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A.1 Basic Algebra

A.1.1 Fields

In doing coding theory it is advantageous for our alphabet to have a certain
amount of mathematical structure. We are familiar at the bit level with boolean
addition (EXCLUSIVE OR) and multiplication (AND) within the set {0, 1}:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

We wish to give other alphabets, particularly finite ones, a workable arithmetic.
The objects we study (and of which the set {0, 1} together with the above
operations is an example) are called fields. A field is basically a set that possesses
an arithmetic having (most of) the properties that we expect — the ability to
add, multiply, subtract, and divide subject to the usual laws of commutativity,
associativity, and distributivity. The typical examples are the field of rational
numbers (usually denoted Q), the field of real numbers R, and the field of
complex numbers C; however as just mentioned not all examples are so familiar.
The integers do not constitute a field because in general it is not possible to
divide one integer by another and have the result still be an integer.

A field is, by definition, a set F , say, equipped with two operations, + (addi-field

tion) and · (multiplication), which satisfy the following seven usual arithmetic
axioms:

(1) (Closure) For each a and b in F , the sum a+ b and the product
a · b are well-defined members of F .

(2) (Commutativity) For all a and b in F , a+b = b+a and a·b = b·a.

(3) (Associativity) For all a, b, and c in F , (a+ b) + c = a+ (b+ c)
and (a · b) · c = a · (b · c).

(4) (Distributivity) For all a, b, and c in F , a · (b+ c) = a · b+ a · c
and (a+ b) · c = a · c+ b · c.

(5) (Existence of identity elements) There are distinct elements 0 and
1 of F such that, for all a in F , a+0 = 0+a = a and a ·1 = 1 ·a = a.

(6) (Existence of additive inverses) For each a of F there is an ele-
ment −a of F such that a+ (−a) = (−a) + a = 0.

(7) (Existence of multiplicative inverses) For each a of F that does
not equal 0, there is an element a−1 of F such that a · (a−1) =
(a−1) · a = 1.

It should be emphasized that these common arithmetic assumptions are the
only ones we make. In particular we make no flat assumptions about operations
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called “subtraction” or “division”. These operations are best thought of as the
“undoing” respectively of addition and multiplication and, when desired, can be
defined using the known operations and their properties. Thus subtraction can
be defined by a− b = a+ (−b) using (6), and division defined by a/b = a · (b−1)
using (7) (provided b is not 0).

Other familiar arithmetic properties that are not assumed as axioms either
must be proven from the assumptions or may be false in certain fields. For
instance, it is not assumed but can be proven that always in a field (−1)·a = −a.
(Try it!) A related, familiar result which can be proven for all fields F is
that, given a and b in F , there is always a unique solution x in F to the
equation a+x = b. On the other hand the properties of positive and/or negative
numbers familiar from working in the rational field Q and the real field R do
not have a place in the general theory of fields. Indeed there is no concept at
all of “negative” or “positive” number for the complex field C or the field {0, 1}
discussed above.

The only thing keeping the integers Z from being a field is the axiom (7)
concerning multiplicative inverses. Axioms (1)-(6) are valid for Z, but (7) fails
miserably; indeed 1 and −1 are the only integers that possess multiplicative
inverses that are also integers. The integers do satisfy two axioms weaker than
(7) but still useful.

(7′) (Cancellation) If a is not 0 and a · b = a · c, then b = c.

(7′′) (No Zero Divisors) If a · b = 0, then a = 0 or b = 0.

Axiom (7′) is a direct consequence of (7), because multiplying both sides of
a · b = a · c by a−1 leaves b = c. However (7) is not a consequence of (7′) as (7′)
is true in Z while (7) is not. Similarly axiom (7′′) is a consequence of (7). If
one of a or b is not zero, then multiplying the lefthand side of a · b = 0 by its
inverse reveals the other as equal to 0. Again (7′′) is true in Z while (7) is not,
so that (7) is not a consequence of (7′′).

In fact axioms (7′) and (7′′) are equivalent in the following sense: if the set
R has operations + and · that satisfy (1) through (6), then either both axioms
(7′) and (7′′) hold or neither does. To see that (7′) implies (7′′), apply (7′) to
a · b = a · 0. On the other hand, to see that (7′′) implies (7′), apply (7′′) to
a · (b− c) = 0.

We are interested mainly in finite fields, those fields with a finite number finite fields

of elements of which {0, 1} is our only example so far. The most familiar way
of giving a reasonable arithmetic to a finite set is to do modular arithmetic
in the integers. For a fixed positive integer n, called the modulus we give the modulus

set Zn = {0, 1, . . . , n − 1} an arithmetic by first performing the usual integer
addition or multiplication and then reducing the result modulo n back into the
set Zn by subtracting off multiples of n. This is “clock arithmetic” when n = 12
(or, these days, when n = 24).

The question arises as to whether Zn is a field. The field {0, 1} already
mentioned several times is nothing other than the integers mod 2, Z2. It is not
difficult to check that Zn with modular arithmetic satisfies axioms (1) through
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(6). On the other hand, the answer as to whether Zn satisfies (7) or the weaker
(7′) and (7′′) depends upon the particular value of the modulus n. For instance,
all are true when n = 2. For n = 6 we have 2 ·3 = 0 (mod 6) (whence 2 ·3 = 2 ·0
(mod 6)); yet neither 2 nor 3 equals 0 in the integers mod6. Therefore each of
(7), (7′), and (7′′) is false in Z6.

Although the arithmetics of Z and Z6 do not make them into fields, the
structures clearly are of interest. A set F equipped with an addition and multi-
plication that satisfy (1) through (6) we shall call a commutative ring. (“Com-commutative ring

mutative” because the multiplication satisfies the commutative law.) A ringring
satisfies each of (1) through (6) with the possible exception of the commuta-
tivity of multiplication. If the commutative ring F additionally satisfies the
equivalent axioms (7′) and (7′′), then it is called an integral domain (in honorintegral domain

of the integers!). Clearly all fields and all integral domains are commutative
rings. As (7) implies (7′) and (7′′), every field is also an integral domain while
the integers provide the prime example of an integral domain that is not a field.
Z6 is an example of a commutative ring that is not an integral domain and so
certainly not a field.

An element of a ring that has an inverse, as in (7), is called a unit; so fieldsunit

are exactly those commutative rings in which every nonzero element is a unit.

(A.1.1) Lemma. Let n be an integer larger than 1. The following are equiv-
alent:

(1) n is a prime;
(2) Zn is an integral domain;
(3) Zn is a field.

Proof. (1) implies (2): Assume n is a prime, and that a · b = 0 in Zn.
Then the integer ab is a multiple of n. As n is prime, it divides either a or b;
hence either a or b is 0 in Zn. This verifies axiom (7′′).

(2) implies (1): As with our example of Z6, if n is not prime, then each
factorization ab = n in Z with 1 < a, b < n gives rise to an equality a · b = 0 in
Zn with neither a nor b equal to 0. Thus if n is not a prime, then Zn does not
satisfy (7′′) and so is not an integral domain.

(3) implies (2) as axiom (7) implies axioms (7′) and (7′′).
(2) implies (3): Let Z]

n = {1, . . . , n − 1}, the set of nonzero elements of
Zn. Choose a ∈ Z]

n. As (by assumption) Zn is an integral domain, for distinct
elements z1, z2 ∈ Z]

n, the products a · z1 and a · z2 are also distinct by (7′).
Therefore the set aZ]

n = {a · z|z ∈ Z]
n} contains n− 1 distinct members of Zn.

Indeed 0 6∈ aZ]
n by (7′′), so aZ]

n is a subset of Z]
n. Thus aZ]

n is a subset of Z]
n

containing the same number of elements as Z]
n. We conclude that Z]

n = aZ]
n.

In particular, 1 ∈ Z]
n = aZ]

n; and there is a z in Z]
n with a · z = 1. Therefore

all the nonzero members of Zn have multiplicative inverses in Zn, and Zn is a
field. 2

(A.1.2) Problem. Extend the argument of Lemma A.1.1 that (2) implies (3) to
prove the more general result that every finite integral domain is in fact a field. (The
integers of course provide an example of an infinite integral domain that is not a field.)
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If F is a field and K is a subset of F , K is said to be a subfield of F provided subfield

that the set K equipped with the addition and multiplication of F is a field in
its own right. If this is the case, then we write K ≤ F or F ≥ K. The addition
and multiplication of K will be commutative, associative, and distributive as
they already are in F ; so the crucial requirements are that K be closed under
addition and multiplication and contain the additive and multiplicative inverses
of all its elements. As examples, the rational field Q is a subfield of the real
field R, which in turn is a subfield of the complex field C.

If K is a subfield of F , then we call F an extension field of K. Thus C is an extension field

extension field of R, and both C and R are extension fields of Q. As we shall
mainly be concerned with finite fields, important examples of subfields for us
are provided by the next result.

(A.1.3) Lemma. Let F be a finite field, and consider the subset K of F
composed of all elements of F that can be written as a sum of 1’s:

K = {1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, . . . }.

Then K is a subfield Zp of F , for some prime p.

Proof. Notice that by definition K is closed under addition, while an
easy application of the distributive law in F shows that K is closed under
multiplication.

As F is finite, so is K. Therefore there are distinct positive integers m and
n (m larger than n) with the sum of m 1’s equal to the sum of n 1’s. (Indeed,
there are many such pairs m,n.) Equivalently the sum of m− n 1’s equals 0 in
F and K, m− n a positive integer. Let p be the smallest positive integer such
that 0 is a sum of p 1’s in F and K. We conclude that K is composed precisely
of the p distinct elements

1, 1 + 1, . . . ,
p∑

i=1

1 =

p times︷ ︸︸ ︷
1 + · · ·+ 1 = 0.

The set K is therefore a copy of Zp. As K is contained in the field F , no
two nonzero members of K have product 0; so by Lemma A.1.1 p is a prime,
completing the result. 2

The prime p of Lemma A.1.3 is called the characteristic of the field F , and characteristic

K is (for obvious reasons) called the prime subfield of F . prime subfield
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A.1.2 Vector spaces

The passage from the real line to real, Euclidean, three-dimensional space is the
most familiar case of the passage from a field to a vector space over a field. If
F is a field and n is any positive integer, we may use the arithmetic structure
of F to give the set Fn of n-tuples from F ,

Fn = {(a1, a2, . . . , an) | ai ∈ F},

additive and multiplicative structures as well. We define “vector addition” of
members of Fn via

(a1, a2, . . . , an)⊕ (b1, b2, . . . , bn) = (c1, c2, . . . , cn)

where ci = ai + bi (addition in F ), for each i = 1, . . . , n. We define “scalar
multiplication” of members of Fn by members of F via

α ? (a1, a2, . . . , an) = (α · a1, α · a2, . . . , α · an)

where α · ai is the usual multiplication in the field F . These two operations
make Fn into a vector space over F .

Given a field F , a vector space V over F is, by definition, a set V (whosevector space

members are called the vectors of V ) equipped with two operations ⊕ (vector
addition) and ? (scalar multiplication), satisfying the following:

(1) (Closure) For each v and w in V , v⊕w is a well-defined member
of V . For each α in F and v in V , α ?v is a well-defined member of
V .

(2) (Commutativity) For each v and w in V , v ⊕w = w ⊕ v.

(3) (Associativity) For each u,v,w in V , (u⊕v)⊕w = u⊕ (v⊕w.
For each α, β in F and v in V , (α · β) ? v = α ? (β ? v).

(4) (Distributivity) For each α, β in F and v,w in V , (α+ β) ? v =
(α ? v)⊕ (β ? v) and α ? (v ⊕w) = (α ? v)⊕ (α ?w).

(5) (Existence of vector identity) There is a vector 0 of V such that,
for each v of V , v ⊕ 0 = 0⊕ v = v.

(6) (Existence of vector inverses) For each v of V there is a vector
−v of V such that v ⊕ (−v) = (−v)⊕ v = 0.

(7) (Scalar identity properties) For each v of V , 1 ? v = v and
0 ? v = 0.

For brevity, we sometimes say that V is an F -vector space or even an F -space.F -space

Note that scalar multiplication ? is not multiplication of one vector by another
but multiplication of a vector in V by a member of the field F . (F is usually
called the scalar field of the vector space V , and its members are scalars.)scalar field

scalars
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The set Fn with the operations defined above is now easily seen to be a vector
space over F . The similarity between the above axioms and those of Section
A.1.1 explains the fact that F may be thought of as a vector space over itself.
(After all, the distinction between F and F 1 is merely a pair of parentheses.)
Many examples of vector spaces do not resemble the space of n-tuples at all.
For instance, the set of all continuous and differentiable functions on the real
line is a vector space over the real numbers.

Most of the vector spaces we shall study will naturally sit inside vector spaces
Fn (because the spaces Fn are the natural universes for the codes we study).
A subset W of the vector space V over F is a subspace of V if the operations subspace

of V give W the structure of a vector space over F in its own right. In this
case we shall write W ≤ V or V ≥ W . As most of the axioms (2)-(7) will
have already been checked within V , the main force of this definition is in the
assumption that W is closed as in (1). In fact, the subset W of V will be a
subspace of V if and only if, for all α in F and all v,w in W , α ? v is in W
and v ⊕ w is in W . Thus V itself and {0} are rather trivial subspaces of V .
More typical is the subspace of Fn composed of all vectors (a1, a2, . . . , an) with
a1 + a2 + · · ·+ an = 0.

(A.1.4) Problem. Prove that the nonempty subset W of the F -vector space V is a
subspace if and only if αv + w ∈W , for all v,w ∈W and α ∈ F .

If W is a subspace of V , then a cosets of W in V is a translate of W by some cosets

fixed vector. If we translate each vector of W by the vector v, we get the coset
x +W = {x + w | w ∈ W }. You should convince yourself that if y ∈ x +W ,
then y +W = x+W ; so two cosets are either disjoint or equal. As an example,
a typical subspace of dimension 2 in 3-dimensional Euclidean space is a plane
through the origin, while a typical coset is a translate of such a subspace and
so is a plane that need not be through the origin.

One way of constructing a subspace of the F -vector space V is by taking
the span 〈S〉 of a nonempty subset S of V . This is, by definition, the smallest span

subspace of V that contains S; however this may not be the best way of thinking
of 〈S〉. We usually view 〈S〉 instead as the subspace composed of all linear
combinations of members of S:

〈S〉 = {
∑
v∈S

αvv |αv ∈ F}.

You should convince yourself that these two definitions of 〈S〉 are equivalent. If
V = 〈S〉, then S is a called a spanning set in V . spanning set

A basis of the vector space V is a minimal spanning set for V , a set that basis
spans V but no proper subset of it spans V .

(A.1.5) Theorem. If the vector space V has a finite basis B, then every basis
of V contains the same number of vectors as B.

This theorem will be proven in the following subsection. (The theorem is in fact
true without the assumption that B is finite.) The common size for the bases
of V is the dimension of V . dimension
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A set ∆ of vectors from V is called linearly dependent if there is a set oflinearly dependent

coefficients αv, for v ∈ ∆, such that the linear combination
∑

v∈∆ αvv equals
0. The equation ∑

v∈∆

αvv = 0

is then called a linear dependence of ∆.linear dependence

A subset ∆ is linearly independent if it is not linearly dependent. The max-linearly independent
imal linearly independent subsets of V are precisely the bases of V . (Check!)
In particular, every linearly independent subset of V belongs to a basis. (For
infinite dimensional spaces, this is the best way to see that a basis exists.)

(A.1.6) Problem.
(a) Let E be an extension field of F . Prove that E is a vector space over F with

scalar multiplication induced by the field multiplication of E.
(b) Using (1), show that every finite field has a prime power number of elements.

If q is a power of a prime, we often write GF (q) or Fq for a field containingGF (q)

Fq q elements.

Remarks on notation

Notice that in vector spaces we have two concepts of “addition” ( + in F and
⊕ in V ) and two of “multiplication” ( · in F and ? in V ) and that for formal
precision we must distinguish between them. (See, for instance, axioms (3) and
(4) above.) Often to simplify notation we adopt the usual practice of denoting
all forms of addition by + and all forms of multiplication by juxtaposition; so
for α, β in F and v,w in V we usually write

αβ for α · β ; v + w for v ⊕w ; and αv for α ? v.

In doing this we risk ambiguity. To counter this possibility we often adopt other
conventions which may already have been noticed. For instance, we usually write
vectors in boldface thus: v.
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A.1.3 Matrices

Just as we can examine vector spaces over arbitrary fields, so can we define
matrices with entries from an arbitrary field. If K is a field, we denote by
Km,n the collection of all m× n matrices with entries from K. Notice that the
vector space Kn of row vectors of length n is equal to K1,n. The vector space
of column vectors of length m is Km,1. The usual componentwise addition and
subtraction is defined on Km,n and has all the expected properties. Together
with scalar multiplication, these give Km,n the structure of a vector space over
K of dimension mn.

Matrix multiplication is also defined by the familiar formula (i.e., entries of
the product being the dot product of rows of the first matrix with columns of
the second). Matrix multiplication also has all the expected properties — as-
sociativity, distributivity over addition, block multiplication. Because the most
usual matrix manipulations involve only addition, subtraction, and multiplica-
tion, the entries need not always be restricted to a field but might instead be
from an integral domain (or even a ring).

You may notice that the set Kn,n of square matrices together with the
operations of matrix addition and multiplication satisfies all the axioms (1)
through (6) with the exception of commutativity of multiplication. Thus Kn,n

is an example of a noncommutative ring.
If A is an m× n matrix with entries from the field K, then the row space of row space

A, RS(A), is the subspace of Kn that is spanned by the rows of A. (We shall
often look at codes that have been defined as the row space of certain matrices.)
Similarly the column space of A, CS(A), is the subspace of Km,1 spanned by column space

the columns of A. The null space of A, NS(A), is the space of column vectors null space
x ∈ Kn,1 such that Ax = 0. (Notice that the null space can be thought of as
the space of all linear dependencies on the set of columns.) The dimension of
the row space of A is the row rank of A, and the dimension of the column space row rank

of A is the column rank of A. The dimension of NS(A) is the nullity of A. column rank
nullityMore complicated but familiar matrix processes can also be done over arbi-

trary fields. In particular, Gauss-Jordan elimination is still available. That is,
by sequences of elementary row operations on a matrix it is possible to transform
the matrix into reduced row echelon form. Several of the standard consequences
of Gaussian elimination then become available. In particular we have:

(A.1.7) Theorem. Let A be an m× n matrix with entries from the field K.
(1) The row rank of A equals the column rank of A. (This common dimension

being called the rank of A.) rank

(2) The rank of A plus the nullity of A equals n, the number of columns of
A.

Before proving this theorem, we give a detailed discussion of echelon form
and its properties. The leading entry of a row is its first nonzero entry, reading leading entry

from left to right.
The matrix A is said to be in row echelon form if it satisfies: row echelon form
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(1) the leading entry of each row is to the right of the leading entries
of previous rows;

(2) all rows composed entirely of zeros are at the bottom of the
matrix.

The matrix A is said to be in reduced row echelon form RREF, if it additionallyreduced row echelon form
RREF satisfies:

(3) the leading entry of each row equals 1 and is the only nonzero
entry in its column.

The various leading entries of the matrix RREF(A) are also sometimes called
the pivot entries of RREF(A) and the columns containing them are the pivotpivot entries

columns of RREF(A) and A. The row rank of RREF(A) (indeed any matrixpivot columns
in row echelon form) is particularly easy to calculate; it is just the number of
nonzero rows. It only takes a few seconds more to realize that this is also equal
to the column rank of RREF(A). We will reduce the proof of Theorem A.1.7
to this special case, where we have just seen that the theorem (or at least its
first part) is evident.

Elementary row operations have one of three forms:

(i) subtracting a multiple of one row from another;

(ii) interchanging two rows;

(iii) multiplying a row by a nonzero constant.

The usual elimination techniques then give:

(A.1.8) Theorem. Every matrix A with entries from a field can be trans-
formed by a sequence of elementary row operations into a matrix RREF(A)
that is in reduced row echelon form. 2

The verification is routine, but it is important that the matrix entries are from
a field. For more general rings the result may not be true. (Imagine what could
be done by integer row operations to a matrix with entries from Z whose first
column contained only even integers.)

The notation suggests that RREF(A) is uniquely determined. This is indeed
the case.

(A.1.9) Problem. Prove that the matrix A ∈ Km,n, K a field, has a unique
row reduced echelon form. ( Hint: Prove that every vector of RS(A) has its leftmost
nonzero entry in a pivot column, then either (i) try to write the rows of a second
RREF as linear combinations of the rows of the first, or (ii) observe that the pivot
columns are the leftmost columns that form a basis for CS(A).)

As expected, each elementary row operation can be accomplished through
left multiplication by an appropriate elementary matrix. Let aεi,j be the matrix
that has a in its (i, j)-entry and 0’s elsewhere (and write εi,j for 1εi,j), and let
I be the identity matrix. Then left multiplication by
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(i) I + aεi,j adds a times row j to row i;

(ii) I − εi,i − εj,j + εi,j + εj,i interchanges rows i and j;

(iii) I + (a− 1)εi,i multiplies row i by a.

The inverse of I + aεi,j is I − aεi,j ; I − εi,i − εj,j + εi,j + εj,i is its own inverse;
and I + (a−1 − 1)εi,i is the inverse of I + (a − 1)εi,i for nonzero a. Therefore
each elementary matrix is invertible. In particular we have XA = RREF(A),
where the invertible matrix X is the product of those elementary matrices that
correspond to the elementary row operations that take A to RREF(A).

(A.1.10) Problem. Let Y be an invertible k × k matrix with entries from the field
K, and let A be the k × 2k matrix

`
Y | I

´
, the columns of Y followed by the columns

of a k × k identity matrix. Prove that RREF(A) =
`
I |Y −1

´
.

(A.1.11) Problem. Let Y be a k × k matrix with entries from the field K. Prove
that the following are equivalent:

(a) Y is invertible;
(b) NS(Y ) = 0;
(c) Y has rank k;
(d) RREF(Y ) = I.

(A.1.12) Proposition. Let A be an m×n matrix with entries from the field
K.

(1) The column rank of RREF(A) equals the row rank of RREF(A).
(2) RS(RREF(A)) = RS(A);
(3) NS(RREF(A)) = NS(A);
(4) dim(CS(RREF(A)) = dim(CS(A)), that is, RREF(A) has column rank

equal to the column rank of A.

Proof. (1) Both numbers are equal to the number of pivot entries in
RREF(A). Each of (2), (3), and (4) can be proven using the fact that there
is an invertible matrix X with XA = RREF(A). For (4) it should be noted
that (whether X is invertible or not) we have CS(XA) = XCS(A) = {Xa |a ∈
CS(A) }. 2

(A.1.13) Problem. Prove completely parts (2), (3), and (4) of the proposition.
Give an example that shows that CS(RREF(A)) and CS(A) need not be equal.

If Σ is a set of vectors in Fn, then we can easily find a basis for 〈Σ〉 by
forming the matrix A whose rows are the members of Σ and then passing to
RREF(A) with its nonzero rows giving the desired basis. This observation is
the basis for our proof of Theorem A.1.5: a vector space V with a finite basis
B has all of its bases of size |B|.

Proof of Theorem A.1.5.
Choose B = {b1, . . . ,bd} to be a basis for V of smallest size (necessarily

finite). Let C = {c1, . . . , cd , . . . } be a second basis of V . Note that |C| ≥ d = |B|
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by choice. (If we encounter a second basis that is infinite, then for C we instead
choose a finite subset of the basis that has at least d+ 1 members.)

For each i, write ci as a linear combination of members of B:

ci =
d∑

j=1

ai,jbj ;

and let the matrix A have (i, j)-entry ai,j . As C is linearly independent, the row
rank of A equals |C|. However by Proposition A.1.12 the row rank of A equals
the row rank of RREF(A) which is at most d, the number of columns of A.
Therefore |C| ≤ d, completing the proof. 2

For any matrix A, another advantage to having R = RREF(A) available
is the ease with which its null space (and so that of A) can be calculated. Let
the (i, j)-entry of R be ri,j , and assume that the pivot entries are ri,p(i) = 1,
for i = 1, . . . , r, (r being the row rank of A). Set P = { p(i) | i = 1, . . . , r}, the
indices of the pivot columns of R.

For each nonpivot column k 6∈ P we construct a null vector nk of R with a
1 in position k and 0 in all other nonpivot columns. The j-entry of nk is given
by:

(nk)j = 1 if j = k;
(nk)j = 0 if j 6= k and j 6∈ P;
(nk)j = −ri,k if j = p(i) ∈ P.

This produces n − r linearly independent vectors of NS(R). It is easy to see
that 0 is the only null vector of R (and A) that is 0 in all nonpivot columns.
Thus {nk | k 6∈ P} is a basis of NS(R) = NS(A).

(A.1.14) Problem. Check that each nk is indeed a null vector of R, and supply the
remaining details of the proof that these vectors form a basis for NS(R).

In particular we have just proven that the nullity of A is equal to the number of
nonpivot columns in RREF(A). This together with Proposition A.1.12 allows
us to prove Theorem A.1.7 easily.

Proof of Theorem A.1.7.
For part (1), we have:

row rank of A = row rank of RREF(A) by A.1.12(2)
= column rank of RREF(A) by A.1.12(1)
= column rank of A by A.1.12(4).

For part (2), if n is the number of columns in A (and RREF(A)), then

rank of A = number of pivot columns in RREF(A) by A.1.12(1)
= n minus number of nonpivot columns in RREF(A)
= n minus the nullity of A by the above.

Thus both parts of the theorem are proved. 2

We are familiar with the fact that division by matrices is a much trickier
process than the other three arithmetic operations. In particular some concept



A.1. BASIC ALGEBRA A-137

of determinant is usually needed to talk about matrix inverses. Again the usual
theory of determinants carries over to square matrices over arbitrary fields (and
even rings). The standard formula gives a multiplicative function from Kn,n

into K. We shall have little need for this and leave the most elementary case as
an exercise.

(A.1.15) Problem. For a 2× 2 matrix A =

»
a b
c d

–
with entries from a commu-

tative ring R, we define the determinant det(A) = ad− bc. determinant
(a) Prove that if A and B are both 2 × 2 matrices with entries from R then

det(AB) = det(A) det(B).
(b) Prove that A has a matrix inverse with entries from R if and only if det(A)

has an inverse in R.
(c) Prove that when R is a field, A has a matrix inverse with entries from R if and

only if det(A) 6= 0.


