
Chapter 6

Modifying Codes

If one code is in some sense good, then we can hope to find from it similar and
related codes that are also good. In this chapter we discuss some elementary
methods for modifying a code in order to find new codes. In two further sections
we discuss special cases related to generalized Reed-Solomon codes.

6.1 Six basic techniques

A code C has three fundamental parameters—its length n, its dimension k, and
its redundancy r = n−k. Each of these parameters has a natural interpretation
for linear codes, and although the six basic modification techniques are not
restricted to linear codes it will be easy initially to describe them in these terms.
Each fixes one parameter and increases or decreases the other two parameters
accordingly. We have:

(i) Augmenting. Fix n; increase k; decrease r.
(ii) Expurgating. Fix n; decrease k; increase r.
(iii) Extending. Fix k; increase n; increase r.
(iv) Puncturing. Fix k; decrease n; decrease r.
(v) Lengthening. Fix r; increase n; increase k.
(vi) Shortening. Fix r; decrease n; decrease k.

The six techniques fall naturally into three pairs, each member of a pair
the inverse process to the other. Since the redundancy of a code is its “dual
dimension,” each technique also has a natural dual technique.

6.1.1 Augmenting and expurgating

In augmenting or expurgating a code we keep its length fixed but vary its di-
mension and redundancy.

When augmenting a code C we add codewords to C. augmenting

77

78 CHAPTER 6. MODIFYING CODES

The inverse process of expurgating a code is the throwing out of codewords.expurgating

Notice that augmentation may cause the minimum distance to decrease, while
expurgation will not decrease minimum distance and may, in fact, increase it.
For generalized Reed-Solomon codes, we always have

GRSn,k−1(α,v) ≤ GRSn,k(α,v) .

Therefore the second code results from augmenting the first, and the first from
expurgating the second. In this case the expurgated code has larger minimum
distance.

A linear code can be easily augmented by adding rows to a generator matrix
and expurgated by taking away rows. A typical way of augmenting a linear code
is by adding the row vector composed entirely of 1’s to its generator matrix.
(Of course, in certain cases this vector will already belong to the code; so the
action is inappropriate.)

Increasing the size of a linear code is the same as decreasing the size of its
dual, so these two techniques are dual to each other as well as inverse. The dual
of augmenting a code by the all 1’s vector is expurgating by keeping only those
codewords whose entries sum to 0.

These techniques are used for nonlinear codes as well. Consider a linear
code C that is a subcode of the linear code D. We can create new codes,
not necessarily linear, that are augmentations of C and expurgations of D, by
taking the union of certain cosets of C in D. For instance, we might choose those
cosets whose coset leaders had largest weight. This method has produced some
nonlinear codes that have better properties (in this case minimum distance)
than any linear code with the same length and size.

If K is a subfield of the field F and C is a code over F , then we can expurgate
C by keeping only those codewords all of whose entries belong to K. This
subfield subcode inherits many of the properties of the original code and may havesubfield subcode

further nice properties as well. This extremely important type of expurgation
will be discussed at length in a later chapter.

6.1.2 Extending and puncturing

In extending or puncturing a code we keep its dimension fixed but vary its length
and redundancy. These techniques are exceptional in that they are one-to-one.
Issues related to the extending and puncturing of GRS codes will be discussed
in the next two sections.

When extending a code we add extra redundancy symbols to it. The inverseextending

is puncturing, in which we delete redundancy symbols. Puncturing may causepuncturing
the minimum distance to decrease, but extending will not decrease the minimum
distance and may, in fact, increase it. (See Problem 6.1.1 below.) To extend a
linear code we add columns to its generator matrix, and to puncture the code
we delete columns from its generator.

Let us call the [n + 1, k] linear code C+ a coordinate extension of C if itcoordinate extension

results from the addition of a single new redundancy symbol to the [n, k] linear

6.1. SIX BASIC TECHNIQUES 79

code C over the field F . Each codeword c+ = (c1, . . . , cn, cn+1) of the extended
code C+ is constructed by adding to the codeword c = (c1, . . . , cn) of C a new
coordinate cn+1 =

∑n
i=1 aici = a · c, for some fixed a = (a1, . . . , an) ∈ Fn.

Here we imply that the new coordinate is the last one, but this is not necessary.
A coordinate extension can add a new position at any place within the original
code.

Although it is formally possible, it makes little sense to add a coordinate
determined by a vector a of C⊥, since each new cn+1 would be 0. We thus
assume that a 6∈ C⊥. In this case, the subcode C0 = C ∩a⊥ of C has dimension
k − 1. We call C0 the kernel of the extension. Replacing the vector a by any kernel

other vector of the coset a + C⊥ leaves the extension C+ and the kernel C0

unchanged. Replacing a by a nonzero scalar multiple gives an extension of C
diagonally equivalent to C+ and with the same kernel C0.

The kernel C0 is that subcode of C that has 0 added in the extension position
cn+1 of C+. If G0 is a generator matrix for the kernel C0 and c ∈ C −C0, then
one generator matrix for the coordinate extension C+ is[

G0 0
c cn+1

]
,

where 0 is a column vector of k−1 entries equal to 0. Conversely, for any linear
[n, k− 1] subcode C0 of C, there is a coordinate extension C+ of C with kernel
C0. The extension C+ can be constructed via a generator matrix as above or,
equivalently, by choosing a vector a in C⊥0 − C⊥.

The most typical method of extending a code is the appending of an overall
parity check symbol, a final symbol chosen so that the entries of each new code-
word sum to zero. This corresponds to a coordinate extension in which a has all
of its entries equal to −1. For binary codes, this is the usual requirement that
the 1’s of a codeword in the extended code have even parity. For C a binary
Hamming code, this leads to the extended Hamming codes as constructed in
Section 4.3, although there we added the new coordinate at the front of the
codeword rather than the rear. An extended binary Hamming code has mini-
mum distance 4. No matter what position we choose to puncture an extended
binary Hamming code, we are left with a code of minimum distance 3. This
code must again be a Hamming code by Problem 4.1.3.

(6.1.1) Problem. Let C+ be a coordinate extension of C with kernel C0. If
dmin(C0) > dmin(C), prove that dmin(C+) = dmin(C) + 1.

Let x′ denote the vector of length n − 1 that is gotten by deleting the last
entry from the vector x of length n. Then GRSn,k(α,v) can be punctured
to GRSn−1,k(α′,v′). Clearly this can be repeated and not always in the final
coordinate. The relationship between puncturing and correction of erasures in
GRS codes is discussed in the next section of this chapter. On the other hand
GRSn,k(α,v) is an extension of GRSn−1,k(α′,v′). Extensions of this kind are
always possible as long as n < |F |. We talk about further extension of GRS
codes in the final section of the chapter.

80 CHAPTER 6. MODIFYING CODES

(6.1.2) Problem. Let C be a code with minimum distance d. Prove that C can
correct any pattern of g erasures and e errors provided

g + 2e + 1 ≤ d .

(Hint: For a given pattern, consider the code that is C punctured at the erasure
locations.)

6.1.3 Lengthening and shortening

In lengthening or shortening a code we keep its redundancy fixed but vary its
length and dimension.

When lengthening a code C we increase the length and add codewords to C.lengthening

The inverse process of shortening a code involves the throwing out of codewordsshortening
and deleting coordinate positions. As such, these operations can be thought of
as combinations of the ones discussed above. Lengthening is extending followed
by augmenting, and shortening is expurgating followed by puncturing. Since
the two constituent operations tend to have opposing influence on the minimum
distance, the actual effect of a lengthening or shortening operation upon distance
will depended upon the situation.

For linear codes lengthening corresponds to bordering a generator matrix by
adding new columns (extending) and the same number of new rows (augment-
ing). A standard method is to add to the original generator a final column that
is entirely 0, and then add a row that is nonzero in this new column, for in-
stance, the vector of all 1’s. Thus a coordinate extension D+ of a linear code D
is a lengthening of its kernel C = D0. Lengthening a code is dual to extending,
and the special case of adding an all 0 column and all 1 row for C corresponds
to extending C⊥ by an overall parity check symbol. Thus in Section 4.3, we
started with a lexicographic generator matrix Lm for the dual Hamming code
C and bordered it to construct a generator ELm for the first order Reed-Muller
code RM(1,m) whose dual is the extended Hamming code.

(6.1.3) Problem. Let C+ be a coordinate extension of the linear code C with kernel
C0. Prove that (C+)⊥ is an extension of C⊥0 and a lengthening of C⊥.

Shortening undoes lengthening by removing a border from a generator ma-
trix. To reverse the standard 0 column lengthening just described, we first find
a generator matrix for the longer code that has a unique row in which the last
column is nonzero. Then delete that row (expurgating) and the final column
(puncturing), leaving a generator matrix for the original code. In fact this re-
constructs the original code as the kernel of a coordinate extension in the overall
parity check position. Of course this type of shortening can be done with re-
spect to any column. There will also be various other shortenings available,
corresponding to deleting borders whose columns have more nonzero entries.
Shortening plays a role in constructing noncyclic CRC codes from cyclic codes,
as discussed in Section 8.4.1.

Using the x, x′ notation of the previous subsection, we see that the canon-
ical generator matrix for the code GRSn,k(α,v) is obtained by bordering the

6.1. SIX BASIC TECHNIQUES 81

canonical generator matrix for GRSn−1,k−1(α′,v′). Therefore we can shorten
GRSn,k(α,v) to GRSn−1,k−1(α′,v′). In general this will not be the same as
the [n− 1, k− 1] shortened code constructed above by deleting the last position
from all codewords that finish with 0, the kernel of GRSn,k(α,v) viewed as an
extension in its last coordinate.

(6.1.4) Problem. Let C be GRSn,k(α,v), and shorten C to the [n− 1, k − 1] code
D by taking all codewords of C that end in 0 and then deleting this last coordinate.
Find vectors β and u with D = GRSn−1,k−1(β,u).

We can also lengthen and shorten nonlinear codes. Choose a coordinate
position, and select from the code only those words that have some fixed entry
in that place. Then delete that position from each of these words. This process
can be repeated any number of times, leaving the residue of all codewords that
match some specific pattern on some specific set of positions, those positions
then deleted. We can use this approach to prove the rest of the Asymptotic
Plotkin Bound 2.3.9(2):

αm(δ) ≤ 1− m

m− 1
δ , for 0 ≤ δ ≤ m− 1

m
.

Proof of Corollary 2.3.9.
Consider a family {Cn} of m-ary codes of unbounded length n and such that

the limits
lim

n→∞
d(Cn)/n = lim

n→∞
δ(Cn) = δ

and
lim

n→∞
k(Cn)/n = lim

n→∞
κ(Cn) = κ

both exist. Assume additionally that δ ≤ (m− 1)/m. We wish to prove

κ ≤ 1− m

m− 1
δ .

Clearly we may assume that δ 6= 0, so d(Cn) goes to infinity with n. In
particular, there is an integer N such that d(Cn) ≥ m, for all n > N .

Let n > N , and set C = Cn and d = d(Cn). Define

n′ =
⌊

(d− 1)
m

m− 1

⌋
= (d− 1) +

⌊
d− 1
m− 1

⌋
≥ d .

Since 1 > (m− 1)/m ≥ 0,

d− 2 <
m− 1
m

n′ ≤ d− 1 .

Let x be an (n−n′)-tuple. Shorten the code to a set C ′ = C ′(x) of n′-tuples
by choosing all codewords ending in the (n−n′)-tuple x and then deleting these

82 CHAPTER 6. MODIFYING CODES

last (n − n′) positions from the chosen words. Then either C ′ is empty or the
shortened code C ′ has length n′ and minimum distance d′ ≥ d. Furthermore

m− 1
m

<
d

n′
≤ d′

n′
,

Therefore the Plotkin Bound 2.3.8 can be applied to C ′ to yield

|C ′| ≤ d′

d′ − m−1
m n′

≤ d

d− m−1
m n′

≤ d ,

since the function f(x) = x/(x − c) is decreasing. There are mn−n′
possible

choices for x, and each C ′(x) has size at most d; so

|C| ≤ dmn−n′
.

Taking logarithms and dividing by n, we reach

logm(|C|)
n

≤ logm(d) + n− n′

n

≤ logm(n)
n

+ 1− m

m− 1
d− 2
n

.

Therefore, for all n > N ,

κ(Cn) ≤ 1− m

m− 1
δ(Cn) + n−1

(
logm(n) + 2

m

m− 1

)
,

which, in the limit, is the desired bound. 2

6.2 Puncturing and erasures

In Subsection 6.1.2 we saw that the correction of erasures and errors can be
dealt with through correction of errors for a suitable punctured code. Indeed
the following theorem is a special case of Problem 6.1.2.

(6.2.1) Theorem. The code GRSn,k(α,v) can be used to correct any pattern
of g erasures and e errors provided

g + 2e ≤ n− k .

We are interested in proving the theorem by displaying a specific algorithm
for decoding. We shall see that a simple modification of Euclidean algorithm
decoding allows us to find the error and erasure locations, at which point the
algorithm of Proposition 3.3.3 can be used to find all values.

Remember that for the code C = GRSn,k(α,v) we defined

L(x) =
n∏

i=1

(x− αi)

6.2. PUNCTURING AND ERASURES 83

and
Li(x) = L(x)/(x− αi) .

Let J be a subset of the coordinate positions, and consider the code CJ =
GRSn−g,k(αJ ,vJ), gotten by puncturing C at the coordinate positions of the
set J̄ , the complement of J , with |J̄ | = g. For CJ we have

LJ(x) =
∏
i∈J

(x− αi)

and
LJ,i(x) = LJ(x)/(x− αi) ,

for i ∈ J . If we let

LJ̄(x) =
∏
i∈J̄

(x− αi) =
∏
i6∈J

(x− αi) ,

then
L(x) = LJ(x)LJ̄(x) and Li(x) = LJ,i(x)LJ̄(x) .

By Theorem 5.1.6 the dual of C is GRSn,n−k(α,u), where

ui =
1

viLi(αi)
;

and the dual of CJ is GRSn−g,n−g−k(αJ , ũ), where

ũi =
1

viLJ,i(αi)
,

for i ∈ J . Notice that we do not get ũ by simple puncturing of u (and so we do
not write uJ .) Nevertheless ũ is easy to calculate. For i ∈ J ,

ũi =
1

viLJ,i(αi)

=
1

vi(Li(αi)/LJ̄(αi))

=
LJ̄(αi)
viLi(αi)

= LJ̄(αi)ui .

We have proven

(6.2.2) Proposition. The dual of GRSn−g,k(αJ ,vJ) is

GRSn−g,n−g−k(αJ , ũ) ,

where ũi = LJ̄(αi)ui. 2

84 CHAPTER 6. MODIFYING CODES

We return to Theorem 6.2.1. Suppose we receive the word p which contains
g erasures at the positions J̄ . To find the locations of the errors (as opposed to
erasures) we decode the punctured received word pJ using the punctured code
CJ . As CJ corrects b(n− g − k + 1)/2c errors, this already proves the theorem
without an algorithm.

We now describe the error location algorithm, following that of Theorem
5.2.4. We first calculate the J-syndrome:

SJ(z) =
∑
i∈J

LJ̄(αi)uipi

1− αiz
(mod zr−g)

=
n∑

i=1

LJ̄(αi)uipi

1− αiz
(mod zr−g) .

Next we step through the Euclidean algorithm with the initialization

a(z) = zr−g and b(z) = SJ(z)

until a step j is reached where deg(rj(z)) < (r − g)/2. We can then find the
error locations I in J from the calculated σJ(z) (and ωJ(z)).

Of course we could at the same time find the error values at the locations
in I, but we would still need to find the values at the erasure locations in J̄ . It
is probably more efficient to use the algorithm of Proposition 3.3.3 to find all
values at the g + e ≤ d− 1 error and erasure locations I ∪ J̄ simultaneously.

6.3 Extended generalized Reed-Solomon codes

Let n > 1, and consider n-tuples from the field F with the following properties:
(i) w = (w1, w2, . . . , wn) ∈ Fn has all its entries wi not 0;
(ii) β = (β1, β2, . . . , βn) ∈ Fn and γ = (γ1, γ2, . . . , γn) ∈ Fn satisfy

βiγj 6= βjγi , for all i 6= j .

For k > 0 the extended generalized Reed-Solomon code EGRSn,k(β,γ; w) is theextended generalized
Reed-Solomon code code C composed of all codewords

evβ,γ;w(f) = (w1f(β1, γ1), . . . , wif(βi, γi), . . . , wnf(βn, γn)) ,

where f = f(x, y) runs through all polynomials of F [x, y] that are homogeneous
of degree k − 1:

f(x, y) = f0y
k−1 + f1xy

k−2 + f2x
2yk−3 + · · ·+ fk−1x

k−1 with fi ∈ F .

The condition (ii) states that, for all distinct i, j, there is no c ∈ F with
(βi, γi) = c(βj , γj). It should be thought of as saying that

βi/γi 6= βj/γj , for all i 6= j ,

6.3. EXTENDED GENERALIZED REED-SOLOMON CODES 85

but care must be taken since we allow the possibility γj = 0. There is at most
one j with γj = 0, and in that case βj 6= 0 since n > 1.

For each i, let αi be the ratio βi/γi, where we write ∞ for βj/γj = βj/0.
Then by (ii) the αi are all distinct. Let α = (α1, α2 . . . , αn). Further let α′ be
α punctured at position j where αj =∞, if such a position exists.

For each i, set vi = wiγ
k−1
i ; and let v = (v1, v2, . . . , vn). All entries of v

are nonzero with the possible exception of that vj where γj = 0 and αj =∞, if
such a j exists. In that case let v′ be v punctured at position j.

We first check that the code we have defined is really an extension of a
generalized Reed-Solomon code.

(6.3.1) Theorem. Let C = EGRSn,k(β,γ; w). If αj = ∞ and γj = 0 then
the code gotten by puncturing C at position j is GRSn−1,k(α′,v′). If no such j
exists, then C = GRSn,k(α,v).

Proof. Let C ′ be the code gotten by puncturing C at j where αj =∞. If
no such j exists, let C ′ = C.

With each degree k − 1 homogeneous polynomial f(x, y) as above, we asso-
ciate a polynomial f̂ in the single indeterminate x

y :

f̂

(
x

y

)
=

1
yk−1

f(x, y) = f0 + f1

(
x

y

)
+ f2

(
x

y

)2

+ · · ·+ fk−1

(
x

y

)k−1

.

The polynomial f̂(x
y) has degree at most k − 1 and satisfies

f̂(αi) =
1

γk−1
i

f(βi, γi) .

Therefore, for any i with αi 6=∞, the ith entry of the codeword

evβ,γ;w(f)

in the code C = EGRSn,k(β,γ; w) equals that of the codeword

evα′,v(f̂)

in the generalized Reed-Solomon code GRSn′,k(α′,v′). That is,

C ′ = GRSn′,k(α′,v′) . 2

A canonical generator matrix for C has rows evβ,γ;w(f) as f = f(x, y)
runs through the basis yixk−1−i of the space of homogeneous polynomials of
degree k− 1. This matrix is also obtained by adding to the canonical generator
matrix for GRSn−1,k(α′,v′) at position j (where αj = ∞) a column that is
all 0 except for the entry wjβ

k−1
j in its last row. (Compare Problem 5.1.4.)

In particular GRSn−1,k−1(α′,v′) is revealed as the kernel of the coordinate

86 CHAPTER 6. MODIFYING CODES

extension of GRSn−1,k(α′,v′) at position j that produces the extended code
EGRSn,k(β,γ; w). In particular, the next theorem is a consequence of the
previous theorem and Problem 6.1.1. Instead we give a proof following that of
the corresponding result for GRS codes, Theorem 5.1.1.

(6.3.2) Theorem. The code EGRSn,k(β,γ; w) is an [n, k] linear code over
F with minimum distance n− k + 1.

Proof. The only thing that needs careful checking is that the minimum
distance is at least n− k + 1 = n− (k − 1).

Let f(x, y) be a homogeneous polynomial of degree k − 1, and let f̂(x
y) be

its associated polynomial. As all the wi are nonzero, the number of entries 0
in f = evβ,γ;w(f) equals the number of i with f(βi, γi) = 0. We must prove
there are at most k−1 such i. There are two cases to consider, depending upon
whether or not f(βj , γj) = 0 for a j with γj = 0 and αj =∞.

First consider those 0’s of f that occur at positions i for which γi 6= 0. Each
corresponding αi is a root of the polynomial f̂ , and there are at most deg(f̂)
roots. In particular, in the case where all 0’s of f occur at such positions i, there
are at most k − 1 ≤ deg(f̂) places equal to 0, as required.

Now assume that γj = 0 and f(βj , 0) = 0, that is,

0 = f00k−1 + f1βj0k−2 + f2β
2
j 0k−3 + · · ·+ fk−2β

k−2
j 01 + fk−1β

k−1
j

= fk−1β
k−1
j .

As βj 6= 0, we must have fk−1 = 0 in this case. Therefore the degree of f̂ is in
fact at most k− 2. So even here there are at most k− 1 places where f is 0, one
at position j and at most deg(f̂) ≤ k − 2 at other locations. 2

(6.3.3) Problem. Prove that the dual of an EGRS code is also an EGRS code.

(6.3.4) Theorem. Let a, b, c, d, e ∈ F with

ad− bc 6= 0 and e 6= 0 .

Then
EGRSn,k(β,γ; w) = EGRSn,k(β̃, γ̃; w̃) ,

where

β̃i = aβi + bγi,

γ̃i = cβi + dγi,

andw̃i = ewi .

Proof. The proof consists mainly of calculation. The crucial observation
is that, for any homogeneous polynomial f(x, y) of degree k − 1 and for the
quadruple r, s, t, u ∈ F , the polynomial f(rx+ sy, tx+ uy) is also homogeneous
of degree k − 1, provided rx+ sy 6= 0 6= tx+ uy.

6.3. EXTENDED GENERALIZED REED-SOLOMON CODES 87

The number ∆ = ad− bc is the determinant of the matrix[
a b
c d

]
.

As ∆ is nonzero we can solve for βi and γi and find that

βi = ∆−1(dβ̃i − bγ̃i) ,
γi = ∆−1(−cβ̃i + aγ̃i) .

As e 6= 0, the vector w̃ has no entries 0, since w has none. We also check
that

β̃iγ̃j − β̃j γ̃i = ∆(βiγj − βjγi) 6= 0 ,

giving the defining conditions (i) and (ii) for the vectors β̃, γ̃, and w̃.
Starting with the degree k − 1 homogeneous polynomial f(x, y), we define

the new polynomial

g(x, y) =
1

e∆k−1
f(dx− by,−cx+ ay) .

Then
evβ,γ;w(f) = evβ̃,γ̃;w̃(g) .

Therefore each codeword of the first code is also in the second code. As both
codes have the same dimension, they must be equal. 2

Problems 5.1.2 and 5.1.3 are special cases of this theorem.
The q + 1 possible ratios αi = βi/γi from {∞} ∪ Fq are identified with the

projective line over Fq. The EGRS codes can thus be thought of as codes
defined by functions on the projective line. The group of 2 × 2 matrices that
appears in Theorem 6.3.4 acts naturally on the projective line.

(6.3.5) Theorem. If n ≤ |F |, then C = EGRSn,k(β,γ; w) is equal to
GRSn,k(α,v) over F , for appropriate α and v. If n < |F |, then α may be
chosen with all its entries not equal to 0.

Proof. If n ≤ |F |, then some possible ratio α does not occur among the
αi = βi/γi. If the ratio α = ∞ is missing, then C is a GRS code by Theorem
6.3.1. If γj = 0 and α 6=∞, then any transformation[

a b
c d

]
=
[

a b
−1 α

]
in Theorem 6.3.4 takes γ to a vector γ̃ with no entry 0; so C is again a GRS
code by Theorem 6.3.1. If n < |F | then the the values of a, b, c, and d in
the transformation can be chosen so that both β̃ and γ̃ avoid 0. Then C =
GRSn,k(α̃,v) with each entry α̃ = β̃/γ̃ of α̃ nonzero. 2

