
Chapter 7

Codes over Subfields

In Chapter 6 we looked at various general methods for constructing new codes
from old codes. Here we concentrate on two more specialized techniques that
result from writing the field F as a vector space over its subfield K. We will
start with linear codes over F and finish with linear codes over K. Of particular
practical importance is the case with K = F2. Our work on generalized Reed-
Solomon codes over F has given us many powerful codes, but by Theorem 5.1.1
their length is bounded by |F |. Binary generalized Reed-Solomon codes are
rendered trivial.

7.1 Basics

Let dimK(F) = m, and choose e1, . . . em to be a K-basis for F . We define the
map φ : F −→ Km given by

φ(α) = (a1, . . . am) where α = a1e1 + · · ·+ amem .

For brevity, we shall write α̂ for the 1 × m row vector φ(α) and α̌ for its
transpose φ(α)> = (a1, . . . am)>, an m × 1 column vector. We extend this
notation to any p× q matrix A ∈ F p,q, with i, j entry ai,j by letting Â ∈ Kp,mq

be the matrix 

â1,1 â1,2 · · · â1,j · · · â1,q

â2,1 â2,2 · · · â2,j · · · â1,q

...
...

. . .
...

. . .
...

âi,1 âi,2 · · · âi,j · · · â1,q

...
...

. . .
...

. . .
...

âp,1 âp,2 · · · âp,j · · · âp,q


89

90 CHAPTER 7. CODES OVER SUBFIELDS

and Ǎ ∈ Kmp,q be the matrix

ǎ1,1 ǎ1,2 · · · ǎ1,j · · · ǎ1,q

ǎ2,1 ǎ2,2 · · · ǎ2,j · · · ǎ1,q

...
...

. . .
...

. . .
...

ǎi,1 ǎi,2 · · · ǎi,j · · · ǎ1,q

...
...

. . .
...

. . .
...

ǎp,1 ǎp,2 · · · ǎp,j · · · ǎp,q


For our constructions, A might be a spanning or control matrix for a linear

code over F . Then the matrices Â and Ǎ can be thought of as spanning or
control matrices for linear codes over K.

It must be emphasized that these maps are highly dependent upon the choice
of the initial map φ, even though φ has been suppressed in the notation. We
shall see below that a careful choice of φ can be of great help. (The general
situation in which φ is an arbitrary injection of F into Kp, for some field K and
some p, is of further interest. Here we will be concerned with the linear case,
but see the Problem 7.2.3 below.)

7.2 Expanded codes

If C is a code in Fn, then the code

Ĉ = { ĉ | c ∈ C }

in Kmn is called an expanded code.expanded code

(7.2.1) Theorem. If C is an [n, k, d] code, then Ĉ is an [mn,mk,≥ d] code.

Proof. The map x 7→ x̂ (induced by φ) is one-to-one and has

̂ra + sb = râ + sb̂ ,

for all r, s ∈ K and a,b ∈ Fn. Thus Ĉ is a linear code over K with

|Ĉ| = |C| = |F |k = (|K|m)k = |K|mk ,

hence Ĉ has K-dimension mk. (This counting argument is a cheat unless F is
finite, the case of greatest interest to us. Instead, one should construct a K-basis
for Ĉ out of that for F and an F -basis for C. We do this below, constructing a
generator matrix for Ĉ from one for C.)

If the coordinate ci of c is nonzero, then ĉi is not the zero vector of Km.
Therefore each nonzero entry in c corresponds to a nonzero m-tuple ĉi within
ĉ and wH(c) ≤ wH(ĉ). In particular dmin(C) ≤ dmin(Ĉ). 2

The argument of the last paragraph shows that we would be very unlucky
indeed to have dmin(C) = dmin(Ĉ). For this to happen we would need a mini-
mum weight codeword c in C for which every nonzero ci had ĉi of weight 1. In

7.2. EXPANDED CODES 91

the next section we shall see two examples in which the minimum distance of
an expanded codes goes up over that of its parent.

Let G be a generator matrix for C with rows gi, for i = 1, . . . , k. Notice
that gi and ejgi are F -scalar multiples but are linearly independent over K.
The mk vectors ejgi (for 1 ≤ j ≤ m, 1 ≤ i ≤ k) form a basis for C, thought of
as a K-space of dimension mk. If we let G0 be the mk × n matrix whose rows
are the various ejgi, then G0 is a spanning matrix for C and Ĝ0 is a generator
matrix for Ĉ.

A vector is a burst of length f if all of its nonzero entries are restricted to a burst

set of f consecutive positions. For instance, (00011101000) is a burst of length
5 (and 6, 7, . . . , 11, as well). Certain channels are prone to burst errors. (Think
of a scratch on a CD.) Expanded codes give some easy protection against burst
errors, since an error in m consecutive positions of Ĉ corresponds to only one
or two errors for the parent code C.

(7.2.2) Proposition. If the linear code C can be used to correct burst errors
of length e (in particular, if C is an e error-correcting code), then Ĉ can be used
to correct all burst errors of length up to 1 + (e− 1)m.

Proof. A burst in Kmn of length at most 1 + (e− 1)m has as preimage in
Fn a burst of length at most e. 2

(7.2.3) Problem. (a) Consider an injection φ of F4 into F3
2 with the property that

φ(F4) = {001, 110, 010, 101} .

Prove that, for any code C ⊆ Fn
4 , the corresponding expanded code Ĉ in F3n

2 has the
property that each codeword has no more than three consecutive 0’s and no more than
three consecutive 1’s among its entries. (This is a ‘run-length-limited’ constraint of
the sort that is made for magnetic recording and on compact discs.)

(b) Prove that there are exactly four 4-subsets of F3
2 with the property discussed in

(a).

Expanding is often used as an easy way to construct good binary codes for
bursty channels from codes over larger fields of characteristic 2. For instance,
one code that has been used by NASA and the European Space Agency, (for
space communication) and IBM, Phillips, and Sony (for tape and CD storage)
is the binary expansion of a GRS code of length 255 (= 28 − 1) and dimension
223 over F28 . (The vector α contains all nonzero field elements as entries, while
v = 1.) Expanding from F28 to F2 (so that m = 8) allows symbols of the
GRS code to be written as bytes of data. The associated binary expanded code
has length mn = 8(255) = 2040 and dimension mk = 8(223) = 1784. The
parent GRS code has dmin = 255 − 223 + 1 = 33, so it can correct up to 16
errors. Therefore the expanded code can correct any burst error of length at
most 1 + (16− 1)8 = 121 as well as any random error of weight at most 8.

92 CHAPTER 7. CODES OVER SUBFIELDS

7.3 Golay codes and perfect codes

We construct four of the most famous and important codes using expanded
codes.

7.3.1 Ternary Golay codes

Here we have F = F9, K = F3, and m = 2 in Theorem 7.2.1.
Let i be a root of the imprimitive polynomial x2 + 1 ∈ F3[x]. We then write

the field F9 as {a + bi | a, b ∈ F3}, having chosen the F3-basis of e1 = 1 and
e2 = i for F9, so that the associated expansion map is

β = a 1 + b i 7→ φ(β) = β̂ = (a, b) ,

for a, b ∈ F3. For each β = a+ bi ∈ F9, let β̄ = a− bi, the conjugate of β.
Let A be a unitary 3× 3 matrix with entries from F9, that is AĀ> = I; and

let α ∈ F9 satisfy αᾱ = −1. Here by Ā we mean the matrix whose i, j entry is
āi,j , where ai,j is the i, j entry of A.

Example.

A =

24 1 + i i i
i 1 + i i
i i 1 + i

35 and α = 1− i .

Consider then the [6, 3] linear code C over F9 with generator matrix

G = [I ; αA] ,

for example,

G =

 1 0 0 −1 1 + i 1 + i
0 1 0 1 + i −1 1 + i
0 0 1 1 + i 1 + i −1

 .
We then may calculate

GḠ> = I + αᾱAĀ> = I + (−1)I = 0 ;

so
H = Ḡ =

[
I ; ᾱĀ

]
is a check matrix for C. In particular C⊥ equals C̄, the code composed of the
various c̄ as c runs through C. As G has standard form, a second check matrix
for C is

H ′ =
[
−αA> ; I

]
.

Therefore a second generator matrix is

H̄ ′ =
[
−ᾱĀ> ; I

]
.

(7.3.1) Proposition. Assume that A has no entry equal to 0. Then C has
minimum distance 4 and so is an MDS code.

7.3. GOLAY CODES AND PERFECT CODES 93

Proof. We have dmin(A) ≤ 6 − 3 + 1 = 4 by the Singleton Bound 3.1.14,
so we must show that C has no codewords of weight 1, 2, or 3. Consider a
nonzero codeword c = (c(1); c(2)) of weight 1, 2, or 3, where c(1), c(2) ∈ F3

9. By
the pigeonhole principle, either c(1) or c(2) has weight at most 1.

First suppose c(1) has weight at most 1. In view of the generator matrix G,
the only codeword with c(1) equal to 0 is the 0-word. A codeword with c(1) of
weight 1 is a scalar multiple of some row of G and so has weight 4, since by
assumption no entry of A is 0. Thus a nonzero codeword c with c(1) of weight
at most 1 has weight 4.

If instead c(2) has weight at most 1, then we may use the generator matrix
H̄ ′ and argue as in the previous paragraph to see again that nonzero c has
weight 4. 2

Assume now, as in the example and proposition, that A has been chosen to
have none of its entries equal to 0. The [12, 6,≥ 4] ternary code Ĉ gotten by
expanding C using the map a+ bi 7→ (a, b) is called an extended ternary Golay
code, as is anything monomially equivalent to it. (For different choices of A this extended ternary Golay code

construction will produce different codes Ĉ, but it turns out that they are all
monomially equivalent.)

If we puncture Ĉ at any coordinate position we get an [11, 6] linear code
which is called a ternary Golay code. ternary Golay code

(7.3.2) Theorem. (M. Golay, 1949.) (1) An extended ternary Golay code
is a self-dual [12, 6, 6] linear code over F3.

(2) A ternary Golay code is a perfect 2-error-correcting [11, 6] linear code
over F3.

Proof. Let x = (x1, . . . x6), y = (y1, . . . y6) ∈ F6
9 with xj = aj + bji and

yj = cj + dji. Then we easily find

x · ȳ = x̂ · ŷ + f i ,

for some f ∈ F3. In particular if x · ȳ = 0, then x̂ · ŷ = 0.
Since C⊥ equals C̄, the expanded code Ĉ is a self-dual ternary [12, 6] linear

code. By Problem 3.1.11(b) all weights of Ĉ are multiples of 3. By the Singleton
Bound 3.1.14 and Theorem 7.2.1

12− 6 + 1 = 7 ≥ dmin(Ĉ) ≥ 4 = dmin(C) ,

hence dmin = 6.
Puncturing Ĉ at any position, we find a code of minimum distance at least

5; so every ternary Golay code is a 2-error-correcting code. To complete (2)
and the theorem, we check equality in the Sphere Packing Condition 2.2.5 for a

94 CHAPTER 7. CODES OVER SUBFIELDS

ternary Golay code:

311 ≥ 36
2∑

i=0

(
11
i

)
(3− 1)i

= 36
((11

0

)
+ +

(
11
1

)
2 +

(
11
2

)
4
)

= 36(1 + 22 + 220)
= 36(243) = 3635 = 311 . 2

7.3.2 Binary Golay codes

Here we have F = F8, K = F2, and m = 3 in Theorem 7.2.1.
Let α be a root in F8 of the primitive polynomial x3 +x+ 1 ∈ F2[x], and let

α = (0, 1, α, α2, . . . , α6) ∈ F8
8 .

In this subsection we begin with the code D = GRS8,4(α,1), which is a self-
dual code by Theorem 5.1.6 and Problem 5.1.5(b). As in Problem A.3.18 of the
Appendix, choose, as basis for F8 over F2, the elements

e1 = α3, e2 = α5, e3 = α6 .

Then, for each β = b1e1 + b2e2 + b3e3 in F8, we set

φ(β) = β̂ = (b1, b2, b3) .

Expand the [8, 4] code D over F8 = F23 to a [24, 12] code D̂ over F2 using
this map. Then D̂ or any code equivalent to it is called an extended binary
Golay code. If we puncture an extended binary Golay code at any coordinateextended binary Golay code

position we get a [23, 12] linear code which is called a binary Golay code.binary Golay code

(7.3.3) Theorem. (M. Golay, 1949.) (1) An extended binary Golay code is
a self-dual [24, 12, 8] linear code over F2.

(2) A binary Golay code is a perfect 3-error-correcting [23, 12] linear code
over F2.

Proof. We have already remarked that D is self-dual by Theorem 5.1.6
and Problem 5.1.5(b). Therefore by Theorem 7.2.1 and Problem A.3.18 of the
Appendix the extended Golay code D̂ is a self-dual binary [24, 12,≥ 5] linear
code. As D̂ is self-dual, dmin is even by Problem 3.1.11(a) and so at least 6.

Let G be the canonical generator matrix of D with rows g0,g1,g2,g3:

G =


1 1 1 1 1 1 1 1
0 1 α1 α2 α3 α4 α5 α6

0 1 α2 α4 α6 α1 α3 α5

0 1 α3 α6 α2 α5 α1 α4

 .

7.3. GOLAY CODES AND PERFECT CODES 95

As seen earlier, one generator matrix for D̂ has as rows the twelve codewords
ci,j = êjgi, for 1 ≤ j ≤ 3 and 0 ≤ i ≤ 3. Each c = ci,j consists of eight binary
triples:

c = (c(1); c(2); c(3); c(4); c(5); c(6); c(7); c(8)) .

If c = c0,j , then the c(a) are all equal and of weight one, hence c has weight 8.
If c = ci,j with i 6= 0, then

{ c(a) | 1 ≤ a ≤ 8 } = {000, 001, 010, 011, 100, 101, 110, 111} ,

and c has weight 12. Therefore in all cases c = ci,j has weight a multiple of
4. As these span the self-dual code D̂, Problem 3.1.11(a) guarantees that all
weights of D̂ must have weight a multiple of 4. Thus dmin(D̂) ≥ 8. We have
equality, since each c0,j has weight 8.

Puncturing D̂ at any position, we find a code of minimum distance at least
7; so every binary Golay code is a 3-error-correcting code. To complete (2)
and the theorem, we check equality in the Sphere Packing Condition 2.2.5 for a
binary Golay code:

223 ≥ 212
3∑

i=0

(
23
i

)
(2− 1)i

= 212
((23

0

)
+ +

(
23
1

)
+
(

23
2

)
+
(

23
3

))
= 212(1 + 23 + 253 + 1771)
= 212(2048) = 212211 = 223 . 2

7.3.3 Perfect codes

Although we will not at present devote much time to perfect codes, we emphasize
the speciality of the Golay codes by reporting

(7.3.4) Theorem. (Tietäväinen and Van Lint, 1971.) A perfect e-error-
correcting code C of length n over Fq satisfies one of:

(1) |C| = 1, e = n;
(2) |C| = qn, e = 0;
(3) |C| = 2, q = 2, n = 2e+ 1;
(4) |C| = 36, q = 3, e = 2, n = 11;
(5) |C| = 212, q = 2, e = 3, n = 23;
(6) |C| = qn−r, e = 1, n = (qr − 1)/(q − 1), any r > 0. 2

Notice that we make no assumption of linearity.
The codes of (1) and (2) are called trivial perfect codes. The repetition codes

are examples for (3) and are nearly trivial. The Golay codes are examples in
(4) and (5), and the Hamming codes occur under (6).

The codes of (1) through (5) are unique up to affine equivalence. This is
easy to prove for (1) through (3) but difficult for the Golay codes. In most cases

96 CHAPTER 7. CODES OVER SUBFIELDS

there exist perfect codes with the same parameters as a Hamming code but not
affine equivalent to a Hamming code.

Best and Hong have proven that Theorem 7.3.4 remains valid for all finite
alphabets A, not just those of prime power order, provided e ≥ 3.

There are two basic tools in the proof of such theorems. One is the Sphere
Packing Condition 2.2.5, in the form

e∑
i=0

(
n

i

)
(q − 1)i | qn ,

of particular value when the alphabet size q is a prime power and e > 1. Indeed
the only solution to this equation for q (≤ 100) a prime power with n ≤ 1000
and 1 < e ≤ 1000, other than the ones implied by the existence of the perfect
codes above, is

1 +
(

90
1

)
+
(

90
2

)
= 212 ,

which would correspond to a perfect binary 2-error-correcting code of length 90
(but see Problem 7.3.5 below).

The second main tool for proving nonexistence of perfect codes is Lloyd’s
Theorem, which is proven below as Theorem 9.4.9. This is a deep result saying
that a certain polynomial, determined entirely by the parameters n, q, and e,
must have all its roots positive integers in order for there to exist a corresponding
perfect code. The analysis of the roots of the Lloyd polynomial is delicate but far
reaching. As q has more prime factors, the Sphere Packing Condition becomes
less restrictive; so Best and Hong’s proof must rely almost entirely on Lloyd’s
theorem.

As an example of the kind of argument that goes into Theorem 7.3.4 and its
relatives, we present the special case of binary, perfect 2-error-correcting codes
as Theorem 9.4.11 below.

(7.3.5) Problem. (a) In a binary perfect e error-correcting code of length n we
must have n + 1 a multiple of e + 1. (Hint: Assume that the code contains the 0-
vector. Consider the n − e words of weight e + 1, having common ones in a fixed set
of e coordinate positions, and the distribution of these words into spheres of radius e
around codewords.)

(b) Prove that a perfect binary 2-error-correcting code of length 90 does not exist.

(7.3.6) Problem. Prove that a binary, perfect 1-error-correcting code of length 7 is
a coset of a Hamming code.

(7.3.7) Problem. Let C be a binary, perfect 1-error-correcting code of length n that
contains 0.

(a) Prove that C contains n(n − 1)/6 codewords of weight 3. (Hint: Every word
of weight 2 is inside a unique sphere of radius 1 around a codeword of weight 3.)

(b) Prove that C contains n(n−1)(n−3)/24 codewords of weight 4. (Hint: Every
word of weight 3 is either a codeword or is inside a unique sphere of radius 1 around
a codeword of weight 4.)

7.4. SUBFIELD SUBCODES 97

(7.3.8) Problem. Explain how, in theory, one could find recursively the number of
codewords of any fixed weight in the perfect e-error-correcting code C (containing 0)
in terms of e, the length n, and the size q of the alphabet.

7.4 Subfield subcodes

An expanded code is longer than its parent code but has the same number of
codewords. Subfield subcodes have the same length but are smaller than their
parents.

Again let the field F have a subfield K, and let C be a code of length n over
F . Then the subfield subcode C|K equals C ∩ Kn, the set of those codewords subfield subcode

of C all of whose coordinate entries belong to the subfield K. As before, the
concept makes sense for nonlinear codes, but we shall concentrate on the linear
case.

Of course it initially seems possible that a subfield subcode will be too small
to be of use. For linear C, the subcode C|K contains the 0-vector, but does it
contain anything else? We shall respond to this by proving that, for H a check
matrix for C, the matrix Ȟ is a control matrix for C|K . This will give us an
upper bound for the redundancy of C|K and so a lower bound for its dimension.

The next lemma is used to prove this observation. As before we let e1, . . . , em

a basis for F over K. The a∗,j ∈ K are the entries of column α̌j of the matrix
α̌ and the vector α[i] is row i of the matrix.

(7.4.1) Lemma. For α = (α1, . . . , αn) ∈ Fn, let α̌j = (a1,j , . . . , am,j)>

(for 1 ≤ j ≤ n) and α[i] = (ai,1, ai,2, . . . , ai,n) (for 1 ≤ i ≤ m). For b =
(b1, . . . , bn) ∈ Kn,

α · b = 0 in Fn

if and only if
α[i] · b = 0 in Kn, for all 1 ≤ i ≤ m.

Proof.

α · b = 0 ⇐⇒
∑n

j=1 αjbj = 0
⇐⇒

∑n
j=1(

∑m
i=1 ai,jei)bj = 0

⇐⇒
∑m

i=1(
∑n

j=1 ai,jbj)ei = 0
⇐⇒

∑n
j=1 ai,jbj = 0 , for all i

⇐⇒ α[i] · b = 0 , for all i. 2

Let H be a check (or control) matrix for the code C over F . Thus

x ∈ C if and only if Hx> = 0 .

For a vector b with all its entries from K, we then have

b ∈ C|K if and only if Hb> = 0 ,

98 CHAPTER 7. CODES OVER SUBFIELDS

which, by Lemma 7.4.1, is equivalent to

for b ∈ Kn, b ∈ C|K if and only if Ȟb> = 0 .

Therefore Ȟ is a control matrix for C|K , as claimed.

(7.4.2) Theorem. If C is an [n, k, d] linear code over F , then the subfield
subcode C|K = C ∩Kn is a [n, k′ ≥ n −mr, d′ ≥ d] linear code over K, where
r = n− k.

Proof. If a,b ∈ C|K and t, s ∈ K, then ta + sb is in Kn, as all entries are
from K, and is in C, since C is linear over F ≥ K. Therefore ta + sb ∈ C|K ,
and the subfield subcode is linear.

Clearly C|K has length n. Since it is contained within the linear code C,
we must have dmin(C|K) ≥ dmin(C). It remains to verify the bound on its
dimension. The redundancy of C is n−k = r, and that is the number of rows in
a check matrix H for C. We have above constructed from a H a control matrix
Ȟ for C|K , having m rows for each row of H. We can get a check matrix for
C|K by discarding any unneeded rows from Ȟ. Thus the redundancy of C|K is
at most mr, hence its dimension is at least n−mr, as claimed. 2

We shall see in the next section that the bounds on dimension and distance
in the theorem can be met and can be exceeded.

7.5 Alternant codes

If GRSn,k(α,v) is a generalized Reed-Solomon code over the field F and K is
a subfield of F , then the subfield subcode Kn ∩ GRSn,k(α,v) is an alternant
code. The code is strict if no αi equals 0. Clearly alternant codes can be decodedalternant code

strict as GRS codes, but a new type of decoding default is possible—decoding to a
codeword in the parent GRS code but not in the child alternant code. Recall
that the strict generalized Reed-Solomon codes were somewhat easier to decode
than those that are not strict.

An immediate consequence of Theorem 7.4.2 is

(7.5.1) Theorem. The alternant code Kn ∩ GRSn,k(α,v) is an [n, k′, d′]
linear code over K with k′ ≥ n− (n− k)m and d′ ≥ n− k + 1. 2

In our earlier work on generalized Reed-Solomon codes, the scaling vector
v played little role. It enlarged the family of codes to the point that we could
prove, in Theorem 5.1.6, that the dual of a generalized Reed-Solomon codes is
also a generalized Reed-Solomon code. Other than that, it has been benign;
and in most of our decoding examples we assumed it to be 1, the vector of 1’s.
Now in the study of alternant codes, the scaling vector v comes to life. Different
choices produce different codes.

Let α be a primitive element in the field F2m , and set

α = (1, α, α2, . . . , αj , . . . , αn−1) ,

7.5. ALTERNANT CODES 99

where n = 2m − 1 is the order of α and the length of the vector α. Let 1 be
the vector of length n consisting of n entries 1. Then by Theorem 5.1.6 and
Problem 5.1.5(c) (or direct calculation)

GRSn,a(α,α)⊥ = GRSn,b(α,1)

whenever a+ b = n.
We will consider some related subfield subcodes. In doing this, choose as

F2-basis for F2m the decreasing powers of α:

e1 = αm−1, . . . , ei = αm−i, . . . , em = 1 .

The code GRSn,n−1(α,α) has dimension n− 1 and minimum distance 2 =
n− (n− 1) + 1. It has as check matrix H the canonical generator matrix of its
dual GRSn,1(α,1), a code of dimension 1 spanned by the vector 1. Therefore

H = 1 and Ȟ = (1̌, 1̌, . . . , 1̌) ,

a matrix whose first m − 1 rows are 0 and whose last row is 1. The subfield
subcode Fn

2 ∩GRSn,n−1(α,α) therefore has, as check matrix, the single vector
1 and is revealed as the parity check code of length n, also of minimum distance
2.

On the other hand, the code GRSn,n−1(α,1) also has dimension n− 1 and
minimum distance 2 but has as check matrix L the canonical generator matrix
α of its dual GRSn,1(α,α). We have

L = α and Ľ = (1̌, α̌, . . . , α̌j , . . . , α̌n−1) .

Now the subfield subcode Fn
2 ∩GRSn,n−1(α,1) has, as check matrix, the matrix

Ľ in which each nonzero m-tuple appears exactly once as a column α̌j , for the
appropriate j. The subfield subcode Fn

2 ∩ GRSn,n−1(α,1) is thus seen to be a
binary Hamming code.

In summary, the alternant codes

Fn
2 ∩GRSn,n−1(α,α) and Fn

2 ∩GRSn,n−1(α,1) ,

which differ only in the choice of scaling vector v, are very different codes. The
first is a parity check code. Its dimension is n − 1 (> n − m) and minimum
distance is 2, meeting the lower bound of Theorem 7.5.1 (and Theorem 7.4.2).
The second is a Hamming code. It has dimension n−m, meeting the bound of
Theorem 7.5.1 (and Theorem 7.4.2), and minimum distance 3 (> 2).

(7.5.2) Problem. We have shown above that certain binary Hamming codes arise
as alternant codes. More generally, prove that all Hamming codes (binary or not) can
be realized as alternant codes.

(7.5.3) Problem. Prove that extended alternant codes (that is, the subfield subcodes
coming from extended generalized Reed-Solomon codes) are strict alternant codes. In
particular, all generalized Reed-Solomon codes can be realized as strict alternant codes.

