0} = {α, α2, . . . , αq−2, αq−1 = α0 = 1}.

Proof. We first observe that for any nonzero α of F , the set

X = {α, α2, . . . , αi, . . . | i ∈ Z+}

is finite and contained within F − {0}. As before this implies that, for each
nonzero α of F , there is a positive integer n (depending upon α) with αn = 1.
The smallest such positive n is called the order of α. Among all the nonzero order

elements of F choose α one of maximal order n, say. Note that the statement
that α has order n is equivalent to the statement that the set X contains exactly
n elements of F . Additionally for each β = αi of X we have βn = (αi)n =
(αn)i = 1i = 1. The crucial point in the proof is that X, for our choice of α, is
precisely the set of all roots in F of the polynomial xn − 1. In particular any
element of F with order dividing n must belong to X. An element α ∈ F is
called a primitive nth root of unity if it has order n. primitive nth root of unity

Assume now that it is possible to find a nonzero element γ of F that does
not belong to X. By the remark at the end of the previous paragraph the order
m of g is not a divisor of n. Thus there is a prime s and a prime power si that
divides m but does not divide n. Let m = siu and n = sjv, where i is larger
than j and neither u nor v are multiples of s. A somewhat lengthy calculation
suffices to check (do it!) that the element δ = αs

j · γu has order siv. As this is
larger than n we have contradicted our original choice of α. Therefore no such
element γ can be found; and X is all of F , proving the theorem. 2

Of course for an α as in Theorem A.3.8, F itself is the smallest subfield of
F containing α. Thus from Lemma A.3.7 and Theorem A.3.8 we have:

(A.3.9) Theorem. Every finite field F can be written as Fp[x] (mod m(x))
for some prime p and some irreducible polynomial m(x) in Fp[x]. 2

Note that Theorem A.3.9 can be thought of as a converse to Theorem A.2.14
for finite fields.

An α as in Theorem A.3.8 is a primitive (|F | − 1)th root of unity in F and
is called a primitive element of F . Its minimal polynomial is called a primitive primitive element

polynomial. Thus Theorem A.3.9 remains true with the word ‘primitive’ in place primitive polynomial
of ‘irreducible’.
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One consequence of Theorem A.3.9 is that a finite field must have the number
of its elements equal to a power of a prime (although we already knew this from
Problem A.1.6). By Lemma A.1.3 there are fields of prime order for every prime,
but what about every prime power? For the time being we are content to state
without proof:

(A.3.10) Theorem. For each prime p and each positive integer d, there exist
fields containing exactly pd elements. 2

We note that by Theorem A.3.9 this is equivalent to proving that for each p and
d there is an irreducible polynomial m(x) in Fp[x] of degree d.

How do we actually find and calculate in finite fields? Theorem A.3.9 gives
the answer. If we want a field F with pd elements (usually written as F =
GF (pd) or F = Fpd), then we first find an irreducible polynomial m(x) of
degree d in Fp[x] and then realize F as Fp[x] (mod m(x)).

We can check for irreducibility of a given polynomial in a way similar to the
Sieve of Eratosthenes — if a polynomial of degree d is reducible, then it must
be a multiple of an irreducible polynomial of degree at most d/2. For example
x3 + x+ 1 ∈ F2[x] is irreducible as it has no nonscalar factor of degree at most
3/2, that is, it has no linear factors (as it has no roots in F2). Therefore even
though Theorem A.3.10 is quite difficult to prove, it may not too hard to find
an irreducible polynomial of a specific desired degree d in Fp[x]. To do so, use
the sieve to find all reducible polynomials of degree d, then all the remaining
polynomials are irreducible. (There are only finitely many polynomials of a
fixed degree in Fp[x].)

(A.3.11) Problem. (a) Find all irreducible polynomials of degree 4 or less in F2[x].
(b) Find all monic irreducible polynomials of degree 3 or less in F3[x].
(c) Find all monic irreducible polynomials of degree 2 or less in F4[x].
(d) Find all monic irreducible polynomials of degree 2 or less in F5[x].

For notational elegance, we usually do not write F as Fp[x] (mod m(x)),
but instead as the collection of polynomials of degree less than d in ρ, a root of
the degree d irreducible m(x). So, for example, rather than write the complex
numbers as R[x] (mod x2 + 1) we write them as the set of all a + bi, a, b ∈ R,
where i is a root of the irreducible polynomial x2 + 1 of degree 2.

At the end of this section we give an example of a field with 32 elements,
F32, written as polynomials of degree less than 5 in a root α of the primitive
polynomial x5 +x2 + 1 ∈ F2[x]. Notice that as α is primitive, we may also write
the nonzero elements of F32 as powers of α. This is helpful, because addition in
F32 is easily done in terms of the polynomials of degree less than 5 in α, while
multiplication is more easily done in terms of the powers of α.

(A.3.12) Problem. (a) Prove that the polynomial x4 + x3 + x2 + x + 1 ∈ F2[x] is
irreducible but not primitive.

(b) Let β be a root of the primitive polynomial x4 + x3 + 1 ∈ F2[x]. Write out
a table of the elements of a field with 16 elements, F16, both as powers of β and as
polynomials of degree less than 4 in β.
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The following simple result about finite fields is of great importance.

(A.3.13) Lemma. Let K be a field of characteristic p and J a subfield of K.
(1) If q is any power of p, then for any a, b ∈ K we have (a+ b)q = aq + bq.
(2) If |J | = q then aq = a, for all a ∈ J , and J is the complete set of

solutions to the equation xq = x in K.

Proof. (1) As (cp)p = cp
2
, (cp

2
)p = cp

3
, . . . , we need only prove (1) for

q = p. In that case it follows easily as each binomial coefficient
(
p
i

)
is 0 modulo

p, for 0 < i < p.
(2) By Theorem A.3.8 aq = a for all a ∈ J . By Proposition A.2.10 xq − x

has at most q roots in K, and these are exactly the members of J . 2

Let D be a subfield of the finite field F , and assume that D = Fq. As F can
be viewed as a vector space over D, we must have F = Fqm , for some m. Define
the trace from F to D of the element α ∈ F by trace

TrD(α) = α+ αq + αq
2

+ · · ·+ αq
m−1

.

If D is the prime subfield Fp, we often drop the subscript and write Tr for TrFp
.

(A.3.14) Proposition. (1) The trace is a map from F onto D.
(2) The trace is a D-linear; that is, for all r1, r2 ∈ D and α1, α2 ∈ F , we

have
TrD(r1α1 + r2α2) = r1TrD(α1) + r2TrD(α2) .

(3) For a fixed β ∈ F , if TrD(αβ) = 0 for all α in a D-basis of F , then
β = 0.

Proof. It is elementary to prove that the trace is a linear map into D as in
(2) using Lemma A.3.13. It is not so clear that the map is actually onto D. The
trace is given by a polynomial of degree qm−1, so by Proposition A.2.10 there
are at most qm−1 elements of F with trace 0. Since the trace is linear, the subset
K of elements of F with trace 0 is a D-subspace of F , and the value of the trace
map is constant on cosets α+K of K. Again by linearity, different cosets of K
give different values. As |F | = qm, there must be the largest possible number
q = |D| of values and cosets, and each coset must have the largest possible size,
qm−1. This gives (1).

By linearity, if TrD(αβ) = 0, for all α in a D-basis for F , then in fact
TrD(αβ) = 0, for all α ∈ F . But for β 6= 0, by (1) there are many choices of α
with TrD(αβ) 6= 0, proving (3). 2

(A.3.15) Problem. Let T : F → D be a D-linear map, that is,

T (r1α1 + r2α2) = r1T (α1) + r2T (α2) ;

and define the map B : F × F → D by B(α, β) = T (αβ).
(a) Prove that B is a symmetric D-bilinear map; that is,

B(α, β) = B(β, α) and
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B(r1α1 + r2α2, β) = r1B(α1, β) + r2B(α2, β), for all r1, r2 ∈ D .

(b) Prove that, conversely, every symmetric D-bilinear map B arises in this fashion
from a D-linear map T . ( Hint: Prove that the map T given by T (α) = B(α, 1) is
D-linear.)

(c) Prove, for a fixed nonzero β ∈ F , that B(α, β) = 0 for all α in a D-basis of F
if and only if T is the 0 map, that is, the map that takes each element of F to 0.

Let α1, . . . , αm be a basis for F over D. The second basis β1, . . . , βm is trace
dual basis to the first if TrD(αiβj) (= B(αi, βj)) is 1 when i = j and 0 whentrace dual basis

i 6= j. In the next result we see that a trace dual basis always exists.

(A.3.16) Proposition. Let D be a subfield of the finite field F , and let
α1, . . . , αm be a basis for F over D.

We let A be the m × m matrix whose {i, j}-entry is TrD(αiαj). For the
m× s matrix B let the {j, k}-entry be bj,k ∈ F . Finally let βk =

∑m
j=1 bj,kαj.

(1) The {i, k}-entry of the matrix product AB is TrD(αiβk).
(2) The matrix A is invertible.
(3) For B = A−1, the basis β1, . . . , βm is trace dual to α1, . . . , αm.

Proof. Part (1) follows by an elementary matrix calculation.
If A is not invertible, then we can find a nonzero column vector B (with

s = 1) such that AB = 0. This would correspond to a nonzero β ∈ F with
TrD(αiβ) = 0, for all i. By Proposition A.3.14(3) this can not happen. This
gives (2), and (3) is immediate from (1) and (2). 2

(A.3.17) Problem. Reprove Proposition A.3.16 starting with an arbitrary nonzero
D-linear map T .

(A.3.18) Problem. Let the field F8 be written as polynomials of degree less than 3
over F2 in the primitive element α, a root of x3 +x+ 1, so that α3 = α+ 1. The trace
Tr = TrF2 from F8 to F2 is then given by

Tr(β) = β + β2 + β4

for all β ∈ F8. Set e1 = α3, e2 = α5, e3 = α6, so that e1, e2, e3 form a basis for F8

over F2.
(a) Prove that the basis e1, e2, e3 is trace self-dual: Tr(eiej) is 1 if i = j and is 0

if i 6= j.
(b) For each r ∈ F8, let r̂ be defined by r̂ = (a, b, c), where r = ae1 + be2 + ce3, for

a, b, c ∈ F2. Prove that, for all r, s ∈ F8,

Tr(rs) = r̂ · ŝ (dot product)

= af + bg + ch

if r̂ = (a, b, c) and ŝ = (f, g, h).
(c) Let x,y be vectors in Fn8 . Define the vectors x̂, ŷ by

x̂ = (x̂1, x̂2, . . . , x̂n) for x = (x1, x2, . . . , xn) ,

ŷ = (ŷ1, ŷ2, . . . , ŷn) for y = (y1, y2, . . . , yn) .

Show that if x · y = 0 in F8, then x̂ · ŷ = 0 in F2.
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Table. F32 where α is a root of the polynomial x5 + x2 + 1

Power Polynomial of degree less 5−tuple
than 5 in α

0 0 00000
1 1 00001
α1 α1 00010
α2 α2 00100
α3 α3 01000
α4 α4 10000
α5 α2 +1 00101
α6 α3 +α1 01010
α7 α4 +α2 10100
α8 α3 +α2 +1 01101
α9 α4 +α3 +α1 11010
α10 α4 +1 10001
α11 α2 +α1 +1 00111
α12 α3 +α2 +α1 01110
α13 α4 +α3 +α2 11100
α14 α4 +α3 +α2 +1 11101
α15 α4 +α3 +α2 +α1 +1 11111
α16 α4 +α3 +α1 +1 11011
α17 α4 +α1 +1 10011
α18 α1 +1 00011
α19 α2 +α1 00110
α20 α3 +α2 01100
α21 α4 +α3 11000
α22 α4 +α2 +1 10101
α23 α3 +α2 +α1 +1 01111
α24 α4 +α3 +α2 +α1 11110
α25 α4 +α3 +1 11001
α26 α4 +α2 +α1 +1 10111
α27 α3 +α1 +1 01011
α28 α4 +α2 +α1 10110
α29 α3 +1 01001
α30 α4 +α1 10010
α31 1 00001
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A.3.3 Minimal Polynomials

Let D be any field and F an extension field of D (that is, D is a subfield of F ).
If α is any element of F , then as in Section A.3.2 we consider the collection of
polynomials that have α as a root:

I = { p(x) ∈ D[x] | p(α) = 0} .

It is possible for I to contain only the zero polynomial, an example being given
by D = Q, F = R, α = π. We are interested here in the case where F is finite,
and there the argument of Lemma A.1.3 and Section A.3.2 shows that I must
contain nonzero polynomials.

Assuming that I contains nonzero polynomials, we denote by mα,D(x) the
minimal polynomial of α over D, that is, the greatest common divisor of I.minimal polynomial

When D is the prime subfield (here, Fp for some prime p) we have abbreviated
this to mα(x). A minimal polynomial must always be irreducible.

For a finite collection S of nonzero polynomials, the least common multiple,
lcm(S), was introduced in Problem A.2.19. When all the members of S are
monic irreducible, the lcm is easy to calculate — it is just the product of all
distinct members of S (see Problem A.2.25).

(A.3.19) Lemma. Let α, β, . . . , ω be members of the extension field F of the
field D. Then the set

J = { p(x) ∈ D[x] | p(α) = p(β) = · · · = p(ω) = 0 }

consists precisely of all multiples of

g(x) = lcm(mα,D(x),mβ,D(x), . . . ,mω,D(x)).

Proof. By the definition of a minimal polynomial, for each element γ
of α, β, . . . , ω, the set J consists of multiples of mγ,D(x). Therefore by the
definition of least common multiples (see Problem A.2.19) all members of J are
multiples of g(x). On the other hand, any multiple of g(x) has each of α, β, . . . , ω
as a root and so is in J . 2

The remark before Lemma A.3.19 shows that, in the computation of g(x)
the only difficult part is the calculation of the minimal polynomials over D of
members of F . In Theorem A.3.20 and Problem A.3.21 we describe an easy
way to do this for finite D. At the end of the section an example of such a
calculation using Theorem A.3.20 is presented.

(A.3.20) Theorem. Let F be a finite field of characteristic p, and let α be a
member of F . Then for

A = {αp
i

| i = 0, 1, 2, . . . }

we have
mα(x) =

∏
a∈A

(x− a) .
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Proof. Let m(x) = mα(x) =
∑
imix

i with each mi in Fp. As m(α) = 0,
also (m(α))p = 0. That is,

0 = (
∑

miα
i)p =

∑
(miα

i)p by A.3.13(1)

=
∑

mp
iα

ip =
∑

mi(αp)i by A.3.13(2)

= m(αp).

Thus fromm(α) = 0 we may conclude thatm(αp) = 0 and then thatm((αp)p) =
m(αp

2
) = 0; indeed m(a) = 0, for all a ∈ A. By Lemma A.2.8 x − a divides

m(x) for each a ∈ A, and so by repeated application of Lemma A.2.9 we know
that

∏
a∈A(x − a) is in any event a divisor of m(x) in F [x]. To complete a

proof that m(x) =
∏
a∈A(x− a) it is enough to show that

∏
a∈A(x− a) in fact

has all its coefficients in Fp, for then m(x) and
∏
a∈A(x− a) will be two monic

polynomials of Fp[x] that divide each other and so must be equal.
Let A = {a1, a2, . . . , ad}. Then in

∏
a∈A(x− a) the coefficient of xk is∑

{i1,i2,...,id−k}

ai1ai2 · · · aid−k
,

where the summation runs over all d− k subsets of {1, 2, . . . , d}. By design, for
each ai in A, api is also a member of A. Therefore for each term ai1ai2 · · · aid−k

of the above summation, the power (ai1ai2 · · · aid−k
)p = api1a

p
i2
· · · apid−k

is also
one of the terms of the summation. Hence using Lemma A.3.13(1) again we
have

(
∑

ai1ai2 · · · aid−k
)p =

∑
api1a

p
i2
· · · apid−k

=
∑

ai1ai2 · · · aid−k
.

That is, the coefficient of xk in
∏
a∈A(x − a) is equal to its own pth power.

By Lemma A.3.13(2) this coefficient is a member of the prime subfield Fp, as
required. 2

Essentially the same proof with q in place of p gives the more general result
(which we leave as an exercise) with D = Fq in place of Fp:

(A.3.21) Problem. Let F be a finite field of characteristic p, D a subfield of F
containing exactly q elements, and α be a member of F . Then for

A = {αq
i

| i = 0, 1, 2, . . .}

we have
mα,D(x) =

Y
a∈A

(x− a).

Remark. At first sight, the final equations in the statement of Theorem
A.3.20 and Problem A.3.21 seem to go against our claim that minimal polynomi-
als must be irreducible. Here mα,D(x) is a minimal polynomial, but

∏
a∈A(x−a)
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appears to be a nontrivial factorization. The point is that mα,D(x) is an irre-
ducible polynomial in the polynomial ring D[x]; it has no factorizations into
polynomials of D[x] of smaller degree. The factorization

∏
a∈A(x− a) involves

factors x − a that are polynomials of F [x] but not of D[x] (as long as a 6∈ D).
For example, as a polynomial of R[x], x2 + 1 is irreducible; but as a polynomial
of C[x] it factors as x2 + 1 = (x+ i)(x− i). Indeed mi,R(x) = x2 + 1.

Below we give an example which details the calculation using Theorem
A.3.20 of the minimal polynomial of α5 over F2, mα5,F2(x), where α is a root
of the primitive polynomial x5 + x2 + 1 ∈ F2[x]. (See the table at the end of
Section A.3.2.)

(A.3.22) Problem. Let β be a root of the polynomial x4 +x3 +1 ∈ F2[x]. Calculate
the minimal polynomial of β3.

Calculation of a minimal polynomial

Let α be a primitive element in F32 with minimal polynomialmα(x) = mα,F2(x) =
x5 + x2 + 1. We wish to calculate the minimal polynomial of α5.

mα5,F2(x)
= (x− α5)(x− α10)(x− α20)(x− α9)(x− α18)
= x5 − (α5 + α10 + α20 + α9 + α18)x4

+(α15 + α25 + α14 + α23 + α30 + α19 + α28 + α29 + α38 + α27)x3

−(α47 + α37 + α48 + α39 + α32 + α43 + α34 + α33 + α24 + α35)x2

+(α57 + α52 + α42 + α53 + α44)x− α62

= x5 + 1x4 + 0x3 + 1x2 + 1x+ 1
= x5 + x4 + x2 + x+ 1 .

Where, for instance, the coefficient of x is given by:

α57 + α52 + α42 + α53 + α44

= α26 + α21 + α11 + α22 + α13

= (α4 + α2 + α+ 1) + (α4 + α3) + (α2 + α+ 1)
+(α4 + α2 + 1) + (α4 + α3 + α2)

= 1 .


