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Preface

These are notes for my Michigan State University, Fall Semester 2015, course
MTH914: Lie Algebras. The primary aim of the course was the introduction and
discussion of the finite dimensional semisimple Lie algebras over algebraically
closed fields of characteristic 0 and their representations.

Unfortunately there was not enough time to cover adequately many addi-
tional topics, including: Serre’s Theorem, the proof of PBW, the construction of
e8, Weyl’s character formula, automorphisms, and the real forms of the complex
semisimple Lie algebras.

The problems and some of the proofs (particularly later in the course) are
incomplete, brief, or sketched. There is also material that was covered but
remains to be included.

The notation 2 indicates my feeling that enough proof has been provided
(even when that is nothing). At the other end of the spectrum 22 indicates
that the result has been stated but will not be proven. This is usually because
the result is too ambitious for the course but deserves to be pointed out.

The bibliography contains a long list of references, all helpful in the prepa-
ration for the course and notes. Three of these particularly stand out:

[Eld15] A. Elduque, Course notes: Lie algebras, Universidad de Zaragosa,
2015, pp. 1–114.

[Maz10] V. Mazorchuk, “Lectures on sl2(C)-modules,” Imperial College Press,
London, 2010.

[Ste70] I. Stewart, “Lie Algebras,” Lecture Notes in Mathematics 127, Springer-
Verlag, Berlin-New York 1970.

I thank Professor V. Futorny for discussion of the topic and for pointing
me toward the first two references above, and I thank Professor A. Elduque for
giving me permission to use his excellent notes. The course would not have been
as good or interesting without helpful suggestions from these two professors and
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Department of Mathematics
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Chapter 1
Introduction

1.1 Algebras

Let K be a field. A K-algebra (KA,µ) is a (left) K-space A equipped with a
bilinear multiplication. That is, there is a K-space homomorphism multiplication
µ : A⊗K A −→ A. We often write ab in place of µ(a⊗ b). Also we may write A
or (A,µ) in place of (KA,µ) when the remaining pieces should be evident from
the context.

If A is a K-algebra, then its opposite algebra Aop has the same underlying
vector space but its multiplication µop is given by µop(x⊗ y) = µ(y ⊗ x).

(1.1). Lemma. The map µ : A⊗K A 7→ A is a K-algebra multiplication if and
only if the adjoint map

ad : x 7→ adx given by adx a = xa

is a K-vector space endomorphism of A into EndK(A) . 2

If V = { vi | i ∈ I } is a K-basis of A, then the algebra is completely described
by the associated multiplication coefficients or structure constants ckij ∈ K given
by

vivj =
∑
k∈I

ckijvk ,

for all i, j.

We may naturally extend scalars from K to any extension field E. Indeed
E ⊗K A has a natural E-algebra structure with the same multiplication coeffi-
cients for the basis V.

Going the other direction is a little more subtle. If the E-algebra B has a
basis V for which all the ckij belong to K, then the K-span of the basis is a K-
algebra A for which B = E⊗KA. In that case we say that A is a K-form of the

1



2 CHAPTER 1. INTRODUCTION

algebra A. In many cases the E-algebra B has several pairwise nonisomorphic
K-forms.

Various generalizations of the above are available and often helpful. The
extension field E of K is a itself special sort of K-algebra. If C is an arbitrary
K-algebra, then C ⊗K A is a K-algebra, with opposite algebra A ⊗K C. The
relevant multiplication is µ = µC ⊗ µA:

µ((c1 ⊗ a1)⊗ (c2 ⊗ a2)) = µC(c1 ⊗ c2)⊗ µA(a1 ⊗ a2) .

We might also wish to consider R-algebras for other rings R with identity.
For the tensor product to work reasonably, R should be commutative. A middle
ground would require R to be an integral domain, although even in that case
we must decide whether or not we wish algebras to be free as R-module.

Of primary interest to us is the case R = Z. A Z-algebra is a free abelian
group (that is, lattice) L =

⊕
i∈I Zvi provided with a bilinear multiplication µZ

which is therefore completely determined by the integral multiplication coeffi-
cients ckij . From this we can construct K-algebras LK = K⊗Z L for any field K,
indeed for any K-algebra. For instance C⊗Z Matn(Z) is the K-algebra Matn(C)
of all n× n matrices with entries from the K-algebra C.

Suppose for the basis V of the K-algebra A all the ckij are integers—that is,
belong to the subring of K generated by 1. Then the Z-algebra L =

⊕
i∈I Zvi

with these multiplication coefficients can be viewed as a Z-form of A (although
we only have its quotient by char(K) as a subring of A). The original K-algebra
A is then isomorphic to LK.

1.2 Types of algebras

As dimK(A ⊗K A) ≥ dimK(A), every K-space admits K-algebras. We focus on
those with some sort of interesting additional structure. Examples are associa-
tive algebras, Jordan algebras, alternative algebras, composition algebras, Hopf
algebras, and Lie algebras—these last being the primary focus of our study. (All
the others will be discussed at least briefly.)

In most cases these algebra types naturally form subcategories of the additive
category KAlg of K-algebras, the maps ϕ of HomKAlg(A,B) being those linear
transformations ϕ ∈ HomK(A,B) with ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A. As
the category KAlg is additive, each morphism has a kernel and image, which are
defined as usual and enjoy the usual properties.

A subcategory will often be defined initially as belonging to a particular
variety of K-algebras. For instance, the associative K-algebras are precisely
those K-algebras satisfying the identical relation

(xy)z = x(yz) .

Alternatively, the associative K-algebras are those whose multiplication map µ
satisfies

µ(µ(x⊗ y)⊗ z) = µ(x⊗ µ(y ⊗ z)) .



1.2. TYPES OF ALGEBRAS 3

As the defining identical relation is equivalent to its reverse (zy)x = z(yx), the
opposite of an associative algebra is also associative.

Similarly, the subcategory of alternative K-algebras is the variety of K-
algebras given by the weak associative laws

x(xy) = (xx)y and x(yy) = (xy)y .

The opposite of an alternative algebra is also alternative.
Varietal algebras like these have nice local properties:

(i) A K-algebra is associative if and only if all its 3-generator subalgebras are
associative.

(ii) A K-algebra is alternative if and only if all its 2-generator subalgebras are
alternative.

The associative identity is linear in that each variable appears at most once
in each term, while the alternative identity is not, since a appears twice in each
term. The linearity of an identity implies that it only need be checked on a
basis of the algebra to ensure that it is valid throughout the algebra. That is,
there are appropriate identities among the various ckij that are equivalent to the
algebra being associative. (Exercise: find them.) This implies the (admittedly
unsurprising) fact that extending the scalars of an associative algebra produces
an associative algebra. It is also true that extending the scalars of an alternative
algebra produces another alternative algebra, but that needs some discussion
since the basic identity is not linear. (Exercise.)

The basic model for an associative algebra is EndK(V ) for some K-space
V . Indeed, most associative algebras (including all with an identity) are iso-
morphic to subalgebras of various EndK(V ). (See Proposition (1.3).) For finite
dimensional V we often think in matrix terms by choosing a basis for V and
then using that basis to define an isomorphism of EndK(V ) with Matn(K) for
n = dimK(V ).

Of course, every associative algebra is alternative, but we now construct the
most famous models for alternative but nonassociative algebras. If we start with
K = R, then we have the familiar construction of the complex numbers as 2× 2
matrices: for a, b ∈ K we set

(a, b) =

(
a b
−b a

)
with multiplication given by(

a b
−b a

)(
c d
−d c

)
=

(
ac− bd ad+ bc
−bc− ad −bd+ ac

)
and conjugation given by(

a b
−b a

)−
=

(
a −b
b a

)
.

As R is commutative and conjugation is trivial on R, these can be rewritten:
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For a, b ∈ K and a 7→ ā an antiautomorphism of K, we set

(a, b)K =

(
a b
−b̄ ā

)
,

with (
a b
−b̄ ā

)(
c d
−d̄ c̄

)
=

(
ac− d̄b da+ bc̄
−cb̄− ād̄ −b̄d+ c̄ā

)
and (

a b
−b̄ ā

)−
=

(
ā −b
b̄ a

)
.

This then gives us the complex numbers C as the collection of all pairs (a, b)R
of real numbers. Feeding the complex numbers back into the machine produces
Hamilton’s quaternions H as all pairs (a, b)C with the multiplication and the
conjugation antiautomorphism described. As C is commutative the quaternions
are associative, but they are no longer commutative.

Finally with K = H, the resulting O of all pairs (a, b)H is the octonions of
Cayley and Graves. The octonions are indeed alternative but not associative,
although this requires checking. Again conjugation is an antiautomorphism.

In each case, the 2 × 2 “scalar matrices” are only those with b = 0 and
a = ā ∈ R, so we have constructed R-algebras with respective dimensions
dimR(C) = 2, dimR(H) = 4, dimR(O) = 8.

A quadratic form on the K-space V is a map q : V −→ K for which the
associated map b : V × V −→ K given by polarization

b(x, y) = q(x+ y)− q(x)− q(y)

is a nondegenerate bilinear form. (See Appendix A for a brief discussion of
bilinear forms.)

The R-algebras R, C, H, and O furnish examples of composition R-algebras.
A composition algebra is a K-algebra A with multiplicative identity, admitting
a nondegenerate quadratic form δ : A −→ K that is multiplicative:

δ(x)δ(y) = δ(xy) ,

for all x, y ∈ A. The codimension 1 subspace 1⊥ consists of the pure imaginary
elements of A, and (in characteristic not 2) the conjugation map a1 + b = a1−b,
for b ∈ 1⊥, is an antiautomorphism of A whose fixed point subspace is K1.

In the above R-algebras the form δ is given by δ(x)1 = xx̄:(
a b
−b̄ ā

)(
ā −b
b̄ a

)
= aā+ b̄b

(
1 0
0 1

)
.

In O specifically, for a, b, c, d, e, f, g, h ∈ R, we find

δ(((a, b)R, (c, d)R)C, ((e, f)R,(g, h)R)C)H = δ(a, b, c, d, e, f, g, h) =

= a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 .
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Thus in O (and so its subalgebras R, C, and H) all nonzero vectors have nonzero
norm.

An immediate consequence of the composition law is that an invertible ele-
ment of A must be have nonzero norm. As δ(x)1 = xx̄ in composition algebras,
the converse is also true. Therefore if 0 is the only element of the composition
algebra A with norm 0, then all nonzero elements are invertible and A is a divi-
sion algebra. Prime examples are the division composition R-algebras R, C, H,
and O. The following remarkable theorem of Hurwitz shows that this situation
is typical

(1.2). Theorem. (Hurwitz’ Theorem) If A is a composition algebra over
K, then dimK(A) is 1, 2, 4, or 8. 22

If the composition K-algebra A is not a division algebra, then it is called split.
It turns out that a split composition algebra over K is uniquely determined up
to isomorphism by its dimension. In dimension 1, the algebra is K itself, always
a division algebra. In dimension 4, a split composition K-algebra is always
Mat2(K) with δ = det, and the diagonal matrices provide a split subalgebra of
dimension 2.

Composition algebras of dimension 8 are called octonion algebras. The orig-
inal is the real division algebra O presented above and due to Graves (1843,
unpublished) and Cayley (1845) [SpV00, p. 23].

A split octonion algebra Osp(K) over any field K is provided by Zorn’s vector
matrices [Zor31]

m =

(
a ~b
~c d

)
with a, d ∈ K and ~b,~c ∈ K3. Multiplication is given by(

a ~b
~c d

)(
x ~y
~z w

)
=

(
ax+~b · ~z a~y + w~b
x~c+ d~z ~c · ~y + dw

)
+

(
0 ~c× ~z

−~b× ~y 0

)
using the standard dot (inner) and cross (outer, exterior, vector) products of
3-vectors. The associated norm is

δ(m) = ad−~b · ~c .

For any ~v with ~v · ~v = k 6= 0 the subalgebra of all

m =

(
a b~v

ck−1~v d

)
is a copy of the split quaternion algebra Mat2(F ) with norm the usual determi-
nant.

Zorn (and others) gave a slightly different version of the vector matrices,
replacing our entry ~c with its negative. This gives the more symmetrical norm
form δ(m) = ad +~b · ~c but makes the connection with standard matrix multi-
plication and determinants less clear.

Extending coefficients in a composition algebra produces a composition alge-
bra (although this is more than an exercise). For every composition K-algebra
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O, there is an extension E of degree at most 2 over K with E⊗K O a split com-
position E-algebra. In particular every composition algebra over algebraically
closed E is split and so unique up to isomorphism. The split algebra over C
(for instance given by Zorn’s vector matrices) has two isomorphism classes of
R-forms—the class of the split algebra Osp(R) and that of the Cayley-Graves
division algebra O.

1.3 Jordan algebras

As mentioned above, the basic models for associative algebras are the endomor-
phism algebras EndK(V ) for some K-space V and the related matrix algebras
Matn(K). While Jordan and Lie algebras both have abstract varietal definitions
(given below for Jordan algebras and in the next section for Lie algebras), they
are first seen in canonical models coming from EndK(V ).

We start with the observation that any pure tensor from V ⊗ V is the sum
of its symmetric and skew-symmetric parts:

v ⊗ w =
1

2
(v ⊗ w + w ⊗ v) +

1

2
(v ⊗ w − w ⊗ v).

In 1933 P. Jordan [JvNW34] initiated the study of the K-algebra A+ =
(A,µ+) = (A, ◦) that is the associative K-algebra A equipped with the Jordan
product

µ+(x⊗ y) = x ◦ y =
1

2
(xy + yx) .

This requires, of course, that the characteristic of the field K not be 2. We
could also consider the algebra without the factor of 1

2 , but we keep it for various
reasons—in particular x◦x = 1

2 (xx+xx) = xx = x2 and 1◦x = 1
2 (1x+x1) = x.

The model for all Jordan algebras is then End+
K (V ), the vector space of all

K-endomorphisms of V equipped with the Jordan product.
Clearly the algebra End+

K (V ) is commutative. Not so obvious is the fact that
we also have the identity

(x ◦ x) ◦ (y ◦ x) = ((x ◦ x) ◦ y) ◦ x ,

for all x, y ∈ End+
K (V ). (Exercise.)

We are led to the general, varietal definition: the K-algebra A is a Jordan
algebra if it is commutative and satisfies the identical relation

x2(yx) = (x2y)x .

The canonical models are End+
K (V ) and so also Mat+

n (K) (in finite dimension).
Any subspace of End+

K (V ) that is closed under the Jordan product is cer-
tainly a Jordan subalgebra. Especially if τ is an automorphism of EndK(V ),
then its fixed-point-space is certainly closed under the Jordan product and so
is a subalgebra. More subtly, if τ is an antiautomorphism of EndK(V ), then it
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induces an automorphism of End+
K (V ) whose fixed points are again a Jordan

subalgebra.

For instance, in the K-algebra Matn(K) the transpose map is an antiauto-
morphism, so the symmetric matrices from Matn(K) form a Jordan subalgebra
of Mat+

n (K). More generally, if A is a K-algebra with an antiautomorphism
a 7→ ā fixing K, then we can try the same trick with the K-algebra Matn(A).
The transpose-conjugate map

τ̄ : (aij) 7→ (āji)

is then an antiautomorphism of Matn(A) (Exercise.), and so the associated fixed
space of Hermitian matrices

Hn(A) = {M ∈ Matn(A) |M = M τ̄ }

is closed under the Jordan product

M ◦N =
1

2
(MN +NM) .

If A is associative then we have a Jordan algebra. Indeed this with A = C
and K = R was the original motivation for the physicist Jordan: in quantum
mechanics the observables for the Hilbert space Cn are characterized by the
hermitian matrices Hn(C), a set which is not closed under the standard matrix
product but is a real Jordan algebra under the Jordan product.

When A is not associative, there is no reason to assume that this gives
Hn(A) the structure of an (abstract) Jordan algebra. But if we choose A to be
an octonion algebra over K and let n ≤ 3, then this is in fact the case. (Recall
that the alternative law is a weak version of the associative law, so this is not
completely unreasonable.)

For the octonion K-algebra O, the Jordan algebra H3(O) is called an Albert
algebra. Each matrix of H3(O) has the shapea α β

ᾱ b γ
β̄ γ̄ c


with a, b, c ∈ K (the fixed field of conjugation in O) and α, β, γ ∈ O. Thus the
K-dimension of the Albert algebra H3(O) is 3 + 3× 8 = 27.

1.4 Lie algebras and representation

In the previous section we only discussed the symmetric part of the tensor
decomposition displayed at the beginning of the section. But even at the time
of Jordan, the corresponding skew part had been studied for years, starting
with the Norwegian Sophus Lie and soon followed by Killing and Cartan (see
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[Bo01] and [Haw00]) If A is an associative algebra, then we define a skew algebra
A− = (A,µ−) = (A, [·, ·]) by furnishing A with the multiplication

µ−(x⊗ y) = [x, y] = xy − yx .

(Note that the scaling factor 1
2 does not appear.) The algebras A− and in

particular End−K (V ) and Mat−n (K) are the canonical models for Lie algebras
over K.

In a given category, a representation of an object M is loosely a morphism of
M into one of the canonical examples from the category. So a linear represen-
tation of a group M is a homomorphism from M to some GLK(V ). With this
in mind, we will say that a linear representation of an associative algebra A, a
Jordan algebra J , and a Lie algebra L (all over K), respectively, is a K-algebra
homomorphism ϕ belonging to, respectively, some

HomKAlg(A,EndK(V )) , HomKAlg(J,End+
K (V )) , HomKAlg(L,End−K (V )) ,

which in the finite dimensional case can be viewed as

HomKAlg(A,Matn(K)) , HomKAlg(J,Mat+
n (K)) , HomKAlg(L,Mat−n (K)) .

The corresponding image of ϕ is then a linear associative algebra, linear Jordan
algebra, or linear Lie algebra, respectively. The representation is faithful if its
kernel is 0. The underlying space V or Kn is then an A-module which carries
the representation and upon which the algebra acts.

It turns out that in each of these categories, many of the important examples
are linear. For instance

(1.3). Proposition. Every associative algebra with a multiplicative identity
element is isomorphic to a linear associative algebra.

Proof. Let A be an associative algebra. For each x ∈ A, consider the map
ad : A −→ EndK(A) of Lemma (1.1), given by x 7→ adx where adx a = xa as
before. That lemma states that ad is a vector space endomorphism.

Thus we need to check that multiplication is respected. But the associative
identity

(xy)a = x(ya)

can be restated as
adxy a = adx ady a ,

for all x, y, a ∈ A. Hence adxy = adx ady as desired.
The kernel of ad consists of those x with xa = 0 for all a ∈ A. In particular,

the kernel is trivial if A contains an identity element. 2

It is clear from the proof that the multiplicative identity plays only a small
role—the result should and does hold in greater generality. But for us the main
message is that the adjoint map is a representation of every associative algebra.
The proposition should be compared with Cayley’s Theorem which proves that
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every group is (isomorphic to) a faithful permutation group by looking at the
regular representation, which is the permutation version of adjoint action.

What about Jordan and Lie representation? Of course we still have not
defined general Lie algebras, but we certainly want to include all the subalgebras
of End−K (V ) and Mat−n (K).

As above, the multiplication map µ of an arbitrary Lie algebra A = (A, [·, ·])
will be written as a bracket, in deference to the commutator product in an
associative algebra:

µ(x⊗ y) = [x, y] .

In the linear Lie algebras End−K (V ) and Mat−n (K) we always have

[x, x] = xx− xx = 0 ,

so we require that an abstract Lie algebra satisfy the null identical relation

[x, x] = 0 .

This identity is not linear, but we may “linearize” it by setting x = y + z. We
then find

0 = [y + z, y + z] = [y, y] + [y, z] + [z, y] + [z, z] = [y, z] + [z, y] ,

giving as an immediate consequence the linear skew identical relation

[y, z] = −[z, y] .

If charK 6= 2, these two identities are equivalent. (This is typical of linearized
identities: they are equivalent to the original except where neutralized by the
characteristic.)

Our experience with groups and associative algebras tells us that having
adjoint representations available is of great benefit, so we make an initial hopeful
definition:

A Lie algebra is an algebra (KL, [·, ·]) in which all squares [x, x] are
0 and for which the K-endomorphism ad : L −→ End−K (L) is a rep-
resentation of L.

Are End−K (V ) and Mat−n (K) Lie algebras in this sense? Indeed they are:

adx ady a = adx(ya− ay)

= x(ya− ay)− (ya− ay)x

= xya− xay − yax+ ayx
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hence

[adx, ady]a = (adx ady − ady adx)a

= (xya− xay − yax+ ayx)− (yxa− yax− xay + axy)

= (xya− axy)− (yxa− ayx)

= [xy, a]− [yx, a]

= [xy − yx, a]

= ad[x,y] a .

That is, [adx, ady] = ad[x,y], as desired.
Let us now unravel the consequences of the identity ad[x,y] = [adx, ady] for

the algebra (L, [·, ·]):

ad[x,y] z = [adx, ady]z

[[x, y], z] = (adx ady − ady adx)z

[[x, y], z] = (adx ady)z − (ady adx)z

[[x, y], z] = [x, [y, z]]− [y, [x, z]]

[[x, y], z] = −[[y, z], x]− [[z, x], y] .

That is,
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 .

We arrive at the standard definition of a Lie algebra:

A Lie algebra is an algebra (KL, [·, ·]) that satisfies the two identical
relations:

(i) [x, x] = 0;

(ii) (Jacobi Identity) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Negating the Jacobi Identity gives us the equivalent identity

[z, [x, y]] + [x, [y, z]] + [y, [z, x]] = 0 .

In particular, the opposite of a Lie algebra is again a Lie algebra.1

The Jacobi Identity and the skew law [y, z] = −[z, y] are both linear, and
these serve to define Lie algebras if the characteristic is not 2. This is good
enough to prove that tensor product extensions of Lie algebras are still Lie
algebras as long as the characteristic is not 2

In all characteristics the null law [x, x] = 0 admits a weaker form of linearity.
Assume that we already know [y, y] = 0, [z, z] = 0, and [y, z] = −[z, y]. Then
for all constants a, b we have

[ay + bz, ay + bz] = [ay, ay] + [ay, bz] + [bz, ay] + [bz, bz]

= a2[y, y] + ab([y, z] + [z, y]) + b2[z, z]

= 0 + 0 + 0 = 0 .

1Exercise: the map x 7→ −x is an isomorphism of the Lie algebra L with its opposite
algebra.
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This, together with the linearity of the Jacobi Identity, gives

(1.4). Proposition. Let L be Lie K-algebra and E an extension field over
K. Then E⊗K L is a Lie E-algebra. 2

Our discussion of representation and our ultimate definition of Lie algebras
immediately give

(1.5). Theorem. For any Lie K-algebra L, the map ad : L −→ End−K (L) is a
representation of L. The kernel of this representation is the center of L

Z(L) = { z ∈ L | [z, a] = 0 , for all a ∈ L } . 2

As was the case in Proposition (1.3) the small additional requirement that
the center of A be trivial gives an easy proof that A has a faithful representation
which has finite dimension provided A does. Far deeper is:

(1.6). Theorem.

(a) (PBW Theorem) Every Lie algebra has a faithful representation as a lin-
ear Lie algebra.

(b) (Ado-Iwasawa Theorem)Every finite dimensional Lie algebra has a faith-
ful representation as a finite dimensional linear Lie algebra. 22

Both these theorems are difficult to prove, although we will return to the
easier PBW Theorem later as Theorem (9.2). Notice that the Ado-Iwasawa
Theorem is not an immediate consequence of PBW. Indeed the representation
produced by the PBW Theorem is almost always a representation on an infinite
dimensional space.

For Jordan algebras, the efforts of this section are largely a failure. In
particular the adjoint action of a Jordan algebra A on itself does not give a
representation in End+

K (A). (Exercise.)
Jordan algebras that are (isomorphic to) linear Jordan algebras are usually

called special Jordan algebras, while those that are not linear are the exceptional
Jordan algebras.2 A.A. Albert [Alb34] proved that the Albert algebras—the
dimension 27 Jordan K-algebras described in Section 1.3—are exceptional rather
than special. Indeed Cohn [Coh54] proved that Albert algebras are not even
quotients of special algebras. Results of Birkhoff imply that the category of
images of special Jordan algebras is varietal and does not contain the Albert
algebras, but it is unknown what additional identical relations suffice to define
this category.

2So, taking a page out of the Montessori book, there are exactly two types of Jordan
algebras: those that are special and those that are exceptional.
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1.5 Problems

(1.7). Problem.

(a) Give two linear identities that characterize alternative K-algebras when charK 6= 2.

(b) Let A be an alternative K-algebra and E an extension field over K. Prove that
E⊗K A is an alternative E-algebra.

(1.8). Problem. Let A be an associative K-algebra for K a field of characteristic
not equal to 2.

(a) Prove that in general the adjoint action of a Jordan algebra does not give a rep-
resentation. Consider specifically the Jordan algebra A+ = (A, ◦) and its adjoint
map ad : A+ −→ End+

K (A) where you can compare ada◦a and ada ◦ ada.

(b) Consider the two families of maps from A to itself:

La : x 7→ a ◦ x =
1

2
(ax+ xa)

and
Ua : x 7→ axa .

Prove that the K-subspace V of A is invariant under all La, for a ∈ V , if and only
if it is invariant under all Ua, for a ∈ V .

Hint: The two parts of this problem are not unrelated.

Remark. Observe that saying V is invariant under the La is just the statement
that V is a Jordan subalgebra of End+

K (A), the map La being the adjoint. There-
fore the problems tells us that requiring Ua-invariance is another way of locating
Jordan subalgebras, for instance the important and motivating spaces of hermitian
matrices Hn(C) in Matn(C).

The crucial thing about Ua is that division by 2 is not needed. Therefore the maps
Ua and their properties can be, and are, used to extend the study of Jordan algebras
to include characteristic 2. The appropriate structures are called quadratic Jordan
algebras, although some care must be taken as the “multiplication” a ? x = Ua(x)
is not bilinear. It is linear in its second variable but quadratic in its first variable;
for instance (αa) ? x = α2(a ? x) for α ∈ K.



Chapter 2
Examples of Lie algebras

We give many examples of Lie algebras (KL, [·, ·]). These also suggest the many
contexts in which Lie algebras are to be found.

2.1 Abelian algebras

Any K-vector space V is a Lie K-algebra when provided with the trivial product
[v, w] = 0 for all v, w ∈ V . These are the abelian Lie algebras.

2.2 Generators and relations

As with groups and most other algebraic systems, one effective way of producing
examples is by providing a generating set and a collection of relations among
the generators. For a K-algebra that would often be through supplying a basis
V = { vi | i ∈ I } together with appropriate equations restricting the various
associated ckij .

For a Lie algebra, the Jacobi Identity is linear and leads to (Exercise.) the
equations: ∑

k

ckijc
m
kl + ckjlc

m
kl + cklic

m
kj = 0 ,

for all i, j, l,m ∈ I.
The law [x, x] = 0 gives the equations

ckii = 0 .

Since the null law is not linear, we also must include the consequences of its
linearized skew law [x, y] = −[y, x]; so we also require

ckij = −ckji .

13
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An algebra whose multiplication coefficients satisfy these three sets of equations
is a Lie algebra. (Exercise.)

When presenting a Lie algebra it is usual to leave the non-Jacobi equations
implicit, assuming without remark that the bracket multiplication is null and
skew-symmetric.

For instance, we have the K-algebra L = Kh⊕Ke⊕Kf where we state

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f ,

but in the future will not record the additional, necessary, but implied relations,
which in this case are

[h, h] = [e, e] = [f, f ] = 0 , [f, e] = −h , [e, h] = −2e , [f, h] = 2f .

Of course at this point in order to be sure that L really is a Lie algebra,
we must verify the Jacobi Identity equations for all quadruples (i, j, l,m) ∈
{h, e, f}4. (Exercise.)

2.3 Matrix algebras

Many Lie algebras occur naturally as matrix algebras. We have already men-
tioned Mat−n (K). This is often written gln(K), the general linear algebra, in part
because it is the Lie algebra of the Lie group GLn(K); see Theorem (3.7)(a) be-
low. The Gothic (or Fraktur) font is also a standard for Lie algebras.

A standard matrix calculation shows that tr(MN) = tr(NM), so the subset
of matrices of trace 0 is a dimension n2 − 1 subalgebra sln(K) of the algebra
gln(K), which itself has dimension n2. Indeed the special linear algebra sln(K) is
the derived subalgebra [gln(K), gln(K)] spanned by all [M,N ] for M,N ∈ gln(K);
see Section 4.1 below.

The subalgebras n+
n (K) and n−n (K) are, respectively, composed of all strictly

upper triangular and all strictly lower triangular matrices. Both have dimension(
n
2

)
. Next let dn(K) and hn(K) be the abelian subalgebras of, respectively, all

diagonal matrices (dimension n) and all diagonal matrices of trace 0 (dimension
n− 1). We have the triangular decomposition

gln(K) = n+
n (K)⊕ dn(K)⊕ n−n (K)

and
sln(K) = n+

n (K)⊕ hn(K)⊕ n−n (K) .

This second decompositions and ones resembling it will be important later.
Within the Lie algebra sl2(K), consider the three elements

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

so that h2(K) = Kh, n+
2 (K) = Ke, and n−2 (K) = Kf , and

sl2(K) = Kh⊕Ke⊕Kf .
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We then have (Exercise.)

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f ,

and the algebra presented at the end of the previous section is indeed a Lie
algebra, namely a copy of sl2(K).

For the basic theory of bilinear forms, see Appendix A. For bilinear b, the
K-space of endomorphisms

L(V, b) = {x ∈ EndK(V ) | b(xv,w) = −b(v, xw) for all v, w ∈ V }

is then an Lie K-subalgebra of EndK(V )
−

. (Exercise.)
With V = Kn and EndK(V ) = Matn(K) = gln(K), we have some special

cases of L = L(V, b). Let G = (b(ei, ej))i,j be the Gram matrix of b on V (with
respect to the usual basis). The condition above then becomes

L(V, b) = {M ∈ Matn(K) |MG = −GM> } .

For simplicity’s sake we assume that K does not have characteristic 2.

(i) Orthogonal algebras. If b is the usual nondegenerate orthogonal form
with an orthonormal basis, then son(K) = L. As matrices,

son(K) = {M ∈ Matn(K) |M = −M> } .

If the field K is algebraically closed, then it is always possible to find a
basis for which the Gram matrix J is in split form as the 2l × 2l matrix

with l blocks

(
0 1
1 0

)
down the diagonal when n = 2l is even, and this

same matrix with an additional single 1 on the diagonal when n = 2l + 1
is odd.

For the split form over an arbitrary field K, we may write so+
2l(K) in place

of so2l(K).

(ii) Symplectic algebras. If b is the usual nondegenerate (split) symplectic
form with symplectic basis S = { vi, wi | 1 ≤ i ≤ l } subject to b(vi, vj) =
b(wi, wj) = 0 and b(vi, wj) = δi,j = −b(wj , vi), then sp2l(K) = L. As
matrices,

sp2l(K) = {M ∈ Mat2l(K) |MJ = −JM> } ,

where J is the 2l×2l matrix with n blocks

(
0 1
−1 0

)
down the diagonal.

The notation is not uniform. Especially, when K = R the field is sometimes
omitted, hence one may find

gln(R) = gl(n,R) = gl(n) = gln , sln(R) = sl(n,R) = sl(n) = sln ;

and
son(R) = so(n,R) = so(n) = son .

More confusingly, in the case of symplectic algebras the actual definition can
vary as well as the notation; see [Tu11, p. 160].
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2.4 Derivations

A derivation D on the K-algebra A is a linear transformation D ∈ EndK(A)
with

D(fg) = fD(g) +D(f)g ,

for all f, g ∈ A. This should be recognized as the Leibniz product rule. Clearly
the set DerK(A) is a K-subspace of EndK(A), but in fact this provides an amazing
machine for constructing Lie algebras:

(2.1). Theorem. DerK(A) ≤ End−K (A). That is, the derivation space is a Lie
K-algebra under the bracket product.

Proof. Let D,E ∈ DerK(A). Then, for all f, g ∈ A,

[D,E](fg) = (DE − ED)(fg) = DE(fg)− ED(fg)

= D(fEg + (Ef)g)− E(fDg + (Df)g)

= D(fEg) +D((Ef)g)− E(fDg)− E((Df)g))

= fDEg +DfEg + EfDg + (DEf)g

− fEDg − EfDg −DfEg − (EDf)g

= fDEg − fEDg + (DEf)g − (EDf)g

= f([D,E]g) + ([D,E]f)g . 2

The definition of derivations then tells us that the injection of DerK(A) into
End−K (A) gives a representation of the Lie derivation algebra DerK(A) on the
K-space A.

(2.2). Corollary. The image of A under the adjoint representation is a
subalgebra of DerK(A) and End−K (A).

Proof. The image of A under ad is a K-subspace of EndK(A) by our very
first Lemma (1.1). It remains to check that each ada is a derivation of A.

We start from the Jacobi Identity:

[[a, y], z] + [[y, z], a] + [[z, a], y] = 0 ,

hence
−[[y, z], a] = [[a, y], z] + [[z, a], y] .

That is,
[a, [y, z]] = [[a, y], z] + [y, [a, z]] ,

or
ada[y, z] = [ada y, z] + [y, ada z] . 2

The map ada is then an inner derivation ofA, and the Lie subalgebra InnDerK(A) =
{ ada | a ∈ A } is the inner derivation algebra.

We have an easy but useful observation:
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(2.3). Proposition. Every linear transformation of EndK(A) is a derivation
of the abelian Lie algebra A.

Proof. For D ∈ EndK(A) and a, b ∈ A

D[a, b] = 0 = 0 + 0 = [Da, b] + [a,Db] . 2

2.4.1 Derivations of polynomial algebras

(2.4). Proposition.

(a) DerK(K) = 0.

(b) If the K-algebra A has an identity element 1, then for each D ∈ DerK(A)
and each c ∈ K1 we have D(c) = 0.

(c) DerK(K[t]) = { p(t) ddt | p(t) ∈ K[t] }, a Lie algebra of infinite K-dimension

with basis { ti ddt | t ∈ N }.

Proof. Part (b) clearly implies (a).

(b) Let c = c1 ∈ K1. Then for all x ∈ A and all D ∈ DerK(A) we have

D(cx) = cD(x)

as D is a K-linear transformation. But D is also a derivation, so

D(cx) = cD(x) +D(c)x .

We conclude that D(c)x = 0 for all x ∈ A, and so D(c) = 0.

(c) Let D ∈ DerK(A). By (b) we have D(K1) = 0. As the algebra A is generated
by 1 and t, the knowledge of D(t) together with the product rule should give us
everything. Set p(t) = D(t).

We claim that D(ti) = p(t)iti−1 for all i ∈ N. We prove this by induction
on i, the result being clear for i = 0, 1. Assume the claim for i− 1. Then

D(ti) = D(ti−1t) = ti−1D(t) +D(ti−1)t

= ti−1p(t) + p(t)(i− 1)ti−2t = p(t)iti−1 ,

as claimed.
As D is a linear transformation, if a(t) =

∑m
i=0 ait

i, then

D(a(t)) =

m∑
i=0

aiD(ti) =

m∑
i=0

aip(t)it
i−1 = p(t)

m∑
i=0

iait
i−1 = p(t)

d

dt
a(t) ,

completing the proposition. 2

In DerK(K[t]) there is the subalgebra A = Kh ⊕ Ke ⊕ Kf with e = d
dt ,

h = −2t ddt , f = −t2 d
dt , and relations (Exercise.)

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f ;
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so we have sl2(K) again.

We next consider K[x, y]. A similar argument to that of the proposition
proves

DerK(K[x, y]) = { p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
| p(x, y), q(x, y) ∈ K[x, y] } .

(See Problem (2.8).) We examine two special situations—a subalgebra and a
quotient algebra.

(i) Consider the Lie subalgebra that leaves each homogeneous piece of K[x, y]
invariant. This subalgebra has basis

hx = x
∂

∂x
, e = x

∂

∂y
, f = y

∂

∂x
, hy = y

∂

∂y
.

Set h = hx − hy = x ∂
∂x − y

∂
∂y . Then

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f ,

giving sl2(K) yet again. The 4-dimensional algebra Khx⊕Khy ⊕Ke⊕Kf
is isomorphic to gl2(K) with the correspondences

hx =

(
1 0
0 0

)
and hy =

(
0 0
0 1

)
.

Each homogeneous piece of K[x, y] carries a representation of gl2(K) and
sl2(K) via restriction from the action of DerK(K[x, y]). The degree m
homogeneous component K[x, y]m is then a cyclic Ke- hence sl2(K)-module
M0(m+ 1) of dimension m+ 1 with generator ym. This will be important
in Chapter 7.

(ii) The algebra K[x, y] has as quotient the algebra K[x, x−1] of all Laurent
polynomials in x. A small extension of the arguments from Proposition
(2.4)(c) (Exercise.) proves that DerK(K[x, x−1]) has K-basis consisting of
the distinct elements

Lm = −xm+1 d

dx
for m ∈ Z .

We write the generators in this form, since they then have the nice pre-
sentation

[Lm, Ln] = (m− n)Lm+n .

All the multiplication coefficients are integers. The Z-algebra with this
presentation has infinite dimension. It is called the Witt algebra over Z,
just as its tensor with K, DerK(K[x, x−1]), is the Witt algebra over K.
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2.4.2 Derivations of nonassociative algebras

We may also consider derivations of the nonassociative algebras we have en-
countered, specifically the octonion K-algebra O and (in characteristic not 2) its
related Albert algebra—the exceptional Jordan K-algebra H3(O). The deriva-
tion algebra DerK(O) has dimension 14 (when charK 6= 3) and is said to have
type g2 while the algebra of inner derivations of the Albert algebra H3(O) has
dimension 52 and is said to have type f4. Especially when K is algebraically
closed and of characteristic 0 we have the uniquely determined algebras g2(K)
and f4(K), respectively.

2.4.3 Vector fields

We shall see in the next chapter that the tangent space to a Lie group at the
identity is a Lie algebra. As the group acts regularly on itself by translation,
this space is isomorphic to the Lie algebra of invariant vector fields on the group.

Indeed often a vector field on the smooth manifold M is defined to be a
derivation of the algebra C∞(M) of all smooth functions; for instance, see
[Hel01, p. 9]. Thus the space of all vector fields is the corresponding deriva-
tion algebra and so automatically has a Lie algebra structure.

For instance, the Lie group of rotations of the circle S1 is the group SO2(R)
of all matrices (

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

which becomes eiθ when we extend coefficients to the complex numbers. The
corresponding spaces of invariant vector fields have dimension 1.

The space C∞(S1) of all smooth functions on the circle consists of those
functions that can be expanded as convergent Fourier series∑

m∈Z
am sin(mθ) + bm cos(mθ) ,

which after extension to C becomes the simpler∑
m∈Z

cme
imθ .

This space has as a dense subalgebra the space of all Fourier polynomials, whose
canonical basis is { eimθ | m ∈ Z }.

The group of all complex orientation preserving diffeomorphisms of the circle
(an “infinite dimensional Lie group”) is an open subset of C∞C (S1) and has as
corresponding space of smooth vector fields (not just those that are invariant)
all f d

dθ for f smooth. The dense Fourier polynomial subalgebra with basis

Lm = ieimθ ddθ then has

[Lm, Ln] = (m− n)Lm+n ,

giving the complex Witt algebra again.
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2.5 Other constructions

2.5.1 Extensions

As we have seen and expect, subalgebras and quotients are ways of constructing
new algebras out of old algebras. We can also extend old algebras to get new
ones. As with groups, central extensions are important since the information
we have about a given situation may come to us via the adjoint of in projective
rather than affine form.

The Virasoro algebra is a central extension of the complex Witt algebra. If
W is the Witt Z-algebra, then

VirC = (C⊗Z W )⊕ Cc

with [w, c] = 0 for all w ∈W and

[Lm, Ln] = (m− n)Lm+n + δm,−n
m(m2 − 1)

12
c .

The multiplication coefficients are half-integers.

The Virasoro algebra is important in applications to physics and other sit-
uations. As seen after Proposition (2.4), the Witt and Virasoro algebras both
contain the subalgebra CL−1 ⊕ CL0 ⊕ CL1 isomorphic to sl2(C). As we shall
find starting in Section 6.2, large parts of the finite dimensional Lie algebra
theory depend upon the construction of Lie subalgebras sl2(K). Similarly, the
infinite dimensional Lie algebras that come up in physics and elsewhere are often
handled using Witt and Virasoro subalgebras, which are in a sense the infinite
dimensional substitutes for the finite dimensional sl2(K).

Given a complex simple Lie algebra like sl2(C), the corresponding affine Lie
algebra comes from a two step process. First extend scalars to the Laurent
polynomials and second take an appropriate central extension. So:

ŝl2(C) = (C[t, t−1]⊗C sl2(C))⊕ Cc

where the precise cocycle on the complex Lie algebra C[t, t−1] ⊗C sl2(C) that
gives the extension is defined in terms of the Killing form on the algebra sl2(C).
(See Chapter 6 below.)

In such situations it is more usual to write the Lie algebra C[t, t−1]⊗C sl2(C)
instead as sl2(C) ⊗C C[t, t−1], viewing its elements as “Laurent polynomials”
with coefficients from the algebra sl2(C).

It is also possible to form split extensions of Lie algebras, with derivations
playing the role that automorphisms play in group extensions. (See Section 4.3.)
The canonical derivation d

dt on the Laurent polynomials induces a derivation of
the affine algebra which is then used to extend the affine algebra so that it has
codimension 1 in the corresponding Kac-Moody Lie algebra.
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2.5.2 Embeddings

We saw above that derivations of octonion and Jordan algebras give new Lie
algebras. Tits, Kantor, and Koecher [Tit66] used these same nonassociative
algebras to construct (the TKK construction) Lie algebras that are still more
complicated. In particular, the space

DerC(Osp(C)) ⊕ (Osp(C)0 ⊗C H3(Osp(C))0) ⊕ DerC(H3(Osp(C)))

of dimension 14+(8−1)×(27−1)+52 = 248 can be provided with a Lie algebra
product (extending that of the two derivation algebra pieces) that makes it into
the Lie algebra e8(C). Here Osp(C)0 is 1⊥ in Osp(C) and H3(Osp(C))0 is a
similarly defined subspace of codimension 1 in H3(Osp(C)). The Lie algebra
e8(C) furthermore has the important subalgebras e6(C) of dimension 78 and
e7(C) of dimension 133.

2.5.3 Nilpotent groups

Let G be a nilpotent group with lower central series

G = L1(G) � L2(G) � · · ·� Ln+1(G) = 1

where Lk+1(G) is defined as [G,Lk(G)]. For each 1 ≤ k ≤ n set

Lk = Lk(G)/Lk+1(G) ,

an abelian group as is the sum

L =

n⊕
k=1

Lk .

As G is nilpotent, always

[Li(G),Lj(G)] ≤ Li+j(G) .

This provides the relations that turn the group L = LG into a Lie ring—we do
not require it to be free as Z-module—within which we have

[Li, Lj ] ≤ Li+j .

Certain questions about nilpotent groups are much more amenable to study
in the context of Lie rings and algebras [Hig58]. A particular important instance
is the Restricted Burnside Problem, which states that an m-generated finite
nilpotent group of exponent e has order less than or equal to some function
f(m, e), dependent only on m and e. Professor E. Zelmanov received a Fields
Medal in 1994 for the positive solution of the Restricted Burnside Problem. His
proof [Zel97] makes heavy use of Lie methods.
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2.6 Problems

(2.5). Problem. Classify up to isomorphism all Lie K-algebras of dimension 2. (Of
course, the abelian algebra gives the only isomorphism class in dimension 1.)

(2.6). Problem. Prove that over an algebraically closed field K of characteristic not
2, the Lie algebra sl2(K) is isomorphic to so3(K), the orthogonal Lie algebra of 3 × 3
skew-symmetric matrices.

(2.7). Problem. Find all subalgebras of sl2(K) that contain the subalgebra H = Kh.
Hint: Small characteristic can produce anomalous results.

(2.8). Problem. Calculate DerK(K[x1, . . . xn]).

(2.9). Problem. Consider the matrix subgroup UTn(K) of GLn(K), consisting of
the upper unitriangular matrices—those which have 1’s on the diagonal, anything above
the diagonal, and 0’s below the diagonal.

(a) Prove that G = UTn(K) is a nilpotent group.

(b) Starting with this group G, construct the Lie algebra L = LG as in Section 2.5.3.
Prove that L is isomorphic to the Lie algebra n+n (K).

(2.10). Problem. Consider the subgroup Xn(K) of upper unitriangular matrices
that have 1’s on the diagonal, anything in the nondiagonal part of the first row and
last column, and 0’s elsewhere.

(a) By the previous problem X = Xn(K) is nilpotent. Prove that for n ≥ 2 it has
nilpotence class exactly 2 and that its center is equal to its derived group and
consists only of those matrices with 1’s down the diagonal and the only other
nonzero entries found in the upper-righthand corner.

(b) Starting with this group X, construct the Lie algebra L = LX as in Section 2.5.3.
Prove that L is isomorphic to the Lie algebra on the space

M = Kz ⊕
n−1⊕
i=1

(Kxi ⊕Kyi)

with relations given by
[xi, yi] = −[yi, xi] = z ,

for all i, and all other brackets among generators equal to 0.

Remark. This Lie algebra is the Heisenberg algebra of dimension 2n− 1 over K.



Chapter 3
Lie groups

(N. Jacobson [Jac79, p. 1]:) The theory of Lie algebras is an out-
growth of the Lie theory of continuous groups.

(R. Carter [Car05, p. xiii]:) Lie algebras were originally introduced
by S. Lie as algebraic structures used for the study of Lie groups.

It would be wrong for us to talk at length about Lie algebras without de-
voting at least some time to the way in which they arise in the theory of Lie
groups. We do that in an abbreviated form in this chapter.

For us, Lie’s work and the work that it motivated contain two basic obser-
vations:

(i) If G is a Lie group, then the tangent space to the identity is a Lie algebra
Λ(G).

(ii) The representation theory of the Lie group G and of the Lie algebra Λ(G)
are essentially the same.

The second observation displays real progress, since a Lie algebra is a linear
object whereas the Lie group is not. This is the same advantage obtained in the
passage from a nilpotent group to its associated Lie ring in Section 2.5.3.

This chapter is included in order to place Lie algebras in one of their most
important contexts, historically and practically. Its material will not be used
in the rest of the notes or course. Therefore for ease of presentation we assume
uniformly throughout that the vector spaces, groups, and algebras we examine
are defined over the real numbers. Given our later focus on algebraically closed
fields of characteristic 0, it might make more sense to restrict to the complex
case; but that would require more sophisticated calculus/analysis than we care
to use.

23
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3.1 Representation theory as spectral theory

The two observations beg the question, “What is so good about representation
theory?” After all, many of our important Lie groups and algebras are already
defined in terms of matrices. Why worry about more representations?

Lie and those who followed him were interested in using Lie theory to solve
problems, and it is often easier to solve a problem in pieces rather than all at
once. An important example is the analysis of the action of a linear transfor-
mation in terms of its eigenspaces. Such decompositions are collected together
under the heading of spectral theory, and they are served by various canonical
form results.

The representation theory of groups (and other algebras) can be thought of
as a general form of spectral or canonical form theory. If the initial, say physical,
statement of a problem has some inherent symmetry, then that symmetry should
also be evident in the space of solutions. Lie noted that this action could be
exploited to decompose the solution space and so perhaps find nice descriptions
for the solutions. At the heart of matrix canonical form results is the feeling
that matrices containing lots of zeros are the easiest to deal with.

Lie was interested in particular in solving differential equations. Dresner
[Dre99, p. 16] shows how, starting from the differential equation

d

dx
y = −y(y2 − x)

x
,

once one has noticed that the solution set is invariant under the change of
variables

x = x1 −→ xs = esx y = y1 −→ ys = es/2y ,

for all s ∈ R, it is relative easy to construct an integrating factor

ϕ(x, y) =

(
xy3 − x2y

2

)−1

and so reach the closed form solution set

y = x(2x+ c)1/2 .

The displayed symmetry group { es | s ∈ R } ' (R,+) is continuous and
even smooth in its variable. This type of symmetry is evident in many physical
situations, and this led Lie (and others) to the study of smooth groups and
their representations. We shall see in Section 3.4 that the most basic Lie group
(R,+) is also one of the most important.

3.2 Lie groups and Hilbert’s Fifth Problem

A Lie group is a smooth manifold G that is also a group. These two conditions
are linked by the requirements that the group multiplication m : G × G −→ G
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given by m(x, y) = xy and the group inverse map i : G −→ G given by i(x) =
x−1 are smooth maps on the manifold. Here (recalling that we are speaking
of real manifolds) by smooth we mean C∞. (For a complex manifold, smooth
means holomorphic.)

Examples are provided by the closed subgroups of GLn(R): those subgroups
containing the limit of every sequence of group matrices for which that limit
exists and is invertible. This already might be a surprise, since closure is a
topological property, determined only by examining C0 continuity issues. The
C0 condition is very weak when compared to the smooth C∞ assumptions of
the manifold definition.

If G is a Lie group, then certainly

(i) G is a topological group (that is, the maps m and i are continuous) and

(ii) G is locally a finite dimensional Euclidean space.

One reading of Hilbert’s Fifth Problem is that, in fact, the Lie groups are exactly
the locally Euclidean topological groups. Once made precise, this version of the
Fifth Problem was proven by Montgomery and Zippin [MoZi55] and Gleason
[Gle52] in 1952. (See [Tao14] for more.)

Cartan first proved that closed subgroups of GLn(R) are Lie groups. As
such, it is reasonable to focus on such examples when initially discussing Lie
groups. This is the approach take by several modern introductions to Lie groups
[Eld15, Hal15, How83, vNe29, Ros02, Sti08, Tap05] and is largely what we do
here. In particular, those not comfortable with manifolds need not worry—just
focus on closed subgroups of GLn(R).

Essentially everything we prove (or state) goes over to the general case, al-
though some of the definitions and proofs would require more subtlety. In par-
ticular, in place of the concrete functions exp and log provided by convergent
power series of matrices, one appeals to the uniqueness of solutions for appro-
priate ordinary differential equations and to the Inverse Function Theorem; see
[CSM95, pp. 69-74].

3.3 Some matrix calculus

For the matrix M = (mij)ij ∈ Matk,l(R), set |M | =
√∑

i,jm
2
ij . This is the

standard Euclidean norm on Rkl; especially for k = l = 1 we have the usual
|(m)| = |m|. We can then define limits of matrix functions, using this norm to
determine “closeness.” In turn, this gives meaning to statements that a function
from one matrix space to another is continuous, for instance in our discussion
above of multiplication and inversion in Lie groups.

For smoothness we need derivatives as well. The usual derivative of f(x) at
x = a is given by

lim
t−→0

f(t+ a)− f(a)

t
= f ′(a) =

df

dx

∣∣∣∣ x=a .
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If we rewrite this as

lim
t−→0

f(t+ a)− (f(a) + f ′(a)t)

t
= 0 ,

we are observing that near a (near t = 0), the line f(a) + f ′(a)t is a good
approximation to the function f(t+ a). This motivates the following definition
of the derivative of a matrix function; see [Spi65, p. 16].

The linear transformation D : Matk,l(R) −→ Matm,n(R) is the deriva-
tive at A of the matrix function F : Matk,l(R) −→ Matm,n(R) pro-
vided

lim
T−→0

|F (T +A)− F (A)−D(T )|
|T |

= 0 .

As derivatives are locally determined, to calculate the derivative of F at A we
only need to know F on some neighborhood of A in Matk,l(R).

This definition is the appropriate one for checking properties, but our ap-
plications later in this chapter will only be concerned with the special case k =
l = 1 and m = n. That is, we will consider matrix functions F : I −→ Matn(R)
for some open interval I in R that contains the point a. There we will use the
equivalent but more familiar formulation

F ′(a) = lim
t−→0

F (t+ a)− F (a)

t
∈ Matn(R) .

Once we have checked that matrix limits and derivatives behave as hoped
and expected1 (see, for instance, [Eld15],[Hal15]), we have

(3.1). Proposition.

(a) If the power series A(t) =
∑∞
k=0Akt

k converges for all |t| < r, then its
derivative A′(t) =

∑∞
k=0 kAkt

k−1 also converges for all |t| < r.

(b) exp(A) =
∑∞
k=0

1
k!A

k converges2 for all A ∈ Matn(R). For A,B ∈ Matn(R)
with [A,B] = 0 we have exp(A + B) = exp(A) exp(B). Especially I =
exp(A) exp(−A).

(c) For all A ∈ Matn(R) the unique solution of the matrix ordinary differential
equation

f ′(t) = f(t)A , f(0) = I

is f(t) = exp(tA).

(d) log(1 + X) =
∑∞
k=1(−1)k−1 1

kX
k converges for all X with |X| < 1. For

|X| < 1, we have exp(log(1 +X)) = 1 +X. 2

1Exercise: Check the matrix versions of Leibniz’ d
dt

(p(t)q(t)) = p(t)q′(t) + p′(t)q(t) and of
the chain rule.

2It may be of psychological and/or actual help to realize that G(expA)G−1 = expGAG−1,
so that Jordan Canonical Form can be used to reduce the limit parts of this calculation to
the standard 1-dimensional case.
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It is important that we can only guarantee exp(A + B) = exp(A) exp(B)
when the matrices A and B commute. When they do, the corresponding power
series multiplication goes through exactly as in the standard case. But if they
do not commute, then things like BAB and AB2 on the lefthand side can be
different, so collecting of like terms is greatly restricted.

Also note that we are defining the logarithm via its Taylor series, rather than
the usual calculus definitions that use an integral or that legislate it to be the
inverse function for the exponential. Thus for us it is only defined (convergent)
near the identity. This will be good enough. (See the proof of Proposition (3.2)
below.)

The next proposition is an extension of the familiar result/definition from
calculus

exp(a) = lim
k→∞

(
1 +

a

k

)k
,

which is the special case n = 1 and g(t) = 1 + at of the proposition.

(3.2). Proposition. Let g : (−r, r) −→ GLn(R) be differentiable at 0 with

g(0) = I and g′(0) = A. Then limk→∞ g
(

1
k

)k
= exp(A).

Proof. Set q(t) = log(g(t)) (for t small enough so that |g(t)− I| < 1). By
the chain rule, q′(t) = g′(t)g(t)−1 (again for small t), so q(0) = 0 and q′(0) = A.
Therefore by the definition of the matrix derivative of q at 0 (with k = t−1)

0 = lim
t→0

log g(t)− tA
t

= lim
k→∞

k
(
log g(k−1)− k−1A

)
= −A+ lim

k→∞
k log g(k−1) .

That is, A = limk→∞ k log g(k−1). As exponentiation is everywhere continuous,

exp(A) = exp

(
lim
k→∞

k log g(k−1)

)
= lim
k→∞

exp
(
k log g(k−1)

)
= lim
k→∞

g

(
1

k

)k
,

as desired. 2

3.4 One-parameter subgroups

If G is a Lie group, then a one-parameter subgroup of G is a continuous homo-
morphism ϕ : (R,+) −→ G. This links the weakest C0 continuity property of
G (and R) with group theoretic structure. We shall see that this forces very
strong continuity—not just C∞ but Cω (analytic). For every A ∈ Matn(R), the
analytic map ϕA : R −→ Matn(R) given by ϕA(t) = exp(tA) is a one-parameter
subgroup of GLn(R) by Proposition (3.1). Surprisingly, the converse is true.
This can be viewed as an important special case of Hilbert’s Fifth Problem.
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(3.3). Theorem. Let ϕ : (R,+) −→ G be a one-parameter subgroup of the
closed subgroup G of GLn(R). Then there is a unique matrix A ∈ Matn(R) with
ϕ(t) = exp(tA) for all t ∈ R. In particular ϕ is C∞ and indeed analytic. We
have A = ϕ′(0) = d

dtϕ|t=0.

Proof. Our proof follows [Eld15]. It has two parts. We first prove that ϕ
is differentiable and then prove that it is an exponential.

Set F (t) =
∫ t

0
ϕ(u) du. As ϕ is continuous, F is differentiable with F (0) = 0

and F ′(t) = ϕ(t), hence F ′(0) = I. We use the fact that ϕ is a homomorphism
and make the change of variable v = u− t to find

F (t+ s) =

∫ t+s

0

ϕ(u) du

=

∫ t

0

ϕ(u) du+

∫ t+s

t

ϕ(u) du

=

∫ t

0

ϕ(u) du+

∫ t+s

t

ϕ(t)ϕ(u− t) du

=

∫ t

0

ϕ(u) du+ ϕ(t)

∫ t+s

t

ϕ(u− t) du

=

∫ t

0

ϕ(u) du+ ϕ(t)

∫ s

0

ϕ(v) dv

= F (t) + ϕ(t)F (s) .

Next note that

I = F ′(0) = lim
s→0

F (s)− F (0)

s− 0
= lim
s→0

F (s)

s
,

hence

1 = det I = det

(
lim
s→0

F (s)

s

)
= lim
s→0

(
s−n detF (s)

)
,

as det is continuous. Especially, for some small s0 we must have detF (s0) 6= 0
and so F (s0) is invertible. But then the above tells us that

ϕ(t) = (F (t+ s0)− F (t))F (s0)−1

is differentiable, as desired for the first part of our argument.

We now have ϕ differentiable with ϕ(0) = I. As ϕ is a homomorphism

ϕ′(t) = lim
h→0

ϕ(t+ h)− ϕ(t)

h
= lim
h→0

ϕ(t)ϕ(h)− ϕ(t)

h

= lim
h→0

ϕ(t)
ϕ(h)− I

h
= ϕ(t) lim

h→0

ϕ(h)− ϕ(0)

h

= ϕ(t)ϕ′(0)
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That is, for ϕ′(0) = A the function ϕ(t) solves the ordinary differential
equation

ϕ′(t) = ϕ(t)A and ϕ(0) = I .

By the omnibus Proposition (3.1)(c) we have ϕ(t) = exp(tA), as claimed. 2

(3.4). Corollary. det (exp(tA)) = et tr(A).

Proof. The map t 7→ det exp(tA) is a one-parameter subgroup of GL1(R).
(Exercise.) Therefore there is a nonzero a ∈ R with det exp(tA) = eta for a =
d
dt det exp(tA)|t=0.

We have exp(tA) = I + tA + t2B(t) (for an appropriate convergent power
series B(t)), hence with A = (aij)ij the standard expansion of the determinant
gives

det exp(tA) = 1 + t(a11 + · · ·+ ann) + t2c(t) = 1 + t tr(A) + t2c(t) .

Therefore a = d
dt det exp(tA)|t=0 = tr(A). 2

Let G be a closed subgroup of GLn(R). A curve in G is a differentiable
map c : J −→ G, for some open interval J in R. In particular, a one-parameter
subgroup is a special type of curve.

There are several ways of defining the tangent space at the identity element
I of the group G. We offer two—a relatively weak C1 (differentiable) version
and a very strong Cω (analytic) condition. Set

(i) TI(G) = { c′(0) | curve c : (−r, r) −→ G , some r ∈ R+, c(0) = I } ;

(ii) Λ(G) = {A | exp(tA) ≤ G } .

Clearly Λ(G) ⊆ TI(G), but we will prove in Theorem (3.6) below that we
have equality. Again, this is in the spirit of Hilbert’s Fifth Problem.

We first show that the tangent space is indeed a subspace.

(3.5). Lemma. TI(G) is a subspace of Matn(R).

Proof. Let A,B ∈ TI(G) and a, b ∈ R. We must show that aA + bB ∈
T1(G). Let differentiable

g : (−q, q) −→ G , g(0) = I , g′(0) = A

and
h : (−s, s) −→ G , h(0) = I , h′(0) = B

testify to A,B ∈ TI(G).
First consider c(t) = h(bt) on (−r, r) with r = |b−1s| (=∞ for b = 0). Then

c(0) = h(0) = I and c′(0) = bh′(0) = bB ,

so TI(G) is closed under scalar multiplication.
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It remains to proveA+B ∈ TI(G). For r = 1
2 min(q, s), the curve c : (−r, r) −→

G given by

c(t) =
1

2
(g(2t) + h(2t)) ,

has

c(0) =
1

2
(g(0) + h(0)) =

1

2
(I + I) = I .

and

c′(0) =
1

2
(2g′(0) + 2h′(0)) =

1

2
(2A+ 2B) = A+B .

Thus A+B ∈ T1(G) as desired. 2

(3.6). Theorem. Λ(G) = TI(G).

Proof. We have already pointed out that Λ(G) ⊆ TI(G). Now, for fixed
but arbitrary t ∈ R and for each B ∈ TI(G), we must prove that the matrix
exp(tB) is in G, as then t 7→ exp(tB) will be a one-parameter subgroup of G,
exhibiting B ∈ Λ(G) and providing the reverse containment Λ(G) ⊇ TI(G). By
the previous lemma TI(G) is a R-space, so it is enough to prove that exp(A) ∈ G
for all A ∈ TI(G).

For some r ∈ R+, let the curve g : (−r, r) −→ G have g(0) = I and g′(0) = A.
Then for all integral k greater than some N we have g

(
1
k

)
∈ G. As G is a group,

in turn g
(

1
k

)k ∈ G. By Proposition (3.2), this gives limk→∞ g
(

1
k

)k
= exp(A),

which is always invertible. As G is a closed subgroup of GLn(R), we conclude
exp(A) ∈ G as desired. 2

It is now appropriate for us to define the tangent space at the identity element
I of the the group G, closed in GLn(R), to be the R-space Λ(G) = TI(G).

Of course GLn(R) is closed in itself. Additionally SLn(R) is closed in GLn(R)
as it consists of all matrices X with det(X)− 1 = 0.

(3.7). Theorem.

(a) Λ(GLn(R)) = gln(R) and 〈 exp(tA) | A ∈ gln(R) 〉 = GLn(R)
+

, the subgroup
of index 2 in GLn(R) of all matrices with positive determinant.

(b) Λ(SLn(R)) = sln(R) and 〈 exp(tA) | A ∈ sln(R) 〉 = SLn(R).

Proof. The equality Λ(GLn(R)) = Matn(R) = gln(R) is clear from Propo-
sition (3.1)(b).

We next consider A ∈ Λ(SLn(R)). By Corollary (3.4), for the one-parameter
subgroup exp(tA) of SLn(R) we have

1 = det (exp(tA)) = et tr(A) .

That is, tr(A) = 0 and A ∈ sln(R). Conversely, for A ∈ sln(R), by the same
corollary

1 = et tr(A) = det (exp(tA)) .
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This is true for arbitrary t, so t 7→ exp(tA) is a one-parameter subgroup of
SLn(R). Thus A ∈ Λ(SLn(R)), hence Λ(SLn(R)) = sln(R).

For each elementary matrix unit eij ∈ Matn(R) with i 6= j, we have eij ∈
sln(R) and e2

ij = 0. Thus exp(teij) = I + teij , an elementary transvection
subgroup. By Gaussian elimination,

〈 exp(tA) | A ∈ sln(R) 〉 ≤ SLn(R) = 〈 I + teij | i 6= j, t ∈ R 〉
≤ 〈 exp(tA) | A ∈ sln(R) 〉 .

Therefore 〈 exp(tA) | A ∈ sln(R) 〉 = SLn(R).
If D = diag(d11, . . . , dii, . . . , dnn) is a diagonal matrix, then exp(D) is also

diagonal with entries edii . Every diagonal matrix with positive entries on
the diagonal can be found this way, and these together with SLn(R) generate
GLn(R)

+
. By Corollary (3.4), every matrix exponential has positive determi-

nant; so 〈 exp(tA) | A ∈ gln(R) 〉 = GLn(R)
+

. 2

(3.8). Corollary. Although GLn(R)
+

has index 2 in GLn(R), the two groups
have the same tangent space at the identity

Λ(GLn(R)
+

) = Λ(GLn(R)) = gln(R) . 2

In the remaining results of this subsection, we let G be a closed subgroup of
Matn(R) and set L = Λ(G) = T1(G).

(3.9). Lemma. If g ∈ G and A ∈ L, then gAg−1 ∈ L.

Proof. As g ∈ G and A ∈ L, the group G contains exp(tA) and

g(exp(tA))g−1 = g

( ∞∑
k=0

tkAk

k!

)
g−1 =

∞∑
k=0

g

(
tkAk

k!

)
g−1

=

∞∑
k=0

tk(gAkg−1)

k!
=

∞∑
k=0

tk(gAg−1)k

k!

= exp(t(gAg−1)) .

Therefore gAg−1 ∈ L. 2

Thus we have the adjoint representation of the group G on its Lie algebra
L:

Ad: G −→ GLR(L) given by Adg(A) = gAg−1 .

It should come as no surprise that in general a Lie group acts on its Lie algebra,
the corresponding representation being always called adjoint.

(3.10). Lemma. For A,B ∈ L,

Adexp(tB)(A) = A+ t(BA−AB) + t2D(t)

with D(t) =
∑
k,l∈N dklB

kABltk+l for dkl ∈ R.
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Proof.

Adexp(tB)(A) = (I + tB + t2B1(t))A(I − tB + t2B2(t))

= A+ t(BA−AB) + t2D(t) . 2

As written, the adjoint representation appears to involve matrix calculation
of degree dimR(L). On the other hand already L ≤ Matn(R); so the next result,
among other things, makes the calculation more manageable.

(3.11). Theorem. For B ∈ L, Adexp(B) = exp(adB).

Proof. Clearly t 7→ Adexp(tB) is a one-parameter subgroup of GLR(L), so

there is an X ∈ End−R (L) with Adexp(tB) = exp(tX). By the lemma

Adexp(tB)(A) = (I + t adB +t2E(t))(A) ,

for E(t) =
∑
k,l∈N dklB

k(Bl − adBl)t
k+l. Thus

X =
d

dt
Adexp(tB) |t=0 =

d

dt

(
I + t adB +t2E(t)

)
|t=0 = adB . 2

(3.12). Theorem. L is a Lie subalgebra of Mat−n (R) = gln(R).

Proof. Let A,B ∈ L. By Lemma (3.10), for all t ∈ R,

F (t) = A+ t(BA−AB) + t2D(t)

is in the R-space L. Therefore, for each nonzero t ∈ R,

t−1(F (t)−A) = (BA−AB) + tD(t)

is also in L.

The Lie algebra L is a subspace of Matn(R) and especially is closed, hence

lim
t→0

(BA−AB) + tD(t) = [B,A]

is in L. We conclude [A,B] = −[B,A] ∈ L. 2

Thus we have the matrix version of Lie’s first observation from the beginning
of the chapter:

(i) If G is a closed subgroup of GLn(R), then the tangent space to the identity
is a Lie algebra Λ(G).

In this case we say that Λ(G) is the Lie algebra of G.
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3.5 Equivalence of representation

In this section we discuss Lie’s second basic observation:

(ii) The representation theory of the Lie group G and of the Lie algebra Λ(G)
are essentially the same.

Even in the case of closed subgroups of GLn(R), the results are more difficult
than those of the previous subsections. We offer them without proof, but see
[CSM95, pp. 75-81] and [Kir08, §3.8] for nice discussions of the general results
and their proofs. In the closed group case, each of [Hal15, Ros02, Sti08] proves
the first two theorems of this section. Serre’s notes [Ser06] contain a proof of
Lie’s Third Theorem, which makes use of Ado’s Theorem (1.6)(b).

Theorem (3.11) could be summarized by the commutative diagram

Λ(G) Λ(GLK(L))

G GLK(L)

exp

ad

exp

Ad

.

The next theorem provides an important extension of this.

(3.13). Theorem. If f : G −→ H is a Lie group homomorphism, then there
is a unique Lie algebra homomorphism df : Λ(G) −→ Λ(H) with f exp = exp df .
That is, we have the following commutative diagram:

Λ(G) Λ(H)

G H

exp

! df

exp

f

22

This is the easiest theorem of the present section. Especially the candidate
for the differential df of f is evident, and we give it in the matrix case. If
A ∈ Λ(G), then ϕ(t) = exp(tA) is a one-parameter subgroup of G. If we
compose it with f , then fϕ(t) = f(exp(tA)) is a one-parameter subgroup of H.
Therefore there is a B ∈ Λ(H) with fϕ(t) = exp(tB). We set df(A) = B. This
is clearly unique. The remaining verification (in the matrix case) that this gives
a Lie algebra homomorphism is achieved through calculations similar to those
of the previous two sections; see [Eld15].

A functor F from the category A to the category B is an equivalence if it is
faithful, full, and dense [Jac89]:

(i) F is faithful if the maps F : HomA(X,Y ) −→ HomB(F (X), F (Y )) are
always injections.
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(ii) F is full if the maps F : HomA(X,Y ) −→ HomB(F (X), F (Y )) are always
surjections.

(iii) F is dense3 if for every object Z of B there is an object X of A with F (X)
isomorphic to Z in B.

One should think of category equivalence as saying that the two categories are
essentially the same, although the names of the isomorphism classes may have
been changed. (For instance, the category of all finite sets is equivalent to the
category of all finite subsets of the integers.) In particular, equivalent categories
have the same representation theory (subject to some changing of names).

Theorem (3.13) could be restated to say that Λ with Λ(f) = df is a faithful
functor from the category of Lie groups RLieGp to the category of Lie algebras

RLieAlg. The next two results say that, given appropriate restrictions, Λ is also
full and dense. Thus we get a category equivalence.

(3.14). Theorem. (Lie’s Second Theorem) If G and H are Lie groups
with G simply connected, then for each Lie algebra homomorphism d : Λ(G) −→
Λ(H) there is a Lie group homomorphism f : G −→ H with d = df . 22

We must restrict to simply connected G. This is a stronger requirement than
path connectivity, which requires that, for every group element, there is a curve
containing the identity and that element. Path connectivity makes sense, since
our discussion of the tangent space can only reach those elements of G joined to
the identity by some curve. Indeed the Lie algebra of any Lie group is equal to
that of the connected component of the identity. As we saw in Corollary (3.8),
the two groups GLn(R)

+
and GLn(R) have the same Lie algebra gln(R). That

is because any continuous path from the identity I of positive determinant 1
to a matrix of negative determinant would have to pass through a matrix of
determinant 0; the path would have to leave the group GLn(R).

A simply connected group must be path connected but also satisfy an ad-
ditional requirement, which we do not give precisely. It asserts that all paths
from the identity to a given element in that component are fundamentally the
same. For example, the Lie groups (R,+) and S1 ' SO2(R) have the same
Lie algebra, abelian of dimension 1, but they are clearly not isomorphic. The
problem is that the circle S1 is not simply connected—going from the identity
1 to the opposite pole −1 via a clockwise path is fundamentally different from
traveling via a counter-clockwise path. The group (R,+) is simply connected,
so Lie’s Second Theorem provides a Lie group homomorphism from it to S1, say

r 7→
(

cos(r) − sin(r)
sin(r) cos(r)

)
,

but this map has no inverse.

(3.15). Theorem. (Lie’s Third Theorem) For all finite dimensional Lie
algebras L, there is a Lie group G with Λ(G) isomorphic to L. 22

3This is not standard terminology.
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As the Lie group G is a manifold, its Lie algebra must be finite dimensional.

(3.16). Theorem. The functor Λ gives a category equivalence of the category
of simply connected Lie groups RLieGp

sc and the category of finite dimensional
Lie algebras RLieAlg

fd.

Proof. We have already observed that Theorem (3.13) says that Λ is
faithful. By Lie’s Second Theorem (3.14) it is full on RLieGp

sc, and by Lie’s
Third Theorem (3.14) it is dense to RLieAlg

fd. 2

In particular, we now know that the (appropriately restricted) Lie group G
and Lie algebra Λ(G) have essentially the same representation theory.

3.6 Problems

(3.17). Problem.

(a) In GLn(R) prove that exp(tA) exp(tB) = exp(t(A+B)), for all t ∈ R, if and only
if [A,B] = 0.

Hint: The function exp(t(A+B))− exp(tA) exp(tB) is smooth on R.

(b) Let A = e12 and B = e23 be matrix units in Mat3(R). Do the calculations in
SL3(R) and sl3(R) that exhibit A+B ∈ sl3(R) but exp(A) exp(B) 6= exp(A+B).

Remark. For small enough values of t, the smooth curve exp(tA) exp(tB) has norm
less than 1, so log(exp(tA) exp(tB)) exists. Its precise calculation in terms of A and
B is the content of the Campbell-Baker-Hausdorff Theorem, which begins

log(exp(tA) exp(tB)) = t(A+B) +
1

2
t2[A,B] + t3(· · · ) .

As such, it also provides a proof of (a). Even at this level it is more sophisticated
than what we have done up to now. In particular it involves composing log and exp
in the order log exp as opposed to the simpler exp log, which we used in our proof of
Proposition (3.2).

(3.18). Problem. Consider the group X = Xn(R) of Problem (2.10). Prove that
its Lie algebra is a Heisenberg algebra isomorphic to LX .

(3.19). Problem. Let G be a closed subgroup of GLn(R). Prove that if c : I −→
Λ(G) is a curve, differentiable on the open interval I, then c′(t) ∈ Λ(G) for all t ∈ I.
Hint: Examine the proof of Theorem (3.12).
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Chapter 4
Basics of Lie Algebras

The previous chapters were, in a sense, introduction and justification. The
actual work starts here. We repeat our basic definition: a Lie algebra is a
K-algebra (KA, [·, ·]) that satisfies the two identical relations:

(i) [x, x] = 0;
(ii) (Jacobi Identity) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Our overall goals are to classify and understand Lie algebras and their repre-
sentations under suitable additional hypotheses. We will focus on finite dimen-
sional Lie algebras over algebraically closed fields of characteristic 0, but various
parts of what we say are valid in a more general context. In particular, in this
chapter we make no restriction on dimension or field, except where expressly
noted.

4.1 Basic structure theory

Let L be a Lie K-algebra. A subalgebra of L is a K-subspace M that is closed
under the bracket multiplication. In this case we write M ≤ L and L ≥M .

A Lie homomorphism is a K-linear transformation ϕ : L −→M with ϕ([x, y]) =
[ϕ(x), ϕ(y)] for all x, y ∈ L. The kernel of ϕ is then the kernel of ϕ as a linear
transformation. In view of the First Isomorphism Theorem below, the image of
ϕ is sometimes referred to as the quotient algebra of L by the kernel.

The kernel I is a subalgebra, indeed it is an ideal of L—a subspace of L
with [x, a] ∈ I for all x ∈ L and a ∈ I . We do not need to distinguish right
ideals from left ideals, since [a, x] = −[x, a] ∈ I; all right and left ideals are
immediately 2-sided ideals.

We have the standard Isomorphism Theorems:

(4.1). Theorem. Let L be a Lie K-algebra.

(a) (First Isomorphism Theorem) If ϕ : L −→ M is a Lie homomorphism
with kernel I, then the image algebra ϕ(L) is canonically isomorphic via

37
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ϕ(a) 7→ a + I to the quotient algebra L/I provided with the Lie bracket
[a+ I, b+ I] = [a, b] + I.

(b) (Second Isomorphism Theorem) Let I be a subalgebra and J an ideal of
L. Then I+J is a subalgebra, I∩J is an ideal of I and (I+J)/J ' I/(I∩J).

(c) (Third Isomorphism Theorem) If I is an ideal of L contained in the
ideal K, then L/K is isomorphic to (L/I)

/
(K/I). In particular, there is

a bijection between the set of ideals of L/I and the set of ideals of L that
contain I. 2

By definition, the subspace I is an ideal precisely when it is invariant under
all inner derivations adx. The ideal I is additionally characteristic in L if it is
invariant under all derivations of L, not just the inner derivations.

(4.2). Lemma. Let J be an ideal of L and I a characteristic ideal of J .

(a) I is an ideal of L.

(b) If J is a characteristic ideal of L, then I is a characteristic ideal of L. 2

As in the Second Isomorphism Theorem, old ideals can be used to construct
new ones.

(4.3). Lemma. Let L be a Lie K-algebra.

(a) If A and B are ideals of L, then A+B is an ideal of L.

(b) If A and B are characteristic ideals of L, then A + B is a characteristic
ideal of L. 2

For subspaces A and B of L we let the commutator [A,B] be the subspace
of L spanned by [a, b] for all a ∈ A and b ∈ B.

(4.4). Lemma. Let L be a Lie K-algebra.

(a) If A and B are ideals of L, then [A,B] is an ideal of L.

(b) If A and B are characteristic ideals of L, then [A,B] is a characteristic
ideal of L.

Proof. For each derivation D, we have D([a, b]) = [D(a), b] + [a,D(b)]. 2

simple
abelian algebra; largest abelian quotient L/[L,L].

derived series; solvable algebras; length
Z is kernel of ad
lower central series; nilpotent algebras; class
L1 = L, Ln+1 = [Ln, L] = [L,Ln]
L(0) = L, L(n+1) = [L(n), L(n)]
upper central series?
Example: b = d⊕ n
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(4.5). Proposition. Let L be a Lie K-algebra.

(a) [Lm, Ln] ≤ Lm+n.

(b) L(m) ≤ L2m .

(c) If L is nilpotent, then L is solvable.

Proof. Part (a) follows from induction on n, with n = 1 given by the
definition of Lm+1 and the induction step coming from the Jacobi Identity:

[Lm, Ln+1] = [Lm, [Ln, L]]

≤ [Ln, [L,Lm]] + [L, [Lm, Ln]]

≤ [Ln, Lm+1] + [L,Lm+n]

≤ Ln+m+1 + L1+m+n

≤ Lm+n+1 .

Now (b) follows from (a) and (c) follows from (b). 2

(4.6). Lemma. Let L be a Lie K-algebra.

(a) Subalgebras and quotient algebras of solvable L are solvable.

(b) The sum of solvable ideals in L is a solvable ideal of L

(c) If dimK(L) is finite, then L has a unique maximal solvable ideal.

(d) If the ideal I and the quotient L/I are solvable, then L is solvable. 2

(4.7). Lemma. Let L be a Lie K-algebra.

(a) Subalgebras and quotient algebras of nilpotent L are solvable.

(b) The sum of nilpotent ideals in L is a nilpotent ideal of L.

(c) If dimK(L) is finite, then L has a unique maximal nilpotent ideal. 2

It is noteworthy that the last part of the previous lemma does not have
a counterpart here; the extension of a nilpotent Lie algebra by a nilpotent
Lie algebra need not be nilpotent. (Otherwise, all solvable Lie algebras would
also be nilpotent.) In Proposition (4.12) below we will introduce an additional
necessary and sufficient condition for such extensions to be nilpotent.

If L has a unique maximal nilpotent ideal, then it is the nilpotent radical of
L. Similarly if L has a unique maximal solvable ideal, then it is the radical or
solvable radical of L. The nilpotent radical is of course contained in the solvable
radical. On the other hand, the last term in the derived series of a solvable ideal
is an abelian ideal and so is nilpotent. Therefore the solvable radical is 0 if and
only if the nilpotent radical is 0.

A Lie algebra is semisimple if its (solvable) radical is 0. By Lemma (4.6)(d)
the quotient of L by its radical is then always semisimple.
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4.2 Basic representation theory

repn; degree; dimension
modules; extrinsic and intrinsic; iso and equiv

“universal” algebra:
submodule; quotient;
simple; irreducible; trivial; indecomposable
cr; semisimple module
composition series
Jordan-Hölder
module duals

adjoint module and consequence for Lie structure

(4.8). Theorem. (Krull-Schmidt Theorem) If V =
⊕

i∈I Vi =
⊕

j∈J V
j

are decompositions of the L-module V into indecomposable summands, then
there is a bijection σ : I −→ J with Vi and V σ(i) isomorphic for all i ∈ I. 2

(4.9). Theorem. Let V be a module for the Lie algebra L. Then the following
are equivalent:

(1) for every submodule W of V , there is a submodule W ′ with V = W ⊕W ′;

(2) V is a sum of irreducible submodules;

(3) V is a direct sum of irreducible submodules. 2

(4.10). Theorem. For the finite dimensional and completely reducible module
V , let I be a set of representatives for the isomorphism classes of irreducible
submodules of V and let Vi be the sum of all irreducible submodules isomorphic
to i ∈ I. Then V =

⊕
i∈I Vi. 2

(4.11). Theorem. (Schur’s Lemma) Let V be a finite dimensional, irre-
ducible L-module over the algebraically closed field K. Then the scalars are the
only endomorphisms of V that commute with the action of L. 2

4.3 Further structure and representation

In general an extension of a nilpotent algebra by a nilpotent algebra need not
be nilpotent. We do get a nilpotent algebra if we have an additional Engel con-
dition, requiring the vanishing of an appropriate iterated commutator. Define
[A;B,n] by [A;B, 1] = [A,B] and [A;B, k + 1] = [[A;B, k], B].

(4.12). Proposition. Let the Lie algebra L contain an ideal I such that I and
L/I are nilpotent. Further assume L has a subalgebra M such that L = I +M .
Then L is nilpotent if and only if there is a positive m with [I;M,m] = 0.
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Proof. See [Ste70, Lemma 2.1].
If L is nilpotent, then letting m be the class of L gives the required condition.
Now we consider the converse. We first claim that for all positive n and r

[In;L, r] ≤ In+1 + [In;M, r].

We prove this by induction on r, the result being clear for r = 1 as L = I +M .
Assume the result for r. Then

[In;L, r + 1] = [[In;L, r], L]

≤ [In+1 + [In;M, r], I +M ]

≤ [In+1, I +M ] + [[In;M, r], I] + [[In;M, r],M ].

The first two summands are in In+1 (as In+1 and In are ideals of L) and the
last is equal to [In;M, r + 1]. This gives the claim.

Let k be the maximum of m and the nilpotence class of L/I. We prove
Lkn ≤ In by induction on n, with the case n = 1 valid by the definition of k.
By definition, induction, the claim, and hypothesis

Lkn+k = [Lkn;L, k] ≤ [In;L, k] ≤ In+1 + [In;M,k] ≤ In+1 + [I;M,k] = In+1 ,

as desired.
For large enough n, nilpotent I has In = 0. Thus Lkn = 0, and L is

nilpotent. 2

The next lemma describes the elementary internal semidirect product for Lie
algebras. The corresponding external semidirect product or split extension of
Lie algebras is then the construction of the proposition that follows.

(4.13). Lemma. Let Lie algebra L = M ⊕ I where M is a subalgebra and I is
an ideal. Then for m,n ∈M and i, j ∈ I we have

[m+ i, n+ j] = [m,n] + [i, j] + [m, j] + [i, n] ,

where [m,n] ∈M and [i, j] + [m, j] + [i, n] = [i, j] + [m, j]− [n, i] ∈ I. 2

(4.14). Proposition. Let M and I be Lie K-algebras, and let δ : M −→
DerK(I) be a Lie homomorphism of M into the derivation algebra of I given by
m 7→ δm. Then M ⊕ I with bracket multiplication

[(m, i), (n, j)] = ([m,n], [i, j] + δm(j)− δn(i))

is a Lie K-algebra in which 0 ⊕ I is an ideal isomorphic to I and M ⊕ 0 is a
subalgebra isomorphic to M . Furthermore, for each m ∈ M , ad(m,0) induces
(0, δm) on 0⊕ I.

Proof. Exercise: the only difficulty is the verification of the Jacobi Identity.
In doing that, the corresponding calculation from the lemma can be used as a
guide. 2

We emphasize two cases.
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(4.15). Example.

(a) If δ is a derivation of the Lie algebra A, then with M = Kδ and I = A we
make L = Kδ ⊕ A into a Lie algebra as in the proposition. Here A is an
ideal of codimension 1 upon which the derivation δ is now induced by the
inner derivation adδ of the new algebra L.

(b) Let V be a module for the Lie algebra M . As in the proposition L = M ⊕V
becomes a Lie algebra after we declare V (= I) to be an abelian Lie algebra:
[V, V ] = 0. (Any endomorphism of an abelian Lie algebra is a derivation by
Proposition (2.3).)

The second example suggests some notation. Let ϕ : L −→ End−K (V ) be a

Lie representation of L. For x ∈ L, we may write adVx for ϕ(x). In particular
adLx is the usual adjoint action adx of x on L in the adjoint representation.

(4.16). Proposition. Let δ be a derivation of L. For x, y ∈ L and a, b ∈ K:

(δ − a1− b1)n[x, y] =

n∑
i=0

(
n

i

)
[(δ − a1)n−i(x), (δ − b1)i(y)] .

Proof. We prove this by induction on n with the case n = 0 being trivial
and the case n = 1 following from the definition of a derivation.

(δ − a1− b1)n[x, y] = (δ − a1− b1)((δ − a1− b1)n−1[x, y])

= (δ − a1− b1)

n−1∑
i=0

(
n− 1

i

)
[(δ − a1)n−1−i(x), (δ − b1)i(y)]

=

n−1∑
i=0

(
n− 1

i

)
δ[(δ − a1)n−1−i(x), (δ − b1)i(y)]

+ (−a1− b1)

n−1∑
i=0

(
n− 1

i

)
[(δ − a1)n−1−i(x), (δ − b1)i(y)]

=

n−1∑
i=0

(
n− 1

i

)
[δ(δ − a1)n−1−i(x), (δ − b1)i(y)]

+

n−1∑
i=0

(
n− 1

i

)
[(δ − a1)n−1−i(x), δ(δ − b1)i(y)]

+

n−1∑
i=0

(
n− 1

i

)
[−a(δ − a1)n−1−i(x), (δ − b1)i(y)]

+

n−1∑
i=0

(
n− 1

i

)
[(δ − a1)n−1−i(x),−b(δ − b1)i(y)]
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=

n−1∑
i=0

(
n− 1

i

)
[(δ − a1)n−i(x), (δ − b1)i(y)]

+

n−1∑
i=0

(
n− 1

i

)
[(δ − a1)n−1−i(x), (δ − b1)i+1(y)]

=

n−1∑
i=0

(
n− 1

i

)
[(δ − a1)n−i(x), (δ − b1)i(y)]

+

n∑
j=1

(
n− 1

j − 1

)
[(δ − a1)n−j(x), (δ − b1)j(y)]

=

n∑
k=0

(
n

k

)
[(δ − a1)n−k(x), (δ − b1)k(y)] . 2
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4.4 Problems

(4.17). Problem. For L = n calculate Lk and L(k).

(4.18). Problem. Field indep exp(δ) auto; see [Ros02, p. 51].

(4.19). Problem. nilpotent derivations and automorphisms

(4.20). Problem. Jordan-Chevalley decomposition

(4.21). Problem. Lie algebra central extension.

(4.22). Problem. Action of L on V ⊗K W .

(4.23). Problem. Action of L on V ∗, given action on V .



Chapter 5
Nilpotent representations

5.1 Engel’s Theorem and Cartan subalgebras

(5.1). Proposition. Let N be a nilpotent Lie algebra and V a K-module.
For each element x of N and each λ ∈ K, the generalized eigenspace

Vx,λ = { v ∈ V | (x− λ1)kv = 0 , some k = kx,λ,v ∈ N }

for x on V is an N -submodule of V .

Proof. Let N have nilpotence class l. For v ∈ Vx,λ set n = l+kx,λ,v. As in
Example (4.15)(ii), we calculate within the semidirect product of V by L. By
Proposition (4.16) with y ∈ L, δ = adx, a = 0, and b = λ,

(x− λ1)n(yv) = (adx−λ1)n[y, v]

=

n∑
i=0

(
n

i

)
[adn−ix (y), (adx−λ1)i(v)] = 0 ,

since adix(y) = 0 for i ≥ l and (adx−λ1)i(v)− 0 for i ≥ kx,λ,v.
This shows that yVx,λ ≤ Vx,λ, hence the subspace Vx,λ of V is in fact a

submodule. 2

An endomorphism is nil if some power of it is 0, and a nil representation of
the Lie algebra N is one in which each element of N acts as a nil endomorphism.

(5.2). Proposition. If σ is an nil irreducible representation of the nilpotent
Lie algebra N , then σ is the trivial 1-dimensional representation.

Proof. Certainly LnV = 0, where n is the nilpotence class of N . Suppose
LkV = 0. If k = 1, then LV = 0 and irreducible V has dimension 1, as desired.

For k > 1 let x ∈ Lk−1. As the representation is nil, for nonzero u ∈ V there
is a positive nu with xnuu = 0. For minimal such nu, the element w = xnu−1u

45
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is nonzero with xw = 0. Thus W = { v ∈ V | xv = 0 } is nonzero. For all y ∈ L
and w ∈W

x(yw) = y(xw)− [x, y]w = 0− 0 = 0

as w ∈ W and [x, y] ∈ Lk. Therefore yw ∈ W , which is thus a nonzero
submodule. By irreducibility W = V , hence xV = 0. But this implies Lk−1V =
0, and we are done. 2

(5.3). Corollary. If σ is an finite dimensional nil representation of the
nilpotent Lie algebra N , then V has an N -composition series with all factors of
dimension 1 and trivial. 2

(5.4). Theorem. (Engel’s Theorem) If the adjoint representation of the
finite dimensional Lie algebra N is nil, then N is nilpotent.

Proof. We prove this by induction on dimK(N) with the result clearly true
in dimensions 0 and 1. Assume N 6= 0.

Let I be a maximal proper subalgebra of N . As adIx = adNx |I for x ∈ I, the
adjoint representation of I is nil. Therefore by induction I is nilpotent.

By Corollary (5.3) there is a 1-dimensional submodule P/I for the nil action
of nilpotent I on N/I. Let x ∈ P \ I and M = Kx. Then

[P, P ] = [M + I,M + I]

= [M,M ] + [M, I] + [I,M ] + [I, I]

= [M, I] + [I,M ] + [I, I]

≤ I ,

so P is a subalgebra of N in which I is an ideal of codimension 1. By maximality
of I, N = P .

We now have N = M ⊕ I with M = Kx ' N/I an abelian algebra and
I a nilpotent ideal. Furthermore by hypothesis admx = 0 for some k, hence
[I;M,m] = [I;x,m] = 0 . By Proposition (4.12), the algebra N is nilpotent. 2

If A is a subspace of the Lie algebra L, then the normalizer of A in L, NL(A),
is {x ∈ L | [x,A] ≤ A }. The subspace A is then self-normalizing if A = NL(A).

(5.5). Lemma.

(a) If A is a subspace of the Lie algebra L, then NL(A) is a subalgebra.

(b) If A is a self-normalizing subspace of the Lie algebra L, then A is a subal-
gebra.

Proof. For x, y ∈ NL(A) and a ∈ A, the Jacobi Identity gives

[[x, y], a] = −[[y, a], x]− [[a, x], y] ∈ A ,

so the vector space NL(A) is a subalgebra. The second part then follows from
the first. 2
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(5.6). Lemma. Let L be a Lie algebra, x ∈ L, and

Lx,0 = { y | adkx(y) = 0 , some k = kx,0,y ∈ N }

be the generalized eigenspace for x acting on L in the adjoint representation
with eigenvalue 0. Then Lx,0 is a self-normalizing subalgebra of L.

Proof. Let a ∈ NL(Lx,0). Then [x, a] ∈ Lx,0, so adkx([x, a]) = 0 for

k = kx,0,[x,a]. But then adk+1
x (a) = adkx([x, a]) = 0, hence a ∈ Lx,0 and the

subspace Lx,0 is self-normalizing. By the previous lemma it is then a subalgebra.
2

The element w of the finite dimensional Lie algebra is said to be regular in
L if the dimension of the subalgebra Lw,0 is minimal. This dimension is then
the rank of L. As long as L 6= 0 this is positive since w ∈ Lw,0.

(5.7). Theorem. Assume K has characteristic 0. Let w be a regular element
of the finite dimensional Lie algebra L and set H = Lw,0. Then H is a nilpotent
and self-normalizing subalgebra of L.

Proof. We follow [Eld15].

By the previous lemma, H is a self-normalizing subalgebra. We must prove
it to be nilpotent.

For fixed but arbitrary h ∈ H and α ∈ K, the element w+αh belongs to H.
Consider the linear transformation adw+αh of L, which leaves the subspace H
invariant and so also acts on the quotient space L/H. Therefore its characteristic
polynomial χLα(z) ∈ K[z] is ϕα(z)γα(z) where

ϕα(z) = zr +

r−1∑
i=0

fi(α)zi

is the characteristic polynomial of adw+αh on H and

γα(z) = zn−r +

n−r−1∑
j=0

gj(α)zj

is the characteristic polynomial of adw+αh on L/H. The standard calculation
of the characteristic polynomial as a determinant reveals the polynomials fi(x)
of K[x] to have degree at most r while the gj(x) have degree at most n− r .

As H = Lw,0 we have γ0(0) 6= 0 hence g0(0) 6= 0. Especially the polynomial
g0(x) of degree at most n− r is not identically 0. As K has characteristic 0 we
have |K| > n, so there are distinct elements α1, . . . , αr+1 of K with g0(αk) 6= 0
for 1 ≤ k ≤ r + 1. In particular Lw+αkh,0 ≤ H for each k. As w is regular, this
forces Lw+αkh,0 = H, which is to say ϕαk(z) = zr for 1 ≤ k ≤ r + 1. But then
each of the polynomials fi(x), for 1 ≤ i < r, vanishes at α1, . . . , αr+1. As these
polynomials have degree at most r, they must be identically 0.
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Therefore ϕα(z) = zr for all values of α ∈ K, and every w + αh is nil on H.
As h was fixed but arbitrary, we find that every element of H is nil on H. By
Engel’s Theorem (5.4), H is nilpotent as desired. 2

A Cartan subalgebra of the Lie algebra L is a nilpotent, self-normalizing
subalgebra. The theorem tells us that Cartan subalgebras always exist in finite
dimension and characteristic 0. More is true: for finite dimensional Lie alge-
bras over algebraically closed fields of characteristic 0, the automorphism group
of L is transitive on the Cartan subalgebras (so all arise as in the theorem);
see [Jac79, p. 273]. At times we may abuse notation or terminology by not
mentioning the specific Cartan subalgebra being used since they are all essen-
tially equivalent. We shall address conjugacy of Cartan subalgebras of finite
dimensional semisimple algebras in Corollary (8.36).

There are many characterizations of Cartan subalgebras. The following is
important here.

(5.8). Proposition. Suppose H is a nilpotent subalgebra of the finite dimen-
sional Lie algebra L. Then H is a Cartan subalgebra if and only if in the action
of H on L via the adjoint, H is equal to

LH,0 = {x ∈ L | adkh(x) = 0 for all h ∈ H and some k = kh,0,x ∈ N } ,

the largest subspace of L upon which H is nil.

Proof. The nilpotent algebra H is certainly contained in LH,0. We show
that H is proper in LH,0 if and only if H is not self-normalizing. As the Cartan
subalgebras are by definition the self-normalizing nilpotent subalgebras, this
will give the result.

Let x ∈ NL(H) \ H. Then, for each h ∈ H we have [h, x] ∈ H. As H is
nilpotent, adkh[h, x] is 0 for sufficiently large k = kh. But then adk+1

h (x) = 0
and x is in LH,0 but not in H.

Suppose LH,0 > H. By Corollary (5.3), there is a trivial H-submodule P/H
of dimension 1 in L0(H)/H. For x ∈ P \H, we have [x,H] ≤ H. That is, x is
in the normalizer of H but not in H. 2

5.2 Weight spaces and vectors

(5.9). Theorem. Assume K is algebraically closed of characteristic 0. Let V
be an indecomposable KN -module for the nilpotent Lie algebra N with 0 < n =
dimK(V ). Then there is a 1-dimensional Lie homomorphism λ : N −→ K with

V = { v ∈ V | (x− λ(x)1)n−1v = 0 for all x ∈ N } .

Proof. We may replace N with its image in End−K (V ) ' Mat−n (K). As
K is algebraically closed, all x ∈ N have eigenvalues in their action on V .
By standard linear algebra (say, Jordan Canonical Form), for each x ∈ N the
module V is the direct sum of its generalized eigenspaces

Vx,λ = { v ∈ V | (x− λ1)kv = 0 , some k = kx,λ,v ∈ N } .
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Indeed maxv(kx,λ,v) ≤ n− 1, so

Vx,λ = { v ∈ V | (x− λ1)n−1v = 0 } .

By Proposition (5.1), indecomposability, and the above remarks, each x ∈ N
has a unique eigenvalue λ(x) on V , and for every x the whole space V is equal
to the generalized x-eigenspace Vx,λ(x):

V = Vx,λ(x) = { v ∈ V | (x− λ(x)1)n−1v = 0 } .

In particular tr(x) = nλ(x). As K has characteristic 0, we find that λ(x) =
n−1 tr(x) is a linear map λ : N −→ K. Furthermore

λ([x, y]) = n−1 tr(xy − yx) = 0 ,

for all x, y ∈ N ; that is, λ|[N,N ] = 0. Therefore the linear transformation
λ : N −→ K is a 1-dimensional representation of the abelian Lie algebraN/[N,N ]
and so of N itself. 2

A 1-dimensional representation of a Lie algebra L is called a weight of the
algebra. All weights of L belong to the dual of the K-space L/[L,L]. For an
L-module V and weight λ of L,

VL,λ = Vλ = { v ∈ V | (x−λ(x)1)kv = 0 for all x ∈ L and some k = kx,λ,v ∈ N }

is the corresponding weight space in V . These are the generalized eigenspaces
for the action of L. A nonzero vector v ∈ VL,λ is a weight vector if it is an actual
eigenvector for all L (kx,λ,v = 1 for all x ∈ L). The corresponding eigenspace of
weight vectors is then V wL,λ = V wλ .1

For every nonzero Lie algebra, the trivial representation is the trivial weight
or zero weight. We have already encountered a weight space in Proposition
(5.8), where the Cartan subalgebra H was characterized among all nilpotent
subalgebras of L by being equal to its corresponding weight space LH,0.

A nonzero weight of L is a root.

(5.10). Theorem. Assume K is algebraically closed of characteristic 0. For
the nilpotent Lie algebra N and the N -module V of finite dimension n, N has
only finitely many weights on V ; each weight space

VN,λ = Vλ = { v ∈ V | (x− λ(x)1)n−1v = 0 for all x ∈ N }

is a submodule; and V is the direct sum of its weight spaces.

Proof. As V is finite dimensional, we can write V as a direct sum of finitely
many nonzero indecomposable submodules. By the previous theorem, each of
these summands is contained in one of the the weight spaces Vµ for some weight

1It should be noted that in certain places it is the eigenspaces V wL,λ that are termed weight

spaces. Perhaps the subspaces VL,λ might be called generalized weight spaces.
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µ of N . Let the submodule V (µ) be the sum of those indecomposable summands
with weight µ. The previous theorem gives

V (µ) ≤ { v ∈ V | (x− µ(x)1)n−1v = 0 for all x ∈ N } ≤ Vµ .

Now we have
V =

⊕
µ∈J

V (µ) ,

where J is a finite set of weights for N on V . In particular, every v ∈ V can be
uniquely written v =

∑
µ∈M vµ with vµ ∈ V (µ).

Let λ be an arbitrary weight of N on V , and consider 0 6= v ∈ Vλ. We claim:

vµ 6= 0 =⇒ µ = λ .

As the various nonzero vµ are linearly independent and each V (µ) is a submod-
ule, (x − λ(x)1)mv = 0 implies (x − λ(x)1)mvµ = 0 and so vµ ∈ Vλ ∩ V (µ) ≤
Vλ ∩ Vµ.

Assume vµ 6= 0. For fixed but arbitrary x ∈ N , choose k (= kx,λ(x),v) ∈ N
minimal with (x − λ(x)1)kvµ = 0. Set u = (x − λ(x)1)k−1vµ 6= 0, so that
(x− λ(x))u = 0; that is, xu = λ(x)u. As V (µ) is a submodule, u ∈ V (µ) ≤ Vµ;
so there is an m ∈ Z+ with (x− µ(x)1)mu = 0. But

(x− µ(x)1)u = xu− µ(x)u = λ(x)u− µ(x)u = (λ(x)− µ(x))u ,

hence
0 = (x− µ(x)1)mu = (λ(x)− µ(x))mu .

Now u 6= 0 forces λ(x)− µ(x) = 0. That is, for all x ∈ N we have λ(x) = µ(x),
hence λ = µ as claimed.

For every weight λ, each nonzero v ∈ Vλ must project nontrivially onto at
least one of the summands V (µ) for µ ∈ M . By the claim, there is only one
such summand, namely V (λ), and v ∈ V (λ). Thus λ ∈ J and there are only
finitely many weights for N on V . Also Vλ ≤ V (λ) ≤ Vλ, hence

V (λ) = { v ∈ V | (x− λ(x)1)n−1v = 0 for all x ∈ N } = Vλ .

Finally V is the direct sum of the submodules V (µ), so it is equally well the
direct sum of the weight spaces Vλ, each a submodule. 2

5.3 The Cartan decomposition

We can use the results of the previous sections to consider a Lie algebra as a
module for any of its nilpotent subalgebras.

(5.11). Theorem. Let L be a finite dimensional Lie algebra over the alge-
braically closed field K of characteristic 0. Let α and β be weights of L for the
nilpotent subalgebra N . Then

[LN,α, LN,β ] ≤ LN,α+β ,
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where the weight space LN,λ for λ ∈ (N/[N,N ])∗ is taken to be 0 when λ is not
a weight. Furthermore

[LwN,α, L
w
N,β ] ≤ LwN,α+β .

Proof. Let x ∈ N , y ∈ Lα, and z ∈ Lβ . Then, for n = 2 dimK(N), by
Proposition (4.16) and Theorem (5.10)

(adx−α1− β1)n[y, z] =

n∑
i=0

(
n

i

)
[(adx−α1)n−i(y), (adx−β1)i(z)] = 0 .

Therefore, [y, z] ∈ Lα+β .
If additionally y ∈ Lwα , and z ∈ Lwβ , then the identity holds with n = 1,

hence [LwN,α, L
w
N,β ] ≤ LwN,α+β . 2

The most important case is that where N = H is a Cartan subalgebra of L.
Theorem (5.10) tells us that

L =
⊕
λ

LH,λ =
⊕
λ

Lλ ,

where λ runs over the finite set of weights of H(= LH,0) on L. This is a Cartan
decomposition of the Lie algebra L—the decomposition of L as the direct sum
of its weight spaces for a Cartan subalgebra H.

Here and above we see the common abuse of notation and terminology that
refers to the weights and weight spaces of L without specifying the Cartan
subalgebra H being used, say, writing Lλ in place of LH,λ. Usually H will
be clear from the context, and in the cases of most interest to us all Cartan
algebras are equivalent; see the remarks on page 48 and see Corollary (8.36) on
semisimple algebras.

Recall that a root of L is a nonzero weight. For α and β roots of L, the
α-string through β is the longest string of roots

β − sα , . . . , β − iα , . . . , β , . . . , β + jα , . . . , β + tα .

That is, all the maps in the string are roots, but β − (s+ 1)α and β + (t+ 1)α
are not roots.

We have a first application of this concept.

(5.12). Proposition. Let L be a finite dimensional Lie algebra over the
algebraically closed field K of characteristic 0, and let α and β be roots of L.
Then β is a rational multiple of α when restricted to the subspace [Lα, L−α].

Proof. This is [Ste70, Lemma 3.2].
The result is trivial if −α is not a root, so we may assume it is. Let

β − sα , . . . , β , . . . , β + tα

be the α-string through β and M the corresponding subspace

M = Lβ−sα ⊕ · · · ⊕ Lβ ⊕ · · · ⊕ Lβ+tα .
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By Theorem (5.11) we have [M,L−α] ≤M and [M,Lα] ≤M .
Let y ∈ Lα and z ∈ L−α, and set x = [y, z]. As y and z normalize M , so

does x. We have

tr(adx |M ) =

t∑
i=−s

di(β + iα)(x) ,

where di = dimK(Lβ+iα). But adx = [ady, adz] and so it has trace 0. Therefore

0 =

t∑
i=−s

di(β + iα)(x) ,

hence

β(x) =
d

e
α(x)

for d = −
∑t
i=−s idi and e =

∑t
i=−s di 6= 0. By linearity, this holds for all x in

[Lα, L−α]. 2

5.4 Problems

(5.13). Problem. Prove that any subalgebra of the Lie algebra L that contains Lx,0
is self-normalizing.



Chapter 6
Killing forms and semisimple Lie
algebras

6.1 Killing forms

Let L be a finite dimensional Lie K-algebra and V an L-module. The Killing
form of L on V , κVL : L× L −→ K is is a bilinear form given by

κVL (x, y) = tr(adVx adVy ) ,

where we recall our convention that adVx is the image of x ∈ L in EndK(V ). For
the basic theory of bilinear forms, refer to Appendix A.

If the relevant Lie algebra L should be evident from the context, then we
write κV . Finally, if V = L, the representation being the adjoint, we may drop
reference to V as well, since we then have the usual definition of the Killing
form

κ(x, y) = tr(adx ady) .

(6.1). Proposition.

(a) The Killing form κVL is a symmetric, bilinear form on L.

(b) If W is an L-submodule of V , then

κVL = κWL + κ
V/W
L .

(c) The Killing form is an invariant form (or associative form): for all x, y, z ∈
L

κVL ([x, y], z) = κVL (x, [y, z]) .

(d) If I is an ideal of L, then I⊥ = {x ∈ L | κVL (x, y) = 0 , for all y ∈ I } is
also an ideal of L.

53
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Proof.

(a) The trace is linear in its argument with target K, and multiplication in
EndK(V ) is bilinear; so κVL is a bilinear form on L. It is symmetric since
tr(ab) = tr(ba) in EndK(V ).

(b) This is evident if we write the module action in matrix form, using a basis
that extends a basis of W to one for all V .

(c)

κVL ([x, y], z) = tr(adV[x,y] adVz )

= tr((adVx adVy − adVy adVx ) adVz )

= tr(adVx adVy adVz − adVy adVx adVz )

= tr(adVx adVy adVz )− tr(adVy adVx adVz )

= tr(adVx adVy adVz )− tr(adVx adVz adVy )

= tr(adVx (adVy adVz − adVz adVy ))

= tr(adVx adV[y,z])

= κVL (x, [y, z]) .

(d) For all a ∈ I, y ∈ L, and b ∈ I⊥ we have by (c)

0 = κVL ([a, y], b) = κVL (a, [y, b]) .

That is, [y, b] ∈ I⊥ for all y ∈ L and b ∈ I⊥; so I⊥ is an ideal. 2

(6.2). Corollary. Let I be an ideal of the finite dimensional Lie algebra L.

Then I ≤ Rad(κ
L/I
L ) and κII = κIL|I×I = κLL|I×I

Proof. From the second part of the proposition

κLL = κIL + κ
L/I
L .

As I acts as 0 on L/I, we certainly have I ≤ Rad(κ
L/I
L ). The rest of the

corollary follows easily. 2

Some care must be taken in the use of this result. In sln(K) the Borel
algebra bn(K) = n+

n (K)⊕ hn(K) is the split extension of its derived subalgebra
n+
n (K) = [bn(K), bn(K)] by the Cartan subalgebra hn(K). Let L = bn(K) and
I = n+

n (K). Then nilpotent I consists of strictly upper triangular matrices, so κII
is identically 0; L/I ' hn(K) is abelian and so κ

L/I
L/I is identically 0. Nevertheless

κLL = κIL + κ
L/I
L is not identically 0 on solvable bn(K) provided n ≥ 2.

(6.3). Theorem. Let L (6= 0) be a finite dimensional Lie algebra over the field
K of characteristic 0. If L = [L,L], then the Killing form κ is not identically 0.
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Proof. For any extension field E of K, if κL is identically 0, then so is κE⊗KL.
Therefore in proving the theorem we may assume that K is algebraically closed.

Let L =
⊕

λ∈Φ0
Lλ be the Cartan decomposition for L relative to the Cartan

subalgebra H = L0 and finite set of weights Φ0. Thus

L = [L,L] =

[⊕
λ∈Φ0

Lλ,
⊕
λ∈Φ0

Lλ

]
=
⊕
λ 6=µ

[Lλ, Lµ]

In particular

H =
⊕
λ∈Φ0

[Lλ, L−λ] .

As nonzero nilpotent H > [H,H] and L = [L,L], we have H < L; so the set of
roots Φ = Φ0 \ {0} is nonempty.

Let β ∈ Φ. By the definition of roots, β|H 6= 0 but β|[H,H] = 0. Therefore
there is an α ∈ Φ0 with β|[Lα,L−α] 6= 0. Furthermore α is not the zero weight as
again β|[H,H] = 0. Thus by Proposition (5.12) there is a rational number rβ,α
with

β|[Lα,L−α] = rβ,αα|[Lα,L−α] .

Choose an x ∈ [Lα, L−α] with β(x) 6= 0, hence rβ,α 6= 0 and α(x) 6= 0. Then

κ(x, x) = tr(adx adx)

=
∑
λ∈Φ0

λ(x)2 dimK(Lλ)

= 0 +
∑
λ∈Φ

λ(x)2 dimK(Lλ)

= α(x)2
∑
λ∈Φ

r2
λ,α dimK(Lλ) ,

which is not equal to 0, as not all rλ,α are zero and all dimK(Lλ) are positive
integers. Since κ(x, x) 6= 0, the form κ is not identically 0 on L, as desired. 2

(6.4). Corollary. (Cartan’s Solvability Criterion) Let L be a finite
dimensional Lie algebra over the field K of characteristic 0. If the Killing form
is identically 0, then L is solvable.

Proof. Assume the Killing form κ is identically 0. The proof is by induction
on dimK(L), with the dimension 0 and 1 cases clear. By the Theorem L 6= [L,L].
By Corollary (6.2) the Killing form for [L,L] comes from restriction of the Killing
form for L and so is also identically 0. Therefore by induction [L,L] is solvable,
and then L is as well by Lemma (4.6). 2

A slightly more complicated condition on κ is both necessary and sufficient
for solvability; see [Eld15]: L is solvable if and only if κ|L×[L,L] is identically 0.
A case in point is that of the Borel algebras bn(K), mentioned above, which, are
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solvable with a nonzero Killing form whose restriction to the derived subalgebra
[bn(K), bn(K)] is identically 0.

We then have the natural result that lives at the opposite end of the solv-
ability and degeneracy spectrum.

(6.5). Theorem. (Cartan’s Semisimplicity Criterion) Let L be a finite
dimensional Lie algebra over the field K of characteristic 0. Then L is semisim-
ple if and and only if its Killing form is nondegenerate.

Proof. Let κ be the Killing form and R = Rad(κ), an ideal by Proposition
(6.1). But κ|R×R = κRR is identically 0, so R is solvable by Cartan’s Solvability
Criterion (6.4). If L is semisimple, then R = 0 and κ is nondegenerate.

Now let S be a nonzero solvable ideal of L, and take I to be the last nonzero
term in its derived series. Therefore abelian I is in Rad(κIL), and also I ≤
Rad(κ

L/I
L ) by Corollary (6.2). Hence by Proposition (6.1)

0 6= I ≤ Rad(κIL) ∩ Rad(κ
L/I
L ) = Rad(κIL + κ

L/I
L ) = Rad(κ)

and κ is degenerate. 2

We also have a result which resolves a possible confusion involving terminol-
ogy.

(6.6). Theorem. Let L be a finite dimensional Lie algebra over the field
K of characteristic 0. Then L is semisimple if and only if, as L-module, it is
completely reducible with no trivial 1-dimensional ideals.

In this case all minimal ideals (irreducible submodules) are nontrivial simple
subalgebras, and they are pairwise perpendicular with respect to the Killing form.

Proof. Let κ be the Killing form on L, and let I be an ideal in semisimple
L. Then I ∩ I⊥ is an ideal by Proposition (6.1), and the restriction of κ to
it is identically 0. Therefore by Cartan’s Solvablility Criterion (6.4) the ideal
I ∩ I⊥ is solvable and hence 0 in semisimple L. Therefore finite dimensional
L = I ⊕ I⊥, and every ideal I is complemented in L. By Theorem (4.9), L is
completely reducible as L-module. In particular, minimal ideals and irreducible
submodules are the same and are simple. If any of these were trivial simple
ideals, they would be solvable ideals, which is not the case. Finally for the
minimal ideal I, the complement I⊥ must be the sum of all other minimal
ideals, so these simple summands are pairwise perpendicular.

Conversely, assume that L is completely reducible with the decomposition
L =

⊕m
i=0 Si into simple ideals with no summand trivial. Any solvable ideal

I projects onto each summand Si as a solvable subideal. Since no summand
is trivial, each of these projections is onto the zero ideal; so I itself is zero.
Therefore L is semisimple. 2
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6.2 Semisimple algebras I: sl2(K) subalgebras

We take the view that the classification of finite dimensional, semisimple Lie
algebras over algebraically closed fields of characteristic 0 has four basic parts:

(i) the reduction of the classification to that of root systems;

(ii) the classification of root systems;

(iii) the uniqueness of Lie algebras corresponding to the various root systems;

(iv) the existence of Lie algebras corresponding to the various root systems.

In this section we handle a large potion of the first part.
We first set some notation to be used throughout this section. In particular

L (6= 0) will be a finite dimensional, semisimple Lie algebra over the algebraically
closed field K of characteristic 0.

By Theorem (5.7) we may choose a Cartan subalgebra H in L. By Propo-
sition (5.8) we have H = LH,0 = L0, the zero weight space. Let Φ be the set of
all roots for H on L, a finite set by Theorem (5.10). The set of all weights is
Φ0 = {0} ∪ Φ.

For each λ ∈ Φ, we have the weight space Lλ = LH,λ, giving the Cartan
decomposition

L = H ⊕
⊕
λ∈Φ

Lλ .

Since L is nonzero and semisimple, the nilpotent Cartan subalgebra H = L0 is
proper in L, hence the root set Φ is nonempty.

The Killing form κ = κL = κL = κLL is nondegenerate by Cartan’s Semisim-
plicity Criterion (6.5).

(6.7). Proposition. Let α and β be weights.

(a) κ(Lα, Lβ) = 0 if α+ β 6= 0.

(b) κ|H×H is nondegenerate, and H⊥ =
⊕

λ∈Φ Lλ.

(c) If 0 6= x ∈ Lα, then κ(x, L−α) 6= 0. Especially, α ∈ Φ implies −α ∈ Φ.

Proof. (a) Recall that for all weights µ, ν we have [Lµ, Lν ] ≤ Lµ+ν by
Theorem (5.11), and this extends to all λ, µ ∈ (H/[H,H])∗ when we define Lλ
to be 0 whenever λ is not a root.

For x ∈ Lα, y ∈ Lβ , and γ ∈ Φ0,

adx ady Lγ = [x, [y, Lγ ]] ≤ [Lα, [Lβ , Lγ ]] ≤ [Lα, Lβ+γ ] ≤ Lα+β+γ .

Therefore tr(adx ady) is 0 if α+ β is not equal to 0.
(b) By (a) H⊥ = L⊥0 ≥

⊕
λ∈Φ Lλ. Therefore H⊥ ∩H ≤ Rad(κ) = 0, and

κ|H×H is nondegenerate. Then L = H ⊕
⊕

λ∈Φ Lλ yields H⊥ =
⊕

λ∈Φ Lλ.
(c) If κ(x, L−α) = 0, then by (a) we have x ∈ Rad(κ) = 0. Therefore if α is

a root, then κ(Lα, L−α) 6= 0, hence −α is also a root. 2
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(6.8). Theorem. The Cartan subalgebra H is abelian.

Proof. Let x, y ∈ H. Then

κ(x, y) = tr(adx ady) =
∑
λ∈Φ

λ(x)λ(y) dimLλ .

If w ∈ [H,H], then λ(w) = 0 for all λ ∈ Φ; so κ(w, y) = 0 for all w ∈ [H,H]
and y ∈ H. That is, [H,H] ≤ H ∩H⊥ = 0 by Proposition (6.7)(b). Therefore
H is abelian. 2

(6.9). Theorem. We have L = Lw. That is, for every λ ∈ Φ0 the generalized
H-eigenspace Lλ is equal to the eigenspace Lwλ .

Proof. By Theorem (6.6) semisimple L is the direct sum of simple ideals,
so we need only prove this for simple L. By the previous theorem H = LwH,0, so
by Theorem (5.11) the subspace

Hw ⊕
⊕
α∈Φ

Lwα = H ⊕
⊕
α∈Φ

Lwα

is a nonzero subalgebra of simple L. That is

L = Hw ⊕
⊕
α∈Φ

Lwα = Lw . 2

As abelian H = H/[H,H] is finite dimensional and nondegenerate under κ,
for every linear functional µ ∈ H∗ there is a unique tµ ∈ H with κ(tµ, h) = µ(h)
for all h ∈ H. Especially t−µ = −tµ.

(6.10). Proposition.

(a) H =
∑
λ∈Φ Ktλ.

(b) For each α ∈ Φ we have α(tα) = κ(tα, tα) 6= 0.

(c) For α ∈ Φ, x ∈ Lα, and y ∈ L−α we have [x, y] = κ(x, y)tα. Especially
[Lα, L−α] = [x, L−α] = [Lα, y] = Ktα for all nonzero x ∈ Lα and y ∈ L−α.

Proof. (a) Let J =
∑
λ∈Φ Ktλ ≤ H and choose h ∈ J⊥ ∩ H. Then

λ(h) = κ(tλ, h) = 0 for all λ ∈ Φ and indeed for all λ ∈ Φ0 since H = L0. Thus
for a basis of L consisting of bases for the various Lλ (ordered appropriately
using Theorem (5.10)) every adx, for x ∈ H, is represented by a matrix that is
upper triangular and adh itself is strictly upper triangular. But then adh adx is
always strictly upper triangular, hence h ∈ Rad(κ) = 0. Therefore J⊥ ∩H = 0
with J ≤ H, so J = H because L has finite dimension.

(b) By nondegeneracy of κ on H and (a), there is a root β with 0 6=
κ(tβ , tα) = β(tα). Then Proposition (5.12) yields

0 6= β(tα) = rβ,αα(tα) = rβ,ακ(tα, tα) ,



6.3. PROBLEMS 59

and κ(tα, tα) 6= 0.
(c) By the previous theorem Kx is a 1-dimensional H-submodule of Lα. For

all h ∈ H and y ∈ L−α

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y)

= κ(tα, h)κ(x, y) = κ(h, κ(x, y)tα) .

We thus have κ(h, [x, y]−κ(x, y)tα) = 0 for all h. By the nondegeneracy of κ on
H, this gives [x, y] = κ(x, y)tα ≤ Ktα. By Proposition (6.7)(c) we may choose
y ∈ L−α with κ(x, y) 6= 0, hence [x, L−α] = Ktα. 2

Define hα = 2
κ(tα,tα) tα, possible by Proposition (6.10)(c).

(6.11). Theorem. For each α ∈ Φ and each 0 6= x ∈ Lα, there is a y ∈ L−α
with

Kx⊕Ky ⊕Ktα = Kx⊕Ky ⊕Khα
a subalgebra isomorphic to sl2(K).

Proof. For any nonzero x ∈ Lα, the previous proposition allows us to
choose a y ∈ L−α with κ(x, y) = 2

κ(tα,tα) . Then

[x, y] = κ(x, y)tα =
2

κ(tα, tα)
tα = hα ;

[hα, x] =
2

κ(tα, tα)
[tα, x]

=
2

κ(tα, tα)
α(tα)x =

2

κ(tα, tα)
κ(tα, tα)x = 2x ;

[hα, y] =
2

κ(tα, tα)
[tα, y] =

−2

κ(tα, tα)
[t−α, y] =

−2

κ(tα, tα)
(−α)(t−α)y

=
−2

κ(tα, tα)
α(tα)y =

−2

κ(tα, tα)
κ(tα, tα)y = −2y .

Therefore
Kx⊕Ky ⊕Ktα = Kx⊕Ky ⊕Khα

is a subalgebra, and by Section 2.3 it is a copy of sl2(K). 2

(6.12). Corollary. Let L = H ⊕
⊕

α∈Φ Lα be the Cartan decomposition
for L and for each α ∈ Φ choose a basis { eα,j | 1 ≤ j ≤ dimK(Lα) } for Lα.
For each α ∈ Φ and 1 ≤ j ≤ dimK(Lα) there is a subalgebra Sα,j in L that is
isomorphic to sl2(K) and has eα,j ∈ Sα,j. Furthermore L =

∑
α,j Sα,j. 2

6.3 Problems

(6.13). Problem. Let L be a finite dimensional Lie algebra in characteristic 0.
Prove that L is solvable if κ|L×[L,L] is identically 0.
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Chapter 7
Representations of sl2(K)

We have seen at the end of the last chapter that a finite dimensional semisimple
Lie algebra L over an algebraically closed field K of characteristic 0 is sewed
together out of copies of sl2(K). We could have proceeded with the program out-
lined at the beginning of Section 6.2 toward a refined description of the Cartan
decomposition, leading to the introduction of root systems. But the relevant cal-
culations essentially come from the structure of L as an sl2(K)-module. Indeed
we have already made one such calculation. Specifically, arguments involving
α-strings usually depend upon the finite dimensional representation theory of
sl2(K). So Proposition (5.12) is actually a consequence of the fact that all fi-
nite dimensional sl2(K)-representations can be realized over the rationals. (See
Theorem (7.28)(a).)

Accordingly, in this chapter we take some time off to describe the repre-
sentation theory of sl2(K) in a manner more detailed than actually needed for
the program. (For the semisimple classification, we only need the much easier
Theorem (7.22).)

In fact, sl2(K) is the only semisimple Lie algebra whose irreducible represen-
tations have been completely cataloged, but we do not do it in its entirety. For
that, one should consult the excellent book [Maz10], which is the motivation for
much in this chapter.

The irreducible, finite dimensional sl2(K)-modules can be described quickly
(and we have already seen them on page 18), but we shall also pursue certain
(possibly) infinite dimensional modules. For the module properties considered
we will be guided by the desire to include all finite dimensional modules, so
their properties will motivate our definitions—specifically the presence of weight
vectors.

Throughout this chapter, we let K be an algebraically closed field of charac-
teristic 0.

61
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7.1 Weight modules

Within the Lie algebra sl2(K), we have focused on three elements

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

which provide the presentation

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f ,

for the 3-dimensional algebra sl2(K) = Kh ⊕ Ke ⊕ Kf . This is the Cartan
decomposition of L = sl2(K) for the Cartan subalgebra H = Kh = L0 with
weight spaces Ke = L2 and Kf = L−2.

The following lemma tells us these 1-spaces can be characterized extrinsically
(as Cartan subalgebra and its weight spaces), so this presentation is in a sense
canonical.

(7.1). Lemma. The algebra sl2(K) is simple. Every Cartan subalgebra of
sl2(K) is equivalent under Aut(sl2(K)) to Kh, and the only subalgebras contain-
ing Kh are

sl2(K), Kh, B+ = Kh⊕Ke, B− = Kh⊕Kf .

Proof.1 With respect to the basis {h, e, f} the Gram matrix of the Killing
form κ is 8 0 0

0 0 4
0 4 0


so κ is nondegenerate as charK 6= 2. Therefore by Cartan’s Semisimplicity
Criterion (6.5) the algebra sl2(K) of dimension 3 is semisimple. Were it not
simple, it would have an abelian ideal of dimension 1, which is not the case.

A Cartan subalgebra is thus abelian (Theorem (6.8)) and so is contained in
the normalizer of the subalgebra generated by each of its elements. By Jordan
Canonical Form, every nonzero element of sl2(K) is conjugate under GL2(K) ≤
Aut(sl2(K)) to one of (

0 a
0 0

)
or

(
b 0
0 −b

)
for nonzero a, b ∈ K. The normalizer of the subalgebra with the first shape
contains elements of the second type and is not nilpotent. The abelian subalge-
bra Kh of all matrices of the second type is self-normalizing and so is a Cartan
subalgebra by Proposition (5.8).

The rest of the Lemma follows by Problem (2.7) or by calculation with
respect to the Cartan decomposition given by Kh. 2

The Cartan subalgebra Kh of sl2(K) has dimension 1, so the elements λ of its
dual space are described entirely by the element λ(h) ∈ K via λ(kh) = kλ(h) for

1Exercise: This proof is overkill. Do the calculations needed to make it elementary—that
is, free of reference to results like Proposition (5.8) and Theorems (6.5) and (6.8).
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all k ∈ K. We therefore abuse notation and terminology somewhat by setting
λ(h) = λ ∈ K and saying that the element λ of K is a weight when, more
properly, it is the associated linear functional λ : Kh −→ K given by kh 7→ λk
that is the weight.

Let V be an sl2(K)-module. We let the images of h, e, and f in End−K (V ) be,
respectively, HV , EV+, EV−, usually abbreviated to H, E+, E−. (In the notation

introduced on page 42, these are adVh , adVe , and adVf .)

Recall that we write V wλ for those x ∈ Vλ with [h, x] = λ(h)x, such a nonzero
x being a weight vector for the weight λ. The space of weight vectors V wλ is
the actual H-eigenspace, a subspace of the generalized H-eigenspace Vλ. If finite
dimensional Vλ 6= 0 then V wλ 6= 0 by Jordan Canonical Form.

The sl2(K)-module V is torsion-free if, for all nonzero f(x) ∈ K[x] and all
nonzero v ∈ V , we have f(H)v 6= 0.

Torsion-free modules and weight vectors provide us with a basic dichotomy.

(7.2). Proposition. If V is an irreducible sl2(K)-module, then either V is
torsion-free or V contains a weight vector.

Proof. Assume V has torsion, so that there are 0 6= v ∈ V and 0 6= f(x) ∈
K[x] with f(H)v = 0. Choose f(x) to be monic and of minimal degree subject to

this. Thus f(x) =
∏n
i=1(x−αi) for distinct αi ∈ K. With w =

∏n−1
i=1 (H−αi)v,

we then have w a weight vector for λ = αn. 2

Our goal in this chapter is to classify all irreducible modules containing a
weight vector. As v,Hv,H2v, . . . ,Hiv , . . . must be linearly dependent in finite
dimensional V , this classification will include the classification of all irreducible
finite dimensional sl2(K)-modules.

(7.3). Lemma. Let V be an sl2(K)-module.

(a) EεE−ε − E−εEε = εH; HEε − EεH = 2εEε.

(b) EεE−ε = εH + E−εEε; HEε = Eε(H + 2ε); EεH = (H − 2ε)Eε.

(c) If f(x) ∈ K[x] is a polynomial and n ∈ N, then

f(H)Enε = Enε f(H + 2εn) and Enε f(H) = f(H − 2εn)Enε .

(d) If v ∈ Vλ then Eεv ∈ Vλ+2ε.

(e) If v ∈ V wλ then Eεv ∈ V wλ+2ε and E−εEεv ∈ V wλ .

Proof. The first part consists of the equations demonstrating that V is an
sl2(K)-module. The second part is then a rewritten version of the first, and the
third part follows by induction. (Exercise.)

Let v ∈ Vλ. Then by the previous part

(H − (λ+ 2ε))k(Eεv) = ((H − (λ+ 2ε))kEε)v = (Eε(H − λ)k)v = Eε((H − λ)kv) ,
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which is 0 for large enough k, hence Eεv ∈ Vλ+2ε. Further let v ∈ V wλ . Then
the equalities holds and are 0 for k = 1, proving that Eεv ∈ V wλ+2ε, as claimed
at the beginning of the last part. The end follows directly. 2

Parts of the lemma also follow directly from Theorem (5.11), when we con-
sider the weight spaces for the nilpotent subalgebra Kh (= N) of the semidirect
product algebra sl2(K)⊕ V (= L), as discussed under Example (4.15)(b).

A weight module for sl2(K) is a module that is generated by weight vectors,
which for an irreducible module is equivalent to containing a weight vector. By
the previous result, the sum of all the spaces V wλ of weight vectors is a submodule
of V , so V is a weight module if and only if V wλ = Vλ for all λ. This in turn is

equivalent to the statement that HV = H is “diagonal” or “semisimple” in its
action on V . These remarks include the usual definitions of a weight module;
see [Maz10, p. 59].

If v is a λ-weight vector, then always

λv = Hv = (E+E− − E−E+)v = E+E−v − E−E+v

where by the lemma E+E−v and E−E+v both belong to V wλ . We say that the
weight vector v is coherent2 if there is are constants λ+ and λ− in K with

E+E−v = λ+v and E−E+v = λ−v ,

where necessarily λ+ − λ− = λ.

(7.4). Lemma. If dimK(V wλ ) = 1, then each weight vector v ∈ V wλ is coherent.
2

We shall see (in Proposition (7.24)) that weight vectors in irreducible sl2(K)-
modules are always coherent. Irreducible modules are always cyclic, so our
classification results will come from careful study of cyclic modules generated
by coherent weight vectors.

Two special types of coherent weight vectors are of particular note. In the
sl2(K)-module V , we will call the nonzero vector v a highest weight vector for
the weight λ ∈ K provided v a weight vector in V wλ for H and additionally
E+(v) = 0, so that E−E+(v) = 0, λ− = 0, and λ+ = λ. Equivalently, Kv ≤ Vλ
is not just a Kh-submodule but is also a submodule for the Borel subalgebra
B+ = Kh ⊕ Ke. Similarly nonzero v is a lowest weight vector for the weight
λ ∈ K provided Kv ≤ Vλ is a B−-submodule; that is, v is weight vector of V wλ
for H and also E−(v) = 0, hence E+E−(v) = 0, λ+ = 0, and λ− = λ.

(7.5). Theorem. Let V be a finite dimensional module for sl2(K). Then V
contains highest weight vectors and lowest weight vectors.

Proof. Suppose Vλ 6= 0, and choose 0 6= v ∈ V wλ (possible, as mentioned
above). By Lemma (7.3)(d) and finite dimensionality, there are integers t with

2Unlike the other terminology in this chapter, this is not standard. But it is somewhat
related to a concept of coherence within the representation theory.



7.1. WEIGHT MODULES 65

0 6= Et+v ∈ V wλ+2t but 0 = Et+1
+ v, and s with 0 6= Es−v ∈ V wλ−2s but 0 = Es+1

− v.
Thus v+ = Et+v is a highest weight vector and v− = Es−v is a lowest weight
vector. 2

An elementary arithmetic lemma will be of help.

(7.6). Lemma. Let λ, λ+, λ− ∈ K with λ+ − λ− = λ. Set ε ∈ {±} = {±1},
and consider the two sequences aε(i), for i ∈ Z, where aε(i) = 1 for −εi ∈ N.
The following are equivalent:

(1) aε(i) = (i− ε)(λ− i) + λε = i(λ− i+ ε) + λ−ε for all εi ∈ Z+.

(2) aε(ε) = λε and aε(i)− aε(i− ε) = ε(λ− 2(i− ε)) for all εi ∈ Z+.

(3) aε(ε) = λε and a−(i)a+(i+ 1)− a+(i)a−(i− 1) = λ− 2i for all i ∈ Z.

Proof. (Exercise.) 2

(7.7). Corollary. Let λ = λ+ − λ− and ε ∈ {±} = {±1}. From the two
half-infinite sequences

aε(i) = (i− ε)(λ− i) + λε = i(λ− i+ ε) + λ−ε for all εi ∈ Z+

create the new doubly infinite sequence

b(j) = a−(j) for j ∈ Z− and b(j) = a+(j + 1) for j ∈ N .

Then b(j) = j(λ− j − 1) + λ+ for all j ∈ Z. 2

We now investigate the structure of a cyclic submodule.

(7.8). Theorem. Let v be a weight vector for the weight λ in the sl2(K)-
module V . Set v0 = v, and let ε ∈ {±} = {±1}.

For all i ∈ Z+ define

vεi = Ei−ε(v) = Ei−ε(v0) = E−ε(vε(i−1)) ,

which we may rewrite as:

Eε(vi) = vi−ε for εi ∈ −N

Then

(a) H(vi) = (λ− 2i)vi for all i ∈ Z;

(b) Assume v is coherent. Set EεE−εv = λεv, hence λ+ − λ− = λ. Then

Eε(vi) = aε(i)vi−ε for εi ∈ Z+

where aε(i) = (i− ε)(λ− i) + λε, as in Lemma (7.6).
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Proof. (a) We prove this by induction on |i|, the case |i| = 0 holding by
definition. For an i with |i| > 0, define ε ∈ {±} = {±1} by i = ε|i|. We use
Lemma (7.3) and induction to calculate

Hvi = HE−εvi−ε

= E−ε(H − 2ε)vi−ε

= E−ε((λ− 2(i− ε))− 2ε)vi−ε

= (λ− 2i)E−εvi−ε

= (λ− 2i)vi .

(b) We proceed by induction on the positive integer εi. The case εi = 1
serves to define the two constants aε(ε) = λε, where λε−λ−ε = ελ by coherence
of v. Assume εi ≥ 2. Then

Eε(vi) = EεE−εvi−ε

= (εH + E−εEε)vi−ε by Lemma (7.3)

= εHvi−ε + E−εEεvi−ε

= ε(λ− 2(i− ε))vi−ε + E−εaε(i− ε)vi−2ε by (a) and induction

= ε(λ− 2(i− ε))vi−ε + aε(i− ε)vi−ε as − ε(i− 2ε) ∈ −N
= aε(i)vi−ε by Lemma (7.6).

This completes the induction and proof. 2

7.2 Verma modules

Theorem (7.8) motivates the following construction:

(7.9). Definition. Let λ, λ+, λ− ∈ K with λ+−λ− = λ. Set M(λ, λ+, λ−) =⊕
i∈Z Kvi. Define the linear transformations H, E+, and E− on M(λ, λ+, λ−)

by

H(vi) = (λ− 2i)vi ,

Eε(vi) = aε(i)vi−ε ,

for i ∈ Z and ε ∈ {±} = {±1} with

aε(i) = (i− ε)(λ− i) + λε for εi ∈ Z+ and

aε(i) = 1 for εi ∈ −N.

In this action and with respect to the basis { vi | i ∈ Z }, the linear trans-
formation H is “diagonal,” in the sense that it takes each 1-space Kvi to itself.
Similarly E+ is “lower diagonal,” always taking Kvi to Kvi−1, and E− is “upper
diagonal,” taking Kvi to Kvi+1. The corresponding nonzero coefficients, the
transformation coefficients, are

H : vi vi E+ : vi vi−1 E− : vi vi+1
λ−2i a+(i) a−(i)
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We exhibit the actions on M(λ, λ+, λ−) pictorially as below. In the picture
every basis vector appears twice—once on the line displaying the action of E−
and once on the line displaying the action of E+. Passage between the two lines
gives the action of H.

E−

E+

v−2 v−1 v0 v1 v2

v−2 v−1 v0 v1 v2

a−(−2)

λ+4

λ−

λ+2

1

λ

1

λ−2 λ−4

1 1 λ+ a+(2)

(7.10). Theorem. The maps

h 7→ H , e 7→ E+ , f 7→ E−

give M(λ, λ+, λ−), as defined in (7.9) above, the structure of a cyclic sl2(K)-
module generated by the coherent weight vector v0 for the weight λ and having
EεE−εv0 = λεv0.

Proof. Within the definition (7.9) we find EεE−εv0 = aε(ε)v0 = λεv0.
To verify [H,Eε] = HEε − EεH we check equality on the basis vectors vi:

[H,Eε]vi = (HEε − EεH)vi

= HEεvi − EεHvi

= Haε(i)vi−ε − Eε(λ− 2i)vi

= aε(i)Hvi−ε − (λ− 2i)Eεvi

= aε(i)(λ− 2(i− ε))vi−ε − (λ− 2i)aε(i)vi−ε

= ((λ− 2(i− ε))− (λ− 2i)) aε(i)vi−ε

= 2εEεvi ;

so [H,Eε] = 2εEε, as desired.
We must also verify [E+,E−] = H:

[E+,E−]vi = E+E−vi − E−E+vi

= E+a−(i)vi+1 − E−a+(i)vi−1

= a−(i)a+(i+ 1)vi − a+(i)a−(i− 1)vi

= (a−(i)a+(i+ 1)− a+(i)a−(i− 1)) vi

= (λ− 2i)vi = Hvi ,

where between the last two lines we have used Lemma (7.6). Accordingly
[E+,E−] = H, which together with the preceding paragraph proves that we
have a representation and module. 2

The module M+(λ, λ+, λ−) is a generalized Verma module for sl2(K) with
weight λ. As an immediate consequence of the previous two results we have a
universal property for generalized Verma modules:
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(7.11). Corollary. Let v be a coherent weight vector for the weight λ in the
sl2(K)-module V with EVε E

V
−εv = λεv. Then the map v0 7→ v extends to a Lie

module homomorphism taking the generalized Verma module M(λ, λ+, λ−) onto
the sl2(K)-submodule of V generated by v. 2

(7.12). Corollary.

(a) V = M(λ, λ+, λ−) =
⊕

µ∈λ+2Z Vµ with dimK(Vµ) = 1 for all µ ∈ λ+ 2Z.

(b) Every weight vector in V is coherent.

(c) Any H-submodule, and so any sl2(K)-submodule, of V is a sum
⊕

µ∈I Vµ,
for some subset I ⊆ λ+ 2Z. 2

As already mentioned, each of the operators H and Eε is “nearly diagonal”
on the the basis { vi | i ∈ Z }. If we replace various of the vi with nonzero scalar
multiples, this will not change the near-diagonal structures, but it will change
the values of the certain of the transition coefficients. A particular case is of
interest.

(7.13). Proposition. For constants 0 6= b, d ∈ K with bd = 1, and an integer
j, consider the new basis { v′i | i ∈ Z } for M+(λ, λ+, λ−) given by

v′i = vi if i > j

= bvi if i ≤ j .

Then the transition parameters for this basis are equal to the transition param-
eters with respect to the original basis with only two exceptions:

a′−(j) = ba−(j) and a′+(j + 1) = da+(j + 1) .

Proof. If i > j + 1 or i = j + 1 and ε = −

Eε(v
′
i) = Eε(vi) = aε(i)vi−ε = aε(i)v

′
i−ε .

Similarly if i < j or i = j and ε = +

Eε(v
′
i) = Eε(bvi) = aε(i)bvi−ε = aε(i)v

′
i−ε .

On the other hand,

E+(v′j+1) = E+(vj+1) = a+(j + 1)vj = bda+(j + 1)vj = da+(j + 1)v′j

and

E−(v′j) = E−(bvj) = bE−(vj) = ba−(j)vj+1 = ba−(j)v′j+1 . 2

(7.14). Theorem. For a given δ ∈ {±1}, if aδ(δ) = λδ is not equal to
0, then the map λ−1

δ vδ 7→ v′′0 extends to an isomorphism of M(λ, λ+, λ−) with
M(λ′′, λ′′+, λ

′′
−) where λ′′ = λ+ 2δ and λ′′−δ = λδ.
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Proof. For M(λ, λ+, λ−) we start with

E−

E+

v−2 v−1 v0 v1 v2

v−2 v−1 v0 v1 v2

a−(−2)

λ+4

λ−

λ+2

1

λ

1

λ−2 λ−4

1 1 λ+ a+(2)

Assume λ− 6= 0, and in the proposition set j = −1, b = λ−1
− , and d = λ−.

We then find

E−

E+

v′−2 v′−1 v′0 v′1 v′2

v′−2 v′−1 v′0 v′1 v′2

a−(−2)

λ+4

1

λ+2

1

λ

1

λ−2 λ−4

1 λ− λ+ a+(2)

Therefore the map v′i 7→ v′′i+1 gives an isomorphism of M(λ, λ+, λ−) with the
generalized Verma module M(λ+ 2, λ−, a−(−2)).

On the other hand, if λ+ 6= 0 then in the proposition we set j = 0, b = λ+,
and d = λ−1

+ to reveal an isomorphism of M(λ, λ+, λ−) with the generalized
Verma module M(λ− 2, a+(2), λ+). 2

(7.15). Corollary.

(a) If aε(i) is nonzero for all pairs (ε, i), then M(λ, λ+, λ−) is irreducible.

(b) If M(λ, λ+, λ−) is reducible, then there is a µ ∈ λ + 2Z with M(λ, λ+, λ−)
isomorphic to M(µ, µ, 0) or to M(µ, 0,−µ).

Proof. (a) By the theorem, under these circumstances M(λ, λ+, λ−) is
cyclically generated by every Kvi; so by Corollary (7.12) there are no nonzero,
proper submodules.

(b) By (a) if M(λ, λ+, λ−) is reducible, then there is at least one pair (ε, i)
with aε(i) = 0. Choose the smallest |i| = εi for which this is true. Then
aε(εj) 6= 0 for 1 ≤ j < |i|, and by the theorem M(λ, λ+, λ−) is isomorphic to
M(µ, µ+, µ−) with µ = λ− 2i and µε = aε(i) = 0. 2

We therefore must analyse the submodule structure of the modulesM(µ, µ, 0)
and M(µ, 0,−µ). For this we have two important definitions.

(7.16). Definition. Let λ ∈ K and set M+(λ) =
⊕

i∈N Kvi with v−1 = 0 ∈
M+(λ). Define the linear transformations H, E+, and E− on M+(λ) by

H(vi) = (λ− 2i)vi ,

Eε(vi) = aε(i)vi−ε ,

for i ∈ N, ε ∈ {±} = {±1}, and aε(i) by

a+(i) = i(λ− i+ 1) for i ∈ Z+ and

a−(i) = 1 for i ∈ N :
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E−

E+

v0 v1 v2

v0 v1 v2

1

λ

1

λ−2 λ−4

λ a+(2)

(7.17). Definition. Let λ ∈ K and set M−(λ) =
⊕

i∈N Kv−i with v1 = 0 ∈
M−(λ). Define the linear transformations H, E+, and E− on M−(λ) by

H(vi) = (λ− 2i)vi ,

Eε(vi) = aε(i)vi−ε ,

for i ∈ −N, ε ∈ {±} = {±1}, and aε(i) by

a−(i) = i(λ− i− 1) for i ∈ −Z+ and

a+(i) = 1 for i ∈ −N :

E−

E+

v−2 v−1 v0

v−2 v−1 v0

a−(−2)

λ+4

−λ

λ+2 λ

1 1

The space M+(λ), defined above and with the described action, is the Verma
module for sl2(K) with highest weight λ. Similarly M−(λ) with the described
action is the Verma module for sl2(K) with lowest weight λ. At this point,
these names are presumptive, since we have not proven that the maps h 7→ H,
e 7→ E+, and f 7→ E− give M+(λ) or M−(λ) the structure of a cyclic sl2(K)-
module generated by the weight vector v0 with highest or lowest weight λ. This
will be a consequence of the next theorem, where we will see each of these as
quotient modules and submodules of appropriate generalized Verma modules.

(7.18). Theorem. For each λ ∈ K we have following nonsplit exact sequences
of sl2(K)-modules:

(a)
0 −→M−(λ+ 2) −→M(λ, λ, 0) −→M+(λ) −→ 0 ;

(b)
0 −→M+(λ− 2) −→M(λ, 0,−λ) −→M−(λ) −→ 0 .

Proof. For M(λ, λ, 0) we have

E−

E+

v−2 v−1 v0 v1 v2

v−2 v−1 v0 v1 v2

a−(−2)

λ+4 λ+2

1

λ

1

λ−2 λ−4

1 1 λ a+(2)
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Thus K− =
∑
i∈Z− Kvi is a proper submodule and is, in fact, isomorphic to

M−(λ+2). The quotient M(λ, λ, 0)/K− is next seen to be a copy of M+(λ). The
extension is nonsplit since, by Corollary (7.12)(c), the only possible submodule
complement to K− would be

∑
i∈N Kvi whereas E+v0 ∈ K−.

For M(λ, 0,−λ) instead

E−

E+

v−2 v−1 v0 v1 v2

v−2 v−1 v0 v1 v2

a−(−2)

λ+4

λ

λ+2

1

λ

1

λ−2 λ−4

1 1 a+(2)

Here K+ =
∑
i∈Z+ Kvi is a proper submodule and is isomorphic to M+(λ− 2).

The quotient M(λ, 0, λ)/K+ is a copy of M−(λ). Again the extension is nonsplit
as the only possible complement to K+ would be

∑
i∈N Kv−i but E−v0 ∈ K+.

2

Especially, the spaces Mε(λ) are indeed sl2(K)-modules, as presumed above.

(7.19). Corollary.

(a) Let v be a highest weight vector for the weight λ in the sl2(K)-module V .
Then the map v0 7→ v extends to a Lie module homomorphism taking the
Verma module M+(λ) with highest weight λ onto the sl2(K)-submodule of
V generated by v.

(b) Let v be a lowest weight vector for the weight λ in the sl2(K)-module V .
Then the map v0 7→ v extends to a Lie module homomorphism taking the
Verma module M−(λ) with lowest weight λ onto the sl2(K)-submodule of V
generated by v. 2

(7.20). Theorem.

(a) The module Mε(λ) is irreducible if and only if ελ /∈ N.

(b) If λ = n ∈ εN, then Mε(n) is indecomposable with two composition factors:

0 −→Mε(−n− 2ε) −→Mε(n) −→M0(εn+ 1) −→ 0 ,

with Mε(−n−2ε) irreducible of infinite dimension and M0(εn+1) irreducible
of finite dimension εn+ 1.

Proof. By Corollary (7.12) every submodule is
∑
i∈I Kvi for some I ⊆ εN.

As it is E−ε-invariant, a nonzero submodule must be
∑
k≤i∈N Kvεi for some

k ∈ N. When aε(i) is nonzero for all i ∈ εN, the module Mε(λ) itself is the only
such Eε-invariant subspace. Therefore Mε(λ) is irreducible unless

aε(i) = i(λ− i+ ε) = i((λ+ ε)− i) = 0

for some i ∈ εZ+. For a fixed λ and ε this can only happen for

i = λ+ ε ∈ εZ+ ,
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which is to say
λ = i− ε ∈ εN .

Especially if λ /∈ εN, then Mε(λ) is irreducible.
Now suppose λ = n = εm ∈ εN for m ∈ N, so that ε(m + 1) = λ + ε with

aε(λ+ε) = 0. Then Kε =
⊕

εj≥m+1 Kvj is a submodule of Mε(λ), complemented

by the (m+1)-subspace
⊕m

εj=0 Kvj . In particular Mε(λ) is reducible, completing
(a).

For the submodule Kε =
⊕

εj≥m+1 Kvj we calculate

H(vε(m+1)) = H(vλ+ε) = λ− 2(λ+ ε) = −λ− 2ε = −n− 2ε .

Thus Kε is isomorphic to Mε(−n−2ε), an infinite dimensional irreducible mod-
ule as ε(−n−2ε) = −εn−2 ∈ Z−. The extension is nonsplit since, by Corollary
(7.12)(c) and the Third Isomorphism Theorem, the only possible complementary
submodule would be

⊕m
εj=0 Kvj , whereas E−εvεm ∈ Kε.

For m ∈ N, the quotients Mε(εm)/Kε have dimension m + 1 and are irre-
ducible, since there are no further solutions to i((λ+ ε)− i) = 0. By Theorem
(7.5) every finite dimensional irreducible sl2(K)-module has both high weight
vectors and low weight vectors. In particular each Mε(εm)/Kε must also be
M−ε(−εk)/K−ε for some k, dimension considerations forcing m = k. That is,
the two finite dimensional modules Mε(εm)/Kε are isomorphic. We conclude
that, up to isomorphism, there is a unique irreducible sl2(K)-module of each
positive dimension m+ 1. This we have denoted M0(m+ 1). 2

For example, with ε = + and λ = m = 3 we have

E−

E+

v0 v1 v2 v3 v4 v5

v0 v1 v2 v3 v4 v5

1

3

1

1

1

−1

1

−3 −5

1

3 4 3 −5

and the submodule K+ =
⊕

j≥4 Kvj of M+(3) is revealed as a copy of M+(−5),
while the quotient module is M0(4) with dimension 4 and weights {3, 1,−1,−3}.

We have already seen on page 18 a version of the module M0(m+ 1). Let

e 7→ x
∂

∂y
and f 7→ y

∂

∂x
and h 7→ x

∂

∂x
− y ∂

∂y

in DerK(K[x, y]) acting on K[x, y]m, the space of homogeneous polynomials of
total degree m in K[x, y]. The polynomial xm is a weight vector with highest
weight m, while ym is a lowest weight vector with weight −m; we have a module
isomorphism with M+(m)/K+ given by vi +K+ 7→ xm−iyi , for 0 ≤ i ≤ n.

The next result is a corollary of the previous one and is of fundamental
importance. Versions of it are at the heart of the representation theory for all
semisimple Lie algebras over algebraically closed fields of characteristic 0. In
particular, see Theorem (9.10) below.
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(7.21). Theorem.
(Classification of irreducible highest weight sl2(K)-modules) For ev-
ery λ ∈ K, up to isomorphism there is a unique irreducible sl2(K)-module L+(λ)
with highest weight λ. Indeed

(a) if λ /∈ N, then L+(λ) = M+(λ) of infinite dimension;

(b) if λ = n ∈ N, then L+(λ) = M0(n+ 1) of finite dimension n+ 1.

These are pairwise nonisomorphic. 2

There is, of course, a corresponding result for irreducible lowest weight mod-
ules.

Every irreducible finite dimensional sl2(K)-module is a highest weight mod-
ule, so we also have the following result which was mentioned in the introduction
to this chapter and will aid us to complete the classification of semisimple Lie
algebras over K.

(7.22). Theorem. Up to isomorphism the finite dimensional irreducible
sl2(K)-modules are the modules M0(m + 1) for m ∈ N. These modules are
all self-dual. In M0(m+ 1) the weights are −m,−m+ 2, . . . m− 2,m, and each
weight space has dimension 1. 2

7.3 The Casimir operator

(7.23). Proposition. Let V be an sl2(K)-module, and in EndK(V ) define
the element

C = CV = (HV )2 + 1 + 2(EV+EV− + EV−E
V
+) .

(a) C = (H − ε)2 + 4EεE−ε.

(b) CH = HC and CEε = EεC.

Proof. We make frequent use of Lemma (7.3):

C = H2 + 1 + 2(EεE−ε + E−εEε)

= H2 + 1 + 2(EεE−ε − εH + EεE−ε)

= (H2 − 2εH + 1) + 4EεE−ε

= (H − ε)2 + 4EεE−ε .

HC = H(H − ε)2 + 4(HEε)E−ε

= (H − ε)2H + 4Eε((H + 2ε)E−ε)

= (H − ε)2H + 4EεE−ε(H + 2ε− 2ε)

= CH .
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CEε = (H − ε)2Eε + 4EεE−εEε

= Eε(H − ε+ 2ε)2 + 4EεE−εEε

= Eε((H + ε)2 + 4E−εEε)

= EεC . 2

The somewhat mysterious C = CV is the Casimir operator3 on V . It has its
uses.

(7.24). Proposition. In an irreducible weight module for sl2(K) every weight
vector v for λ is coherent.

Proof. If the sl2(K)-module V is irreducible, then by Schur’s Lemma (4.11)
the Casimir operator C acts as a scalar: there is a c ∈ K with Cv = cv for all v ∈
V . Let v be a weight vector in V , say, for the weight λ. As C = (H−ε)2+4EεE−ε,
we have EεE−ε = 1

4 (C − (H − ε)2). Thus

EεE−εv =
1

4
(C − (H − ε)2)v

=
1

4
(Cv − (H − ε)2v)

=
c− (λ− ε)2

4
v .

That is, v is a coherent weight vector for λ with λε = c−(λ−ε)2
4 . 2

(7.25). Corollary. Let V be an irreducible weight module for sl2(K) con-
taining the weight vector v for λ with EεE−εv = λεv. Then the Casimir operator
acts as scalar multiplication by 4λε + (λ− ε)2 . 2

The spectrum Spec(V ) of an sl2(K)-module V is the set of weights associated
with weight vectors in the module.

(7.26). Theorem. An irreducible weight module for sl2(K) is isomorphic to
one of the following:

(1) M0(m+ 1) for m ∈ N with spectrum [−m,m] ∩ (m+ 2Z);

(2) M+(λ) for λ /∈ N with spectrum λ− 2N;

(3) M−(λ) for −λ /∈ N with spectrum λ+ 2N;

(4) M(λ, λ+, λ−) with λ− = λ+ − λ and spectrum λ + 2Z, such that the poly-
nomial x2 − (λ− 1)x− λ+ ∈ K[x] has no integer roots.

3In other places one my find our Casimir operator C replaced by aC + b for constants
a, b ∈ K. This has no affect on its uses. We follow the convention of [Maz10], which gives the
nice renditions of Proposition (7.23)(a).
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All these modules are irreducible and every weight space has dimension 1.
No module from one case is isomorphic to a module from one of the other

cases. Within each of the first three cases, two modules are isomorphic if and
only if they have the same parameter. In the last case, M(λ, λ+, λ−) is isomor-
phic to M(µ, µ+, µ−) if and only if µ−λ ∈ 2Z and µ+−λ+ = 1

4 (λ−µ)(λ+µ−2).

Proof. By the previous proposition, an irreducible weight module V is
generated by a coherent weight vector. If the module is not isomorphic to some
M(λ, λ+, λ−) (as in the last case), then by Corollary (7.15) it is a quotient of a
Verma module Mε(λ) . By Theorem (7.20) the module V is then isomorphic to
one of the examples in the first three conclusions, all irreducible. In any event,
all weight spaces have dimension 1.

The various spectra are also clear, and show that no module from one case
is isomorphic to one from another case, nor can different parameters in any one
of the first three cases produce isomorphic modules.

It remains to decide under what circumstances M(λ, λ+, λ−) is irreducible
and when two such modules can be isomorphic.

By Corollaries (7.7) and (7.15)(a) the module M(λ, λ+, λ−) is irreducible if
and only if b(j) = j(λ − j − 1) + λ+ is nonzero for all j ∈ Z. This is the case
precisely when

x(λ− x− 1) + λ+ = −x2 + (λ− 1)x+ λ+ ∈ K[x]

has no integral roots.
Suppose that M(λ, λ+, λ−) and M(µ, µ+, µ−) are isomorphic. By spectral

considerations, we must have λ + 2Z = µ + 2Z. By symmetry we may assume
that µ = λ− 2i for some i ∈ N. In that case, isomorphism holds if and only if,
in terms of the transformation coefficients for M(λ, λ+, λ−), we have

µ+ = a+(i+ 1) = ((i+ 1)− 1)(λ− (i+ 1)) + λ+ = i(λ− i− 1) + λ+ .

As µ = λ−2i we have i = λ−µ
2 , so this becomes µ+−λ+ = 1

4 (λ−µ)(λ+µ−2),
as claimed. 2

If V is an irreducible module containing the (coherent) weight vector v for
λ with EεE−εv = λε, then the Casimir scalar is c = 4λε + (λ− ε)2 by Corollary
(7.25). For instance, for V = M0(m + 1) we have λ = m and λ− = 0 so that
c = 4(0) + (m+ 1)2 = (m+ 1)2.

This also allows effective relabelling of the irreducible modules M(λ, λ+, λ−).
Indeed this module can now be characterized by the two parameters λ + 2Z ∈
(K,+)/2Z and c (= 4λε + (λ− ε)2), two such irreducible modules being isomor-
phic if and only if they have the same parameter pair. (Exercise.) This is the
approach taken in [Maz10, Theorem 3.32]. The corresponding requirement for
irreducibility is that c 6= (µ+ 1)2 for all µ ∈ λ+ 2Z. (Exercise.)

7.4 Finite dimensional sl2(K)-modules

We have a second hidden use of the Casimir operator.
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(7.27). Theorem. (Weyl’s Theorem) Every finite dimensional sl2(K)-
module is completely reducible.

Proof. Equivalently, an extension V of a finite dimensional irreducible
sl2(K)-moduleW 'M0(m+1) by a second finite dimensional irreducible module
is always split. Consider

0 −→M0(m+ 1) −→ V −→M0(n+ 1) −→ 0 .

By passing to the dual of V , if necessary, we may assume m ≤ n. If m < n,
then the weight space Vn has dimension 1. But then (say, by Corollary (7.19)
and Theorem (7.20)), Vn generates a submodule U of V that is isomorphic to
M0(n + 1) and splits the extension as V = W ⊕ U . Therefore we may assume
m = n.

Each of the weight spaces Vk for k ∈ [−m,m] ∩ (m + 2Z) has dimension 2
with Vm = kerE+ and V−m = kerE−. By Lemma (7.3)(d) we have

Vm = Em+V = Em+V−m ,

with kerEm+ =
⊕m

i=−m+2 Vi and A = Em+ an invertible linear transformation
from V−m to Vm.

For C = CV , the Casimir operator, we calculate the map CA = AC from
V−m to Vm in two ways. For v ∈ V−m we first have

(CA)v = C(Av)

= ((H + 1)2 + 4E−E+)(Av)

= (H + 1)2(Av) ,

as Av ∈ Vm = kerE+. Similarly as v ∈ V−m = kerE−,

(AC)v = A(Cv)

= A((H − 1)2 + 4E+E−)v

= A(H − 1)2v

= Em+ (H − 1)2v

= (H − 1− 2m)2Em+ v by Lemma (7.3)(c)

= (H − 1− 2m)2(Av)

Therefore, from V−m to Vm, the map AC = CA is equal to

(H + 1)2A = (H − 1− 2m)2A .

Since A is a bijection from V−m to Vm, this says that, as a map from Vm to Vm,

0 = (H + 1)2 − (H − 1− 2m)2 = (4m+ 4)(H −m) .

We already knew that (H − m)2Vm = 0, because the weight space Vm has
dimension 2. Now we have learned that (H −m)Vm = 0, so Vm = V wm consists
entirely of weight vectors (and 0).
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Let u ∈ Vm \W . Then again by Corollary (7.19) and Theorem (7.20)), the
weight vector u generates a submodule U of V that is isomorphic to M0(m+ 1)
and splits the extension as V = W ⊕ U . 2

Weyl’s Theorem is valid for all finite dimensional semisimple algebras over
K, not just sl2(K). The proof uses the appropriate generalization of the current
Casimir operator.

From Theorem (7.26)(a) and Weyl’s Theorem (7.27) we immediately have:

(7.28). Theorem.

(a) The spectrum of a finite dimensional sl2(K)-module V has one of the fol-
lowing types:

(i) [−m,m] ∩ (m+ 2Z) for some m ∈ N;

(ii) ([−m,m] ∩ (m+ 2Z))∪([−n, n] ∩ (n+ 2Z)) for some even m and some
odd n from N.

In particular, V contains a sl2(K)-invariant Q-submodule VQ with V =
K⊗Q VQ.

(b) The number of composition factors, indeed irreducible summands, in a finite
dimensional sl2(K)-module V is dimK(V0) + dimK(V1). 2

7.5 Problems

(7.29). Problem. Let λ, λ+, λ− ∈ K with λ+ − λ− = λ. Set M?(λ, λ+, λ−) =⊕
i∈Z Kvi. Define the linear transformations H, E+, and E− on M?(λ, λ+, λ−) by

H(vi) = (λ− 2i)vi ;

E+(vi) = vi−1 ;

E−(vi) = b(i)vi+1 ,

for all i ∈ Z with b(i) = i(λ− i− 1) + λ+ (as in Corollary (7.7)).

(a) Prove that the maps
h 7→ H , e 7→ E+ , f 7→ E−

give M?(λ, λ+, λ−) the structure of an sl2(K)-module in which each weight space
has dimension 1.

(b) Prove that if the generalized Verma module M(λ, λ+, λ−) is irreducible, then it is
isomorphic to M?(λ, λ+, λ−).

(c) Prove that M0(m + 1) is never a quotient of M?(λ, λ+, λ−). In particular if the
generalized Verma module M(λ, λ+, λ−) is reducible, then it need not be isomorphic
to M?(λ, λ+, λ−).

Remark. The modules M?(λ, λ+, λ−) are those used in Mazorchuk’s excellent book
[Maz10, Chapter 3].

(7.30). Problem. CG decompose M0(m+ 1)⊗K M0(n+ 1).
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Chapter 8
Semisimple Lie algebras

We return to the classification of finite dimensional, semisimple Lie algebras
over algebraically closed fields of characteristic 0, begun in Section 6.2.

We recall some notation to be used throughout this chapter (except Section
8.2). Again L (6= 0) will be a finite dimensional, semisimple Lie algebra over the
algebraically closed field K of characteristic 0.

By Theorem (5.7) there is a Cartan subalgebra H in L, and H is abelian by
Theorem (6.8). By Proposition (5.8) we have H = LH,0 = L0, the zero weight
space. Let Φ be the set of all roots for H on L, a finite set by Theorem (5.10).

For each λ ∈ Φ, we have the weight space Lλ = LH,λ = Lwλ (by Theorem
(6.9)), giving the Cartan decomposition

L = H ⊕
⊕
λ∈Φ

Lλ .

Since L is nonzero and semisimple, the abelian Cartan subalgebra H = L0 is
proper in L, hence the root set Φ is nonempty.

The Killing form κ = κL = κL = κLL is nondegenerate by Cartan’s Semisim-
plicity Criterion (6.5). Furthermore the restriction of κ to abelian H is nonde-
generate by Proposition (6.7)(b). Thus for every linear functional µ ∈ H∗, and
especially for every root in Φ, there is a unique tµ ∈ H with κ(tµ, h) = µ(h) for
all h ∈ H.

Let EQ =
∑
α∈Φ Qα ≤ H∗. Define on H∗ (≥ EQ) the symmetric bilinear

form

(x, y) = κ(tx, ty) .

For the root α ∈ Φ, define hα = 2
κ(tα,tα) tα, possible by Proposition (6.10)(c).

Similarly for each α ∈ Φ, we let α∨ = 2
κ(tα,tα)α = 2

(α,α)α, the coroot correspond-

79
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ing to the root α. Then

µ(hα) = µ

(
2

κ(tα, tα)
tα

)
=

2

κ(tα, tα)
µ(tα)

=
2

κ(tα, tα)
κ(tµ, tα) =

2

κ(tα, tα)
(µ, α)

= (µ, α∨) .

8.1 Semisimple algebras II: Root systems

Our notation is that of the introduction to this chapter.
On page 51 we introduced α-strings. We return to the idea, now in a broader

context.

(8.1). Proposition. Let V ( 6= 0) be a finite dimensional L-module with weight
set ΦV (with respect to the Cartan subalgebra H). Let α ∈ Φ and µ ∈ ΦV .

(a) LαVµ ≤ Vµ+α and LwαV
w
µ ≤ V wµ+α with LwαV

w
µ 6= 0 if µ+ α ∈ Φ(V ).

(b) If Vµ 6= 0 then V wµ 6= 0, hence 0 6= V w ≤ V . In particular, if V is irreducible
then V = V w.

(c) There are s, t ∈ N with Vµ+kα 6= 0 if and only if k ∈ [−s, t].

(d) µ(hα) = (µ, α∨) = s− t ∈ Z.

(e) If (µ, α∨) < 0, then µ+ α ∈ ΦV .

(f) µ− (µ, α∨)α ∈ ΦV .

Proof. Part (a) is primarily an application of Theorem (5.11) in the semidi-
rect product T = L⊕V (as described in Example (4.15)(b)). We have Lα ≤ Tα
and Vµ ≤ Tµ, so

LαVµ = [Lα, Vµ] ≤ [Tα, Tµ] ≤ Tµ+α .

As V is an ideal of T , we further have LαVµ = [Lα, Vµ] ≤ Tµ+α ∩ V = Vµ+α.
Theorem (5.11) gives LwαV

w
µ ≤ V wµ+α in the same way. All that remains to be

shown from (a) is that LwαV
w
µ 6= 0 provided µ+ α ∈ Φ(V ), and that will follow

from arguments below.
If Vµ 6= 0 then, by standard linear algebra, the pairwise commuting endo-

morphisms h1, . . . , hl have a common nonzero eigenvector.1 Therefore if Vµ 6= 0
then V wµ 6= 0. By this and (a), V w is a nonzero submodule of V . Thus when V
is irreducible it is equal to V w. This gives (b).

By (b) from now on we may assume that Vµ+kα = V wµ+kα.
Following Theorem (6.11) we choose x ∈ Lα and y ∈ L−α with hα = [x, y]

and S = Khα⊕Kx⊕Ky a subalgebra of L isomorphic to sl2(K). The subspace

M =
∑
k∈Z

Vµ+kα

1Exercise: induction on l with l = 1 coming from Jordan Canonical Form.
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of V is then an S-module. For each k we have

(µ+ kα)(hα) = µ(hα) + kα(hα) = (µ, α∨) + 2k ,

so by Theorem (7.28)(a) we have (µ, α∨) ∈ Z and

Spec(M) = [−m,m] ∩ (m+ 2Z) = [−m,m] ∩ ((µ, α∨) + 2Z)

where m ∈ N satisfies

−m = (µ− sα)(hα) and m = (µ+ tα)(hα)

for appropriate s, t ∈ N. In particular Vµ+kα = Mµ+kα 6= 0 if and only if k ∈
[−s, t]. Especially when t > 0 we have 0 6= xMµ ≤ Mµ+α = Vµ+α (completing
(a)).

We solve
−(µ− sα)(hα) = (µ+ tα)(hα)

to find (µ, α∨) = µ(hα) = s−t. If (µ, α∨) is negative, then t > 0 and µ+α ∈ ΦV .
Finally

µ− (µ, α∨) = µ− (s− t)α = µ+ (−s+ t)α

with k = (−s+ t) ∈ [−s, t], so Vµ−(µ,α∨) 6= 0 and µ− (µ, α∨)α ∈ ΦM ⊆ ΦV . 2

We now view L as a finite dimensional module for itself and its various sl2(K)
subalgebras (found in Theorem (6.11)).

(8.2). Theorem.

(a) Let α, β ∈ Φ with β 6= ±α, and let β − sα, . . . , β, . . . , β + tα be the α-string
of roots through β. Then β(hα) = (β, α∨) = s− t ∈ Z.

(b) Let α, β, α+ β ∈ Φ. Then [Lα, Lβ ] = Lα+β.

(c) For α ∈ Φ we have dimK(Lα) = 1 and Φ ∩Kα = {±α} in H∗.

Proof. The first part follows immediately from the previous proposition
when we consider the adjoint action of L on itself. For the second part, Theorem
(5.11) and the proposition give 0 6= [Lα, Lβ ] ≤ Lα+β . Therefore once we have
proven in (c) that all Lα have dimension 1, parts (a) and (b) will be complete.

The final part effectively comes from taking α = µ in the proposition. As
before, Theorem (6.11) provides us with x ∈ Lα and y ∈ Lα with hα = [x, y]
and S = Khα ⊕Kx⊕Ky isomorphic to sl2(K).

Consider the subspace

N = Ky ⊕Khα ⊕
⊕
i∈Z+

Liα .

We claim that N is an S-module. By Proposition (6.10)(c) we have [x,Ky] =
Khα = [y, Lα]. To see that N is x-invariant we check

[x,Ky] = Khα , [x,Khα] ≤ Lα, and [x, L(i−1)α] ≤ Liα for i > 1 .
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Similarly N is a Ky-submodule as

[y,Ky] = 0 , [y,Khα] ≤ Ky , [y, Lα] = Khα , and L(i−1)α ≥ [y, Liα] for i > 1 .

Therefore N is an S-module. Its weights are

−α(hα) = −2 , 0(hα) = 0 , α(hα) = 2 ,

and
(iα)(hα) = 2i when i > 1 and Niα = Liα 6= 0 .

By Theorem (7.28)(a) we must have Niα = Liα = 0 for all i > 1. Furthermore
N0 = Khα has dimension 1, so by Theorem (7.28)(b) the module N is irreducible
and a copy of M0(3). (Indeed N = Ky ⊕ Khα ⊕ Kx = S, the adjoint module
with S acting on itself.) Especially the dimension of Lα = N2 is 1 for every
α ∈ Φ. 2

(8.3). Theorem.

(a) For α, β ∈ Φ we have (β, α) ∈ Q, (β, α∨) = 2(β,α)
(α,α) ∈ Z, and β − 2(β,α)

(α,α) α =

β − (β, α∨)α ∈ Φ.

(b) The form (·, ·) is positive definite on EQ.

(c) Any Q-basis of EQ is a K-basis of H∗.

Proof. (a) We apply Proposition (8.1)(c,e) with V = L and µ = β. This
gives (a) directly except for the claim that (β, α) ∈ Q.

For every γ ∈ EQ we have

(γ, γ) = κ(tγ , tγ) =
∑
β∈Φ

β(tγ)2

since always dimLβ is 1 (by the previous theorem). Especially for α ∈ Φ

0 < (α, α) =
∑
β∈Φ

β(tα)2 =
∑
β∈Φ

(β, α)2

hence
4

(α, α)
=
∑
β∈Φ

(
2(β, α)

(α, α)

)2

∈ Z+ .

Thus (α, α) ∈ Q and indeed

(β, α) =
(α, α)

2
· 2(β, α)

(α, α)
∈ Q .

(b) Let γ =
∑
α∈Φ γαα ∈ EQ with γα ∈ Q. Then, as above,

(γ, γ) =
∑
β∈Φ

β(tγ)2 =
∑
β∈Φ

(∑
α∈Φ

γαβ(tα)

)2

=
∑
β∈Φ

(∑
α∈Φ

γα(β, α)

)2

≥ 0 ,
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as it is a sum of rational squares by (a). Furthermore if (γ, γ) = 0 then β(tγ)
is 0 for all β ∈ Φ. That is, κ(tβ , tγ) = 0 for all β ∈ Φ. Since the tβ span H by
Proposition (6.10), this in turn gives tγ ∈ H ∩H⊥ = 0 (by Proposition (6.7)),
hence γ = 0.

(c) Let { bi | i ∈ I } be a Q-basis for EQ. As Φ ⊂ EQ, we have H∗ =∑
i∈I Kbi. Thus there is a subset J ⊆ I with { bj | j ∈ J } a K-basis of H∗.

Suppose h ∈ (
⊕

j∈J Qbj)⊥ ∩ EQ. Then H∗ =
⊕

j∈J Kbj ≤ h⊥. By
Proposition (6.7) and the definition of our form, it is nondegenerate on H∗;
so we must have h = 0. But now in nondegenerate (indeed, positive definite)

EQ =
⊕

i∈I Qbi we have
(⊕

j∈J Qbj
)⊥

= 0 for the finite dimensional subspace⊕
j∈J Qbj . We conclude that J = I and

⊕
j∈J Qbj = EQ. Thus its Q-basis

{ bi | i ∈ I } = { bj | j ∈ J } is a K-basis of H∗. 2

8.2 Classification of root systems

This section and its notation are independent of the rest of the chapter.
Let E be a finite dimensional Euclidean space, and let 0 6= v ∈ E. The linear

transformation

rv : x 7→ x− 2(x, v)

(v, v)
v

is the reflection with center v.

(8.4). Lemma. Let 0 6= v ∈ E.

(a) rv ∈ O(E), the orthogonal group of isometries of E.

(b) If g ∈ O(E) then rgv = rg(v).

(c) If Rvrx = Rv if and only if v ∈ Rx or (v, x) = 0. 2

(8.5). Definition. Let E be a finite dimensional real space equipped with a
Euclidean positive definite form (·, ·). Let Φ be a subset of E with the following
properties:

(i) 0 /∈ Φ and finite Φ spans E;

(ii) for each α ∈ Φ the reflection rα : x 7→ x− 2(x,α)
(α,α) α takes Φ to itself;

(iii) for any α ∈ Φ we have Rα ∩ Φ = {±α};

(iv) (Crystallographic Condition) for each α, β ∈ Φ we have 2(β,α)
(α,α) ∈ Z.

Then (E,Φ) is an abstract root system with the elements of Φ the roots. Its
rank is dimR(E).

The subgroup W(Φ) equal to 〈 rα | α ∈ Φ 〉 is the Weyl group of the system.
More generally, for any Σ ⊆ Φ, we let W(Σ) = 〈 rα | α ∈ Σ 〉.
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As before, for each α ∈ Φ the element α∨ = 2
(α,α)α is the corresponding

coroot. Then Φ∨ is itself an abstract root system with W(Φ∨) = W(Φ). (Exer-

cise.) The Crystallographic Condition takes the form: 2(β,α)
(α,α) = (β, α∨) ∈ Z .

The perpendicular direct sum of abstract root systems is still an abstract
root system. We say that (E,Φ) is irreducible if it is not possible to write E
as the direct sum of systems of smaller dimension. That is, we cannot have
E = E1 ⊥ E2, with each Ei spanned by nonempty Φi = Φ ∩ Ei.

We say that two abstract root systems (E,Φ) and (E′,Φ′) are equivalent root
systems if there is an invertible linear transformation ϕ from E to E′ taking
Φ to Φ′ and such that, for each α, β ∈ Φ we have (α, β∨) = (ϕ(α), ϕ(β)∨).
Equivalence does not change the Weyl group. Equivalence is slightly weaker
than isomorphism, where ϕ is an isometry of E and E′. Equivalence respects
irreducibility. Indeed every equivalence becomes an isomorphism after we rescale
each irreducible component of Φ′ by an appropriate constant. (Exercise.)

The motivation for the current section is:

(8.6). Theorem. Let L be a finite dimensional semisimple Lie algebra over
the algebraically closed field K of characteristic 0. For Φ = ΦL the set of roots
with respect to the Cartan subalgebra H, set EQ =

∑
α∈Φ Qα and EL = R⊗QEQ.

Then (EL,ΦL) is an abstract root system.

Proof. This follows by Theorem (8.2)(a) and Theorem (8.3). 2

We shall often abuse the terminology by talking of a root system rather than
an abstract root system. The more precise terminology is designed to distinguish
between an intrinsic root system (EL,ΦL), as in the theorem, and an extrinsic
root system—an abstract root system.

We may also abuse notation by saying that Φ is a root system, leaving the
enveloping Euclidean space E implicit.

Let v1, . . . , vn be a basis of E. We give the elements of E (and so Φ) the
lexicographic ordering :

(i) for 0 6= x =
∑n
i=1 xivi, we set 0 < x if and only if 0 < xj and

xi = 0 when i < j, for some 1 ≤ j ≤ n;

(ii) for x 6= y, we set y < x if and only if 0 < x− y;

(iii) for x 6= y, we set x > y if and only if y < x.

This gives us a partition of Φ into the positive roots Φ+ = {α ∈ Φ | 0 < α }
and the negative roots Φ− = {α ∈ Φ | 0 > α } = −Φ+. The positive root δ is
then a simple root or fundamental root if it is not possible to write δ as α + β
with α, β ∈ Φ+. We let ∆ = {δ1, . . . , δl} be the set of simple roots in Φ+.

(8.7). Theorem. Let (E,Φ) be a root system with ∆ = {δ1, . . . , δl} the set of
simple roots in Φ+.

(a) Φ+ = Φ ∩
∑l
i=1 Nδi.
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(b) For distinct α, β ∈ ∆ we have (α, β) ≤ 0.

(c) ∆ is a basis of E.

Proof. (a) The lexicographic ordering gives us a total order on Φ+, say
α1 < · · · < αk < · · · < αN where N = |Φ+|. We induct on the index k. If α,
β, and α+ β are all in Φ+, then α < α+ β > β. Especially α1 is simple. Now
consider αk. If it is simple, we are done. Otherwise αk = αi + αj with i, j < k.

By induction αi and αj are both in Φ ∩
∑l
i=1 Nδi, so αk is as well.

(b) Consider

(α, β∨)(β, α∨) =
4(α, β)2

(α, α)(β, β)
= 4 cos(θα,β)2 ∈ Z ,

where θα,β is the angle between the vectors α and β.
This must be one of 0, 1, 2, 3, 4 with 4 occurring only when α = −β. We

only need consider 1, 2, 3, so at least one of the integers (α, β∨) and (β, α∨) is
±1. Without loss, we may assume (α, β∨) is ±1.

Suppose (α, β∨) = 1, so that αrβ = α− (α, β∨)β = α− β is a root. If α− β
is positive, then α = β + (α − β) contradicts α ∈ ∆. If α − β is negative, then
β − α is a positive root and β = α + (β − α) contradicts β ∈ ∆. We conclude
that

−1 = (α, β∨) =
2(α, β)

(β, β)

and so (α, β) < 0.

(c) By (a) the set ∆ spans Φ+ hence Φ and so all E (by the definition
(8.5)(iii)). We must show it to be linearly independent.

Suppose
∑l
k=1 dkδk = 0 with dk ∈ R. We rewrite this as

x =
∑
i∈I

diδi =
∑
j∈J

d′jδj

where all di and d′j = −dj are nonnegative and {1, . . . , l} is the disjoint union
of I and J .

First

(x, x) =

(∑
i∈I

diδi,
∑
j∈J

d′jδj

)
=

∑
i∈I,j∈J

did
′
j(δi, δj) ≤ 0

by (b), so we must have x = 0. On the other hand, the definition of our ordering
tells us that if any of the nonnegative di for i ∈ I or d′j for j ∈ J are nonzero,
then x =

∑
i∈I diδi =

∑
j∈J d

′
jδj > 0. Therefore di = 0 for all i ∈ I and

d′j = dj = 0 for all j ∈ J . That is, ∆ is linearly independent. 2

(8.8). Corollary.

(a) Φ is the disjoint union of Φ+ and Φ− = −Φ+ where, for each ε = ±, each
sum of roots from Φε is either not a root or is a root in Φε.
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(b) For the set ∆ of simple roots in Φ+, every root α has a unique representation∑l
i=1 diδi where all the di are nonnegative integers when α is a positive root

and all the di are nonpositive integers when α is negative. 2

The set ∆ is the simple basis in Φ+ for Φ and E, uniquely determined by
Φ+, and l = n = dimE is the rank of the system. We also describe ∆ as an
obtuse basis since (α, β) ≤ 0 for distinct α, β ∈ ∆. If the root α has its unique

expression α =
∑l
i=1 diδi for integers di then the height of the root α is the

integer ht(α) =
∑l
i=1 di, positive for positive roots and negative for negative

roots.
In the root system (E,Φ) if Φ is the disjoint union of F+ and F− = −F+

where, for each ε = ±, each sum of roots from F ε is either not a root or is a root
in F ε, then we say that F+ is a positive system in (E,Φ). From the corollary,
the basic example is Φ+. We next see that, up to the action of W(Φ), this is
the only example.

(8.9). Proposition.

(a) For δ ∈ ∆, we have (Φ+ \ δ)rδ = Φ+ \ δ.

(b) Let F+ be a positive system and set ∆0 = F+ ∩ ∆. If δ ∈ ∆ \ ∆0 then
(F+)rδ is a positive system with (F+)rδ ∩∆ = {δ} ∪∆0.

(c) For every positive system F+ in (E,Φ) there is a w ∈W(Φ) with (F+)w =
Φ+.

(d) (Φ+)w = Φ− if w =
∏l
i=1 rδσ(i) for any permutation σ ∈ Sym(l).

Proof. Sketch: (a) comes from Theorem (8.7)(b). This then gives (b)
which in turn gives (c) (as ∆ ⊆ F+ implies Φ+ = F+) and (d). 2

Thus the set Φ+ of positive roots in Φ is determined uniquely up to the
action of the Weyl group. This in turn means that simple bases for Φ are all
equivalent up to the action of the Weyl group. Conversely, each simple basis
determines the Weyl group.

(8.10). Theorem. Let (E,Φ) be a root system and ∆ = {δ1, . . . , δl} a simple
basis in Φ+. Then W(Φ) = W(∆) is a finite group with every element of
{ rα | α ∈ Φ } conjugate to some element of { rδ | δ ∈ ∆ }.

Proof. The Weyl group W(Φ) permutes the finite set Φ and so induces a
finite group of permutations. This permutation group is a faithful representation
of W(Φ) since Φ spans E.

As αrα = −α and rgα = rαg (as in Lemma (8.4)(b)), it is enough to show
that for each α ∈ Φ+ there is an element w of W(∆) with αw ∈ ∆. We do this
by induction on the height ht(α). If ht(α) = 1, then α ∈ ∆ and there is nothing
to prove.

Assume ht(α) > 1. Let α =
∑l
i=1 diδi with di ∈ N by Theorem (8.7)(a). As

0 < (α, α) =

(
α,

l∑
i=1

diδi

)
=

l∑
i=1

di(α, δi)
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there is an j with dj > 0 and (α, δj) > 0 hence (α, δ∨j ) > 0. Without loss we
may take j = 1.

Since ht(α) > 1, by Definition (8.5)(iii) there must be a second index k 6= 1
with dk > 0. Then

αrδ1 = α− (α, δ∨1 )δ1

= (d1 − (α, δ∨1 ))δ1 +

l∑
i=2

diδi

Because dk > 0 the root αrδ1 remains positive, but since (α, δ∨1 ) > 0 its height
is less than that of α. Therefore, by induction there is a u ∈ W(∆) with
(αrδ1 )u ∈ ∆, hence αw ∈ ∆ for w = rδ1u ∈W(∆). 2

(8.11). Lemma. Let α and β be independent vectors in the Euclidean space
E. Then 〈rα, rβ〉 is a dihedral group in which the rotation rαrβ generates a nor-
mal subgroup of index 2 and order mα,β (possibly infinite) and the nonrotation
elements are all reflections of order 2. In particular, the group 〈rα, rβ〉 is finite,
of order 2mα,β, if and only if the 1-spaces spanned by α and β meet at the acute
angle π

mα,β
. 2

The Coxeter graph of the set of simple roots ∆ has ∆ as vertex set, with α
and β connected by a bond of strength mα,β − 2 where 〈rα, rβ〉 is dihedral of
order 2mα,β . In particular, distinct α and β are not connected if and only if
they commute. The Coxeter graph is irreducible if it is connected.

(8.12). Lemma. If Σ is an irreducible component of the Coxeter graph of ∆,
then E =

∑
σ∈Σ Rσ ⊥

∑
γ∈∆\Σ Rγ and

W(Φ) = W(∆) = W(Σ)⊕W(∆ \ Σ) = W(ΦΣ)⊕W(Φ∆\Σ)

where ΦΣ = ΣW(Φ) = ΣW(Σ) and Φ∆\Σ = (∆ \ Σ)W(Φ) = (∆ \ Σ)W(∆\Σ). Here
ΦΣ and Φ∆\Σ are perpendicular and have union Φ.

Proof. This is an immediate consequence of Lemmas (8.4) and (8.11) and
of Theorem (8.10). 2

We repeat Theorem B-(2.3) from Appendix B.

(8.13). Theorem. The Coxeter graph for an irreducible finite group generated
by the l distinct Euclidean reflections for an obtuse basis is one of the following:

Al

BCl

Dl
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E6

E7

E8

F4

H3

H4

I2(m)
m− 2

2

It is not at all clear which Coxeter graphs actually correspond to root sys-
tems. The last two properties of root systems play no role in the proof of the
previous theorem. We next see that only a few of the graphs I2(m) can actually
occur if the Coxeter graph comes from a root system.

(8.14). Proposition. Let α, β ∈ Φ with α 6= ±β. Then, up to order of α, β
and admissible rescaling, we have one of

(α, β∨)(β, α∨) cos(π/mα,β) mα,β (α, β∨) (β, α∨) (α, α) (β, β) (α, β)

0 0 2 0 0 ∗ 1 0
1 1

2 3 −1 −1 1 1 − 1
2

2
√

2
2 4 −2 −1 2 1 −1

3
√

3
2 6 −3 −1 3 1 − 3

2

Proof. For all α, β ∈ Φ we have

(α, β∨)(β, α∨) =
4(α, β)2

(α, α)(β, β)
= 4 cos

(
π

mα,β

)2

∈ Z .

This must be an integer factorization (α, β∨)(β, α∨) in the range 0 to 4. Indeed
4 could only happen for α = ±β, which has been excluded. Therefore we have
the four possibilities of the first column.

In the second column, we then have cos(π/mα,β) = 1
2

√
(α, β∨)(β, α∨), where

we are in the first quadrant since mα,β , the order of rαrβ , is at least 2. We then
have mα,β = π

arccos(c) , where c is the cosine value from the preceding column.
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We have not yet chosen order or scaling for α and β, and we do that in
the next two columns while choosing the factorization of (α, β∨)(β, α∨). If
necessary, we replace β by −β so that both (α, β∨) and (β, α∨) are nonpositive.

Next we rescale the pair α, β so that (β, β) = 1 always and note that

(α, β∨)

(β, α∨)
=

(α, α)

(β, β)
.

This gives us the next two columns of the table, although in the first line we
have no information about the squared length of α.

Finally as (β, β) = 1, we have

(α, β) =
1

2

(
2(α, β)

(β, β)

)
=

1

2
(α, β∨) . 2

The Dynkin diagram of ∆ is essentially a directed version of its Coxeter
graph. In accordance with the previous proposition, each two node subgraph
of the Coxeter graph is replaced with a new, possibly directed, edge in the the
Dynkin diagram. All A1 × A1 edges (that is, a nonedge) and A2 edges (single
bond) are left undisturbed. On the other hand

BC2 becomes B2 = C2 >>

Similarly

I2(6)
4

becomes G2 >>

The arrow (or “greater than”) sign on the edge is there to indicate that the root
at the tail (or “big”) end is longer than the root at the tip (“small”) end. Also
notice that G2 has three bonds rather than 4. This change in notation indicates
that the long root has squared length 3 times that of the short root, as in the
table of the proposition. Similarly in B2 = C2, the long root has squared length
equal to twice that of the short root. (The roots at the two ends of A2 have
equal length.)

By the proposition, in classifying Dynkin diagrams we need only consider
Coxeter graphs for which all mα,β come from 2, 3, 4, 6. In particular H3 and
H4 do not lead to root systems nor do the I2(m), except for A2 = I2(2), B2 =
C2 = I2(4), and G2 = I2(6). The need for both names B2 = C2 becomes clearer
when we combine the previous two results to find:

(8.15). Theorem. The Dynkin diagram for an irreducible abstract root system
of rank l is one of the following:

Al

Bl >>
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Cl <<

Dl

E6

E7

E8

F4 >>

G2 >>

2

It turns out that every Dynkin diagram in the theorem does come from a
(unique up to equivalence) root system. We will deal with this existence issue
in our discussion of existence of semisimple Lie algebras.

8.3 Semisimple algebras III: Uniqueness

We resume the notation of the introduction to the chapter. Additionally, in the
root system (EL,ΦL) = (E,Φ) we choose (as in the previous section) a partition
Φ = Φ+ ∪ Φ− associated with the simple basis ∆ = {δ1, . . . , δl}. The integers
(α, β∨) with α, β ∈ Φ are the Cartan integers. Then for the simple basis ∆
the Cartan matrix Cart(∆) of ∆ is the l× l integer matrix with (i, j) entry the
Cartan integer ci,j = (δi, δ

∨
j ). All diagonal entries are (δ, δ∨) = 2. The Cartan

matrix of ∆ is often called the Cartan matrix of L, although this terminology is
currently loose for us since we have not shown that all Cartan subalgebras are
equivalent (but see Corollary (8.36)).

(8.16). Theorem. Let L1 and L2 be finite dimensional semisimple Lie alge-
bras over the algebraically closed field K of characteristic 0. Then the following
are equivalent.

(1) L1 and L2 are isomorphic;

(2) the associated root systems (E1,Φ1) and (E2,Φ2) are equivalent;

(3) the associated simple bases ∆1 and ∆2 have isomorphic Dynkin diagrams;
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(4) the associated simple bases ∆1 and ∆2 have equivalent Cartan matrices;
that is, there is a permutation matrix P with Cart(∆2) = P Cart(∆1)P>.

It is reasonably clear that (3) and (4) are equivalent and both imply (2). On
the other hand (2) implies (3) and (4) by Proposition (8.9)(c).

That (1) implies (2) requires the result (already mentioned) that two Cartan
subalgebras are equivalent under an automorphism of L. We will prove this later
in Corollary (8.36), in an ad hoc and after-the-fact manner. See page 105 for
the ultimate proof of the theorem.

At present we will deal with the crucial (2) =⇒ (1) part of the theorem
above:

(8.17). Theorem. Let L and L′ be finite dimensional semisimple Lie algebras
over the algebraically closed field K of characteristic 0. Let the associated root
systems (E,Φ) and (E′,Φ′) be isomorphic. Then L and L′ are isomorphic.
Indeed the isomorphism of (E,Φ) and (E′,Φ′) extends to an isomorphism of L
and L′ that takes the Cartan subalgebra H associated with (E,Φ) to the Cartan
subalgebra H ′ associated with (E′,Φ′).

Before proving this, we point out an interesting and helpful corollary.

(8.18). Corollary. Any nontrivial automorphism of the Dynkin diagram of
semisimple L extends to a nontrivial automorphism of L. 2

Such automorphisms are usually referred to as graph automorphisms.

(8.19). Proposition. Let α ∈ Φ+. Then with k the height of α there are
αa ∈ ∆ for 1 ≤ a ≤ k with

b∑
a=1

αa ∈ Φ+ for each 1 ≤ b ≤ k and α =

k∑
a=1

αa .

Proof. The proof is by induction on k = ht(α). If k = 1, then α = α1 ∈ ∆,

and we are done. Assume k > 1. Let α =
∑l
i=1 diδi.

We have

0 < (α, α) =

l∑
i=1

di(α, δi) ,

so some (α, δj) is positive as is the integer (α, δ∨j ) . Without loss we may assume
j = 1.

The root

αrδ1 = α− (α, δ∨1 )δ1 = (d1 − (α, δ∨1 ))δ1 +

l∑
i=2

diδi

belongs to the δ1-string through α, as does α itself. By Theorem (8.2)

β = α− δ1 = (d1 − 1)δ1 +

l∑
i=2

diδi
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is also a root in that string and has height k − 1 > 0. Especially it is positive.
Therefore by induction there are βa ∈ ∆ for 1 ≤ a ≤ k − 1 with

b∑
a=1

βa ∈ Φ+ for each 1 ≤ b ≤ k − 1 and β =

k−1∑
a=1

βa .

As α = β + δ1, with αa = βa for 1 ≤ a ≤ k− 1 and αk = δ1, we have the result.
2

(8.20). Corollary. Let γ ∈ Φ−. Then with k the height of γ there are
γa ∈ −∆ for 1 ≤ a ≤ −k with

b∑
a=1

γa ∈ Φ− for each 1 ≤ b ≤ −k and γ =

−k∑
a=1

γa .

Proof. Set α = −γ and then γa = −αa. 2

Choose ei ∈ Lδi and e−i ∈ L−δi and set hi = [ei, e−i]. Do this in accordance
with Theorem (6.11) so that Si = Khi ⊕ Kei ⊕ Ke−i is isomorphic to sl2(K)
with the standard relations, which we record along with others in the next
proposition.

For δi, δj ∈ ∆ let ci,j = (δi, δ
∨
j ) be the associated Cartan integer.

(8.21). Proposition. The Lie algebra L is generated by the elements hi, ei, e−i
for 1 ≤ i ≤ l. We have the following relations in L:

(a) [hi, hj ] = 0 for all 1 ≤ i, j ≤ l;

(b) [hi, ej ] = cj,iej and [hi, e−j ] = −cj,ie−j for all 1 ≤ i, j ≤ l;

(c) [ei, e−i] = hi for all 1 ≤ i ≤ l;

(d) [ei, e−j ] = 0 for all i 6= j;

(e) ad1−cj,i
ei (ej) = 0 and ad1−cj,i

e−i (e−j) = 0 for 1 ≤ i, j ≤ l with i 6= j.

Proof. We have the Cartan decomposition

L = H ⊕
⊕
α∈Φ

Lα .

By Proposition (6.10) and Theorem (8.7)(c), the Lα have dimension 1 and the
hi generate H. By Theorem (5.11) always [Lα, Lβ ] ≤ Lα+β for α, β ∈ Φ. As all
the Lα have dimension 1, this is true with equality by Theorem (8.2). Therefore
by induction on the height of γ ∈ Φ and using the previous proposition and its
corollary, we find that Lγ is in the subalgebra generated by the various hi, ei, e−i.
That subalgebra is therefore L itself.

Parts (a) and (c) are part of the definitions for the generating set. Part (d)
holds as δi − δj is never a root for δi, δj ∈ ∆.
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For part (b) with ε = ±

[hi, eεj ] = δεj(hi)eεj = ε(δj , δ
∨
i )eεj = εcj,ieεj .

Finally in (e), for δi, δj ∈ ∆ the δi-string through δj is

δj , δj + δi , . . . , δj − (δj , δ
∨
i )δi

by Theorem (8.2). Noting that cj,i = c−j,−i, we have

ad1−cj,i
ei (ej) ∈ L(1−(δj ,δ∨i ))+δj = L(δj−(δj ,δ∨i ))+1 = 0 . 2

The following remarkable result gives uniqueness and existence at the same
time for Lie algebras over K and every abstract root system (E,Φ). We do not
prove this difficult theorem, but we do use its relations (from the proposition)
as the entry to our uniqueness proof for L.

(8.22). Theorem. (Serre’s Theorem) Let K be an algebraically closed field
of characteristic 0, and let C = (ci,j)i,j be the Cartan matrix of the abstract root
system (E,Φ). Then the generators and relations of Proposition (8.21) give a
presentation of a semisimple Lie algebra L over K with Cartan matrix C and
root system equivalent to (E,Φ). 22

Our uniqueness proof is motivated by that of [Eld15]. The basic observation
is that, with respect to the Cartan basis {hi, eα | 1 ≤ i ≤ l , α ∈ Φ }, most
of the adjoint actions are nearly monomial. We then show (starting as in the
proposition) that, for an appropriate choice of the basis vectors, the actual
multiplication coefficients are rational and depend somewhat canonically upon
the root system Φ.

An example is the following working lemma.

(8.23). Lemma. Let δ ∈ ∆ ∪ −∆ and β ∈ Φ with β 6= ±δ, and let β −
sδ, . . . , β, . . . , β+tδ be the δ-string of roots through β. Let Sδ = Khδ⊕Keδ⊕Ke−δ
be isomorphic to sl2(K) with the standard relations from Proposition (8.21).
Then for x ∈ Lβ we have [eδ, [e−δ, x]] = t(s+ 1)x.

Proof. In the notation of Chapter 7 (for instance Definition (7.16)), we may
take x = vi with i = t and λ = m = s+ t so that the coefficient i(λ− i+ 1) =
t(s+ t− t+ 1) = t(s+ 1). 2

We could rephrase this to say: there is a nonzero rational constant χ(δ, β)
depending only on δ and β with

ade−δ adeδ eβ = χ(δ, β)eβ .

This is the model for our uniqueness results below, in particular Theorem (8.25).

For each δ ∈ ∆ ∪ ∆, set aδ = adeδ . Consider words w = wk . . . w1 in the
alphabet

A = A+ ∪ A− for A+ = { aδ | δ ∈ ∆ } , A− = { aδ | δ ∈ −∆ }.
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If w = aδik · · · aδi1 , then we define ‖w‖ =
∑k
j=1 δij .

For each such word w we set

e(w) = wk · · ·w2 e(w1) ,

where we initialize with e(aδ) = eδ. Note that e(w) ∈ L‖w‖.
By Proposition (8.19) and its corollary, for every α ∈ Φε there is a word

w in the alphabet Aε with Ke(w) = Lα. Indeed it is possible to do this with
k = |ht(α)|. For each α, choose and fix one such word wα and set eα = e(wα).
If below we say that something “depends on α” we may actually mean that it
depends upon α and the fixed choice of representative word wα.

(8.24). Lemma. For each word w from the alphabet Aε there is a constant
χw ∈ Q with e(w) = χwe‖w‖.

Proof. Sketch: Let w = wkwk−1 · · ·w1 and set wk = aδ. Use Lemma
(8.23) and induction on k, with k = 1 being immediate. For δ, γ ∈ ε∆ always
−δ + γ /∈ Φ. Thus as endomorphisms a−δaγ = aγa−δ unless γ = δ. 2

(8.25). Theorem. We have L =
⊕l

i=1 Khi ⊕
⊕

α∈Φ Keα with

(i) [hi, hj ] = 0;

(ii) [hi, eα] = (α, δ∨i )eα;

(iii) [eα, eβ ] = χα,βeα+β, χα,β ∈ Q if α 6= −β;

(iv) [eα, e−α] =
∑l
j=1 χj,αhj, χj,α ∈ Q.

Here the constants χ? only depend upon the appropriate configuration (that is,
w(α), w(β), j) from the root system (EL,ΦL).

Proof. The first two are immediate. Now we consider the various [eα, eβ ],
which we verify by induction on min(|ht(α)|, |ht(β)|). As [eα, eβ ] = −[eβ , eα]
we may assume |ht(α)| ≤ |ht(β)|).

First suppose 1 = |ht(α)|; that is, α ∈ ε∆ (ε ∈ ±). If β = α then [eα, eβ ] =

0eα, and if β = −α ∈ −ε∆ then [eα, eβ ] = hα =
∑l
j=1 χj,αhj (with all but one

of the constants equal to 0). For β 6= ±α, we have [eα, eβ ] = e(w) for w = aαwβ ;
so [eα, eβ ] = χweα+β = χα,βeα+β by the lemma.

Now assume 1 < k = |ht(α)| ≤ | ht(β)|. Let wα = wkwk−1 · · ·w1, and set
wk = aδ and w = wk−1 · · ·w1( 6= ∅). Furthermore let γ = ‖w‖. Note that
1 ≤ |ht(γ)| < |ht(α)| ≤ |ht(β)|), and especially γ 6= −β 6= δ.

We calculate (using induction and the lemma)

[eα, eβ ] = [e(wα), eβ ]

= [[eδ, e(w)], eβ ]

= [eδ, [e(w), eβ ]]− [e(w), [eδ, eβ ]]

= χw([eδ, [eγ , eβ ]]− [eγ , [eδ, eβ ]])

= χw(χγ,β [eδ, eγ+β ]− χδ,β [eγ , eδ+β ]) .
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At this point, there are two cases to consider, depending upon whether or
not

α+ β = δ + γ + β = γ + δ + β

is equal to 0.
If α+ β 6= 0 then by induction

[eα, eβ ] = χw(χγ,β [eδ, eγ+β ]− χδ,β [eγ , eδ+β ])

= χw(χγ,βχδ,γ+βeδ+γ+β − χδ,βχγ,δ+βeγ+δ+β)

= χw(χγ,βχδ,γ+β − χδ,βχγ,δ+β)eγ+δ+β

= χα,β eα+β

where the rational constant

χα,β = χw(χγ,βχδ,γ+β − χδ,βχγ,δ+β)

depends only on α and β (and the associated wα = aδw with γ = ‖w‖).
If α+ β = 0 then −δ = γ + β and −γ = δ + β. By induction again

[eα, e−α] = [eα, eβ ]

= χw(χγ,β [eδ, eγ+β ]− χδ,β [eγ , eδ+β ])

= χw(χγ,−α[eδ, e−δ]− χδ,−α[eγ , e−γ ])

= χw

(
χγ,−α

( l∑
j=1

χj,δhj

)
− χδ,−α

( l∑
j=1

χj,γhj

))

= χw

l∑
j=1

(χγ,−αχj,δ − χδ,−αχj,γ)hj

=

l∑
j=1

χj,αhj ,

where the rational constants

χj,α = χw(χγ,−αχj,δ − χδ,−αχj,γ)

are entirely determined by j, α, and the associated wα = aδw with γ = ‖w‖. 2

Proof of Theorem (8.17).

The isomorphism between the root systems (E,Φ) and (E′,Φ′) gives rise (by
Proposition (8.9)(c)) to a map hi 7→ h′i (1 ≤ i ≤ l) and eα 7→ e′α′ (α ∈ Φ) that
by the theorem extends to an isomorphism of the Lie algebras L and L′. 2

8.4 Semisimple algebras IV: Existence

We have encountered various concepts of irreducibility. A reflection group is
irreducible if it acts irreducibly on its underlying space. A Coxeter graph or
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Dynkin diagram is irreducible if it is connected. A root system is irreducible
if it is not the perpendicular direct sum of two proper subsystems. A Cartan
matrix is irreducible if it cannot be written as a direct sum of two smaller Cartan
matrices.

In the context of interest to us, semisimple Lie algebras, all of these concepts
are equivalent.2 The philosophy is always that in a classification one should
easily reduce to the irreducible case. This remains true with our semisimple Lie
algebras.

(8.26). Theorem. A finite dimensional semisimple Lie algebra over the
algebraically closed field K is the perpendicular direct sum of its minimal ideals,
all simple Lie algebras.

A semisimple algebra is simple if and only if its Dynkin diagram is irre-
ducible, and the simple summands of the previous paragraph are in bijection
with with irreducible components of the Dynkin diagram of the algebra.

Proof. The first paragraph is essentially a restatement of Theorem (6.6).
Let I be an ideal of the semisimple Lie algebra L. As the Cartan subalgebra

H is diagonal in its adjoint action on L (by Theorem (8.2)), the ideal I is the
direct sum of its intersection H ∩ I and the Lλ for λ in some subset ΛI of Φ.
Furthermore, as L is generated as an algebra by the Lδ for δ ∈ ∆, we must have
∆I = ΛI ∩∆ nonempty.

By Theorem (6.6) there is an ideal J with L = I⊕J . If δ ∈ ∆I and γ ∈ ∆J ,
then

[Lδ, Lγ ] ≤ Lδ+γ ≤ I ∩ J = 0 .

Therefore [Lδ, Lγ ] = 0, so δ + γ /∈ Φ by Theorem (8.2). Thus δ and γ are not
connected in the Dynkin diagram of ∆ by Proposition (8.14). That is, ∆I is a
union of irreducible components of ∆.

Conversely, suppose that Σ is an irreducible component of ∆ and hence of
the corresponding Coxeter graph. Then by Lemma (8.12) the root system Φ is
the union of the perpendicular subsystems ΦΣ = Φ∩

⊕
σ∈Σ Zσ and Φ∆\Σ = Φ∩⊕

δ∈∆\Σ Zδ. Therefore ΦΣ is the root system for the subalgebra LΣ generated
by the Lσ for σ ∈ ±Σ, an ideal of L.

We have now shown that ideals come from disjoint unions of irreducible
components of ∆ and that irreducible subdiagrams correspond to (“span”) ideals
perpendicular to all others. In particular, the simple ideals are in bijection with
the irreducible components of the Dynkin diagram. 2

(8.27). Example. Let L = sll+1(K), the Lie algebra of trace 0 matrices in
Matl+1(K) for l ∈ Z+.

(a) L is simple of type al(K) and dimension l2 + 2l.

(b) All Cartan subalgebras have rank l and are conjugate under SLl+1(K) ≤
Aut(L) to H, the abelian and dimension l subalgebra of all diagonal matrices
with trace 0.

2Luckily.
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(c) The H-root spaces are the various Kei,j for 1 ≤ i 6= j ≤ l + 1 with corre-
sponding root εi − εj in the Euclidean space Rl+1 ∩ 1⊥ ' Rl.

(d) The simple roots of ∆ are δi = εi − εi+1 = δ∨i for 1 ≤ i ≤ l, and so the
Dynkin diagram is Al.

(e) The Weyl reflection rεi−εj induces on Rl ≤ Rl+1 the permutation (i, j) of
the Weyl group W(Al) ' Sym(l + 1).

Proof. (a) The dimension is (l + 1)2 − 1, as the only restriction is on the
trace. Indeed, at least as vector space L is H ⊕

⊕
i 6=j Kei,j . The rest of this

part then follows from (d) and Theorem (8.26).

(b) L is irreducible on the natural module V = Kl+1 (for instance, because
the range of ei,j is the basis subspace Kei). Therefore by Theorem (8.2)(c) we
have V = V w, which is to say that every Cartan subalgebra C of L can be
diagonalized. Thus there is a g ∈ GLl+1(K) and indeed in SLl+1(K) (as l ≥ 1)
with the Cartan subalgebra Cg in H. But a self-normalizing subalgebra of L
within abelian H must be H itself, so H is a Cartan subalgebra and Cg = H.

(c) If h = diag(h1, . . . , hl+1) ∈ H, then [h, ei,j ] = (hi − hj)ei,j . Therefore
Kei,j is a root space Lα. When we let the canonical basis of V ∗ = Rl+1 be
εi, . . . , εl+1, we find α(h) = (εi− εj)(h); that is, α = εi− εj from the Euclidean
l-space Rl+1 ∩ 1⊥.

(d) The lexicographic order induced by ε1 > ε2 > · · · > εl+1 yields the
simple base ∆ described. Note that all roots α have α∨ = α. If i < j then
(δi, δ

∨
j ) is 0 unless j = i+ 1 where it is −1. Thus the Dynkin diagram of ∆ and

L is Al.

(e) For 1 ≤ k ≤ l + 1

rεi−εj (εk) = εk − (εk, (εi − εj)∨)(εi − εj)
= εk − (εk, εi − εj)(εi − εj) .

Thus rεi−εj (εk) = εk if k /∈ {i, j} while rεi−εj (εi) = εj and rεi−εj (εj) = εi. That
is, rεi−εj induces the 2-cycle (εi, εj) on the set {ε1, . . . , εl+1}. These generate
the symmetric group. 2

(8.28). Theorem. Let L be one of the Lie algebras so2l(K) with (n, η) =
(2l,+1) or sp2l(K) with (n, η) = (2l,−1) or so2l+1(K) with (n, η) = (2l+1,+1).
Set V = Kn to be the natural module for L. Let C be a Cartan subalgebra for L.
Then, in its action on V , L has a basis of C-weight vectors with Gram matrix

in split form as the 2l × 2l matrix with l blocks

(
0 1
η 0

)
down the diagonal

when n = 2l is even, and this same matrix with an additional single 1 on the
diagonal when n = 2l + 1 is odd.

Proof. In all cases L is irreducible on V , so by Theorem (8.2)(c) we have
V = V w for all choices of Cartan subalgebra C.



98 CHAPTER 8. SEMISIMPLE LIE ALGEBRAS

Let b be the nondegenerate (Id, η)-form on V for η = ±1 with L equal to
those x ∈ EndK(V ) ' Matn(K) with

b(xv,w) = −b(v, xw)

for all v, w ∈ V . Let v ∈ VC,λ, and w ∈ VC,µ. Then for all h ∈ C

λ(h)b(v, w) = b(hv,w) = −b(v, hw) = −µ(h)b(v, w) .

That is, (λ+µ)(h) b(v, w) is identically 0 for h ∈ C. In particular, if λ 6= −µ then
b(v, w) = 0 and VC,λ and VC,µ are perpendicular. The space V is nondegenerate,
so for all weights λ of C on V we must (VC,λ, VC,−λ) 6= 0.

Let λ 6= 0, and choose 0 6= v ∈ VC,λ. As v /∈ Rad(V, b) there is a w ∈ VC,−λ
with b(v, w) 6= 0. We have b(v, v) = 0 = b(w,w) (as λ 6= −λ). Therefore we
may rescale one of the pair {v, w} so that the Gram matrix of the nondegenerate

2-space W = Kv ⊕ Kw has the stated form

(
0 1
η 0

)
. As C leaves W = W1

invariant, it also acts on V1 = W⊥. Continuing in this fashion we leave V written
as a perpendicular direct sum W1 ⊕W2 ⊕ · · ·Wm ⊕ V0 where the basis {vi, wi}
of Wi consists of λi- and −λi-weight vectors for λi 6= 0 and V0 is the 0-weight
space, nondegenerate if nonzero. If V0 has dimension 0, then m = l, n = 2l, and
we are done. If V0 = Kv has dimension 1, then m = l, and n = 2l + 1. As b is
nondegenerate and K is algebraically closed, we may rescale to b(v, v) = 1, and
again we are done.

If dimK(V0) ≥ 2, then for any nondegenerate 2-space W0 of V0, by Lemma
A-(1.4) (of Appendix A) there is again a basis {v0, w0} of weight vectors in W0

with the same Gram matrix

(
0 1
η 0

)
. We continue in this fashion within W⊥0

until we exhaust V0 (n = 2l) or reach a subspace of dimension 1 (n = 2l + 1),
and we are done. 2

(8.29). Examples. For η ∈ {±} = {±1}, let the K-space V = Vη = K2l have
basis { ei, e−i | 1 ≤ i ≤ l } and be is equipped with the split (Id, η)-form b = bη
given by

b(ei, e−i) = 1 , b(e−i, ei) = η , otherwise b(ea, eb) = 0 .

The Lie algebra L = Lη is then composed of all x ∈ EndK(V ) ' Mat2l(K) with

bη(xv,w) = −bη(v, xw)

for all v, w ∈ V . Thus L+ is the orthogonal Lie algebra so2l(K), and L− is the
symplectic Lie algebra sp2l(K)

(i) so2l(K): orthogonal case η = +1.

(a) The algebra L+ = so2l(K) is simple of type dl(K) and dimension 2l2−l.
(b) All Cartan subalgebras have rank l and are conjugate under Aut(so2l(K))

to H, the abelian and dimension l subalgebra of all diagonal matrices
with basis ei,i − e−i,−i for 1 ≤ i ≤ l.
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(c) For h =
∑l
k=1 hk(ek,k−e−k,−k) ∈ H we let εk : h 7→ hk give the chosen

basis for H∗ ' Rl. The H-root spaces are spanned by the following
weight vectors and have the corresponding roots:

Vector Root
ei,j − e−j,−i εi − εj
e−i,−j − ej,i −(εi − εj)
ei,−j − ej,−i εi + εj
e−i,j − e−j,i −(εi + εj)

(d) The simple roots of ∆ are δi = εi − εi+1 = δ∨i for 1 ≤ i ≤ l − 1 and
δl = εl−1 + εl = δ∨l , and so the Dynkin diagram is Dl.

(e) The Weyl reflection rεi−εi+1
induces on Rl the permutation (i, i + 1)

while rεl−1+εl fixes εk for k < l − 1 but has rεl−1+εl(εl−1) = −εl and
rεl−1+εl(εl−1) = −εl. So the Weyl group W(Dl) is 2l−1: Sym(l).

(ii) sp2l(K): symplectic case η = −1.

(a) The algebra L− = sp2l(K) is simple of type cl(K) and dimension 2l2+l.

(b) All Cartan subalgebras have rank l and are conjugate under Aut(sp2l(K))
to H, the abelian and dimension l subalgebra of all diagonal matrices
with basis ei,i − e−i,−i for 1 ≤ i ≤ l.

(c) For h =
∑l
k=1 hk(ek,k − e−k,−k) ∈ H we let εk : h 7→ hk give the

chosen basis for H∗. The H-root spaces are spanned by the following
weight vectors and have the corresponding roots:

Vector Root
ei,j − e−j,−i εi − εj
e−i,−j − ej,i −(εi − εj)
ei,−j + ej,−i εi + εj
e−i,j + e−j,i −(εi + εj)

ei,−i 2εi
e−i,i −2εi

(d) The simple roots of ∆ are δi = εi − εi+1 = δ∨i for 1 ≤ i ≤ l − 1 and
δl = 2εl (with δ∨l = εl), and so the Dynkin diagram is Cl.

(e) The Weyl reflection rεi−εi+1
induces on Rl the permutation (i, i + 1)

while r2εl is the diagonal reflection taking εl to −εl. So the Weyl group
W(Cl) is 2l: Sym(l).

Proof. (a) It is helpful to consider the 2l× 2l matrices of Mat2l(K) as l× l

matrices whose entries are the various 2 × 2 submatrices

(
ai,j bi,−j
b−i,j a−i,−j

)
.

The requirements for such a matrix to be in Lη are then(
ai,j bi,−j
b−i,j a−i,−j

)(
0 1
η 0

)
= −

(
0 1
η 0

)(
aj,i b−j,i
bj,−i a−j,−i

)
,
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which is to say then(
ηbi,−j ai,j
ηa−i,−j b−i,j

)
=

(
−bj,−i −a−j,−i
−ηaj,i −ηb−j,i

)
.

Thus

ηbi,−j = −bj,−i
ai,j = −a−j,−i

ηa−i,−j = −ηaj,i
b−i,j = −ηb−j,i .

We rewrite and view these as four separate equations subject to the restriction
1 ≤ i ≤ j ≤ l:

ai,j = −a−j,−i
a−i,−j = −aj,i
bi,−j = −ηbj,−i
b−i,j = −ηb−j,i .

Thus the matrices of Lη can have anything above the diagonal 2 × 2 blocks
(where i < j), these entries determining those below the diagonal blocks. This
contributes 4(l(l−1)/2) = 2l2−2l to the dimension, the relevant basis elements
being, for 1 ≤ i < j ≤ l,

ei,j − e−j,−i , e−i,−j − ej,i , ei,−j − ηej,−i , e−i,j − ηe−j,i .

In the diagonal blocks i = j we must have

ai,i = −a−i,−i
a−i,−i = −ai,i
bi,−i = −ηbi,−i
b−i,i = −ηb−i,i .

The first two equations are equivalent and contribute l to the overall dimension,
the corresponding basis elements being ei,i− e−i,−i for 1 ≤ i ≤ l. In the second
two equations, if η = +1 there are no nonzero solutions (as K has characteristic
0), while if η = −1 the equations are trivially valid and so contribute a full 2l
to the dimension, the basis elements being ei,−i and e−i,i for 1 ≤ i ≤ l.

Therefore
dimK(L+) = (2l2 − 2l) + l = 2l2 − l

and
dimK(L−) = (2l2 − 2l) + l + 2l = 2l2 + l .

The rest of (a) then will follow from (d) and Theorem (8.26).

(b) The calculations of (a) reveal Lη to be irreducible on V , so by Theorem
(8.28) any Cartan subalgebra is conjugate under Aut(Lη) into the diagonal



8.4. SEMISIMPLE ALGEBRAS IV: EXISTENCE 101

subalgebra of the algebra. But this diagonal subalgebra is abelian, so the self-
normalizing Cartan subalgebra within it must be the whole diagonal subalgebra.
As we saw under (a) it has basis ei,i − e−i,i for 1 ≤ i ≤ l.

(c) The basis we described under (a) turns out (unsurprisingly) to be a basis
of weight vectors. For instance:[ l∑
k=1

hk(ek,k − e−k,−k) , ei,−j − ηej,−i
]

=

l∑
k=1

hk[ek,k − e−k,−k , ei,−j − ηej,−i]

=

l∑
k=1

hk((ek,k − e−k,−k)(ei,−j − ηej,−i)− (ei,−j − ηej,−i)(ek,k − e−k,−k))

=
l∑

k=1

hk((ek,kei,−j − ek,kηej,−i)− (−ei,−je−k,−k + ηej,−ie−k,−k))

= (hiei,−j − hjηej,−i)− (−hjei,−j + ηhiej,−i)

= (hi + hj)ei,−j − (hi + hj)ηej,−i

= (hi + hj)(ei,−j − ηej,−i) .

Therefore ei,−j − ηej,−i is a weight vector for the root εi + εj .
The other entries in the tables follow by similar calculations. For instance:[ l∑

k=1

hk(ek,k − e−k,−k) , e−i,i

]
=

l∑
k=1

hk[ek,k − e−k,−k , e−i,i]

=

l∑
k=1

hk(ek,ke−i,i − e−k,−ke−i,i − e−i,iek,k + e−i,ie−k,−k)

= −hie−i,−ie−i,i − hie−i,iei,i
= −2hie−i,i .

Thus in the symplectic (η = −1) case e−i,i is a weight vector for the root −2εi.

(d) Lexicographic order is induced by ε1 > ε2 > · · · > εl. The simple roots
are then evident. Note that in the symplectic case εl−1 + εl remains a positive
root, but it is no longer simple as εl−1 + εl = (εl−1 − εl) + 2εl.

(e) The reflections in εi − εj were calculated under Example (8.27)(e), and
the reflection in 2εl is clear. All that needs checking is

rεl−1+εl(εl−1) = εl−1−(εl−1, εl−1 +εl)(εl−1 +εl) = εl−1−(εl−1 +εl) = −εl . 2

(8.30). Example. Let the K-space V = Vη = K2l+1 have the basis { e0, ei, e−i |
1 ≤ i ≤ l } and be equipped with the split orthogonal form b given by

b(e0, e0) = 1 , b(ei, e−i) = b(e−i, ei) = 1 , otherwise b(ea, eb) = 0 .

The Lie algebra L is the orthogonal Lie algebra so2l+1(K), composed of all x ∈
EndK(V ) ' Mat2l+1(K) with

b(xv,w) = −b(v, xw)
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for all v, w ∈ V .

(a) The algebra L = so2l+1(K) is simple of type bl(K) and dimension 2l2 + l.

(b) All Cartan subalgebras have rank l and are conjugate under Aut(so2l+1(K))
to H, the abelian and dimension l subalgebra of all diagonal matrices with
basis ei,i − e−i,−i for 1 ≤ i ≤ l.

(c) For h =
∑l
k=1 hk(ek,k − e−k,−k) ∈ H we let εk : h 7→ hk give the chosen

basis for H∗. The H-root spaces are spanned by the following weight vectors
and have the corresponding roots:

Vector Root
ei,j − e−j,−i εi − εj
e−i,−j − ej,i −(εi − εj)
ei,−j + ej,−i εi + εj
e−i,j + e−j,i −(εi + εj)
ei,0 − e0,−i εi
e−i,0 − e0,i −εi

(d) The simple roots of ∆ are δi = εi − εi+1 = δ∨i for 1 ≤ i ≤ l − 1 and δl = εl
(with δ∨l = 2εl) and so the Dynkin diagram is Bl.

(e) The Weyl reflection rεi−εi+1
induces on Rl the permutation (i, i + 1) while

rεl is the diagonal reflection taking εl to −εl. So the Weyl group W(Bl) is
2l: Sym(l).

Proof. As the Gram matrices indicate, the algebra so2l+1(K) can be
thought of as an extension of so2l(K). As such, most of the arguments from
the previous example (case η = +1) are valid here. Furthermore the ultimate
similarity of the root systems means that the symplectic case η = −1 of the
previous example is also relevant here. (Perhaps all three algebras should be
handled at once.)

(a) We think of the Gram matrix G2l+1 as the Gram matrix G2l for so2l(K)
with a new row and column indexed 0, corresponding to the basis element e0 of
V = K2l+1, the diagonal entry being b(e0, e0) = 1 and all other entries in the
new row and column being 0. Then MG2l+1 = −G2l+1M

> if and only if

(1) M0,0 = 0;

(2) the rest of row M0,∗ contains any vector v ∈ K2l;

(3) the rest of column M∗,0 contains −vG2l;

(4) deleting row 0 and column 0 from M leaves a matrix of so2l(K), as described
in Example (8.29)(i).
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Thus a basis for L is that for so2l(K) from Example (8.29)(i), supplemented with
the 2l elements ei,0− e0,−i and e−i,0− e0,i. The dimension is then 2l2− l+ 2l =
2l2 + l. The rest of (a) will then follow from (d) and Theorem (8.26) as before.

(b) Again by Theorem (8.28) a Cartan subalgebra is conjugate under Aut(L)
into and then to the abelian diagonal subalgebra of the algebra, which remains
the rank l space with basis ei,i − e−i,−i for 1 ≤ i ≤ l.

(c) The weight vectors and roots for the subalgebra so2l(K) are unchanged.
We must additionally calculate:[ l∑

k=1

hk(ek,k − e−k,−k) , ei,0 − e0,−i

]
=

l∑
k=1

hk[ek,k − e−k,−k , ei,0 − e0,−i]

=
l∑

k=1

hk(ek,kei,0 − e0,−ie−k,−k)

= hiei,0 − hie0,−i

= hi(ei,0 − e0,−i) .

Parts (d) and (e) follow, as in Example (8.29)(ii). 2

In the classical examples above we have seen the following useful observation
in action.

(8.31). Theorem. If (EL,ΦL) has rank l, then dimK(L) = l + |Φ|. 2

For instance, a Lie algebra of type g2 must have dimension 2 + 12 = 14.

(8.32). Theorem. The Lie algebra d4(K) has a graph automorphism of order
3. Its fixed points contain a Lie algebra of type g2(K). Especially g2(K) of
dimension 14 exists.

Proof. Sketch: The circular symmetry of the Dynkin diagram D4 shows,
with Corollary (8.18), that L = d4(K) has an automorphism of order 3. Its fixed
point algebra M contains a proper sl2(K) subalgebra corresponding to the cen-
tral node of the diagram, so M has a nontrivial semisimple section of dimension
greater than three and less than 28 = dimK(L). There are few possibilities, and
in the end it must be g2(K). This should be verified by examination of the ac-
tion of the element of order three and in particular its fixed weights α1 = ε2−ε3

and
α2 = (ε1 − ε2) + (ε3 − ε4) + (ε3 + ε4) = ε1 − ε2 + 2ε3 ,

which form a simple basis for a root system of type G2 in R3 ∩ (−1, 1, 1)⊥. 2

(8.33). Proposition.

(a) If e8(K) exists, then it has a proper subalgebra e7(K).

(b) If e7(K) exists, then it has a proper subalgebra e6(K).

(c) If e6(K) exists, then it has a proper subalgebra f4(K).
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Proof. The first two parts are clear from the Dynkin diagram.
Sketch: The last part follows as the Dynkin diagram E6 has an automor-

phism of order 2 which by Corollary (8.18) extends to an automorphism of
e6(K). Its fixed point subalgebra contains a subalgebra f4(K). (Compare with
Theorem (8.32).) 2

We leave unproven:

(8.34). Theorem.

(a) The Lie algebra e8(K) exists and has dimension 248.

(b) The Lie algebras e7(K), e6(K), and f4(K) have respective dimensions 133,
78, and 52. 22

8.5 Semisimple algebras V: Classification

We now can prove almost all of:

(8.35). Theorem. (Classification of semisimple Lie algebras) Let L
be a finite dimensional semisimple Lie algebra over the algebraically closed field
K of characteristic 0. Then L can be expressed uniquely as a direct sum of
simple subalgebras. Each simple subalgebra is isomorphic to exactly one of the
following, where in each case the rank is l:

(a) al(K) ' sll+1(K), for rank l ≥ 1, of dimension l2 + 2l;

(b) bl(K) ' so2l+1(K), for rank l ≥ 3, of dimension 2l2 + l;

(c) cl(K) ' sp2l(K), for rank l ≥ 2, of dimension 2l2 + l;

(d) dl(K) ' so2l(K), for rank l ≥ 4, of dimension 2l2 − l;

(e) e6(K) of rank l = 6 and dimension 78;

(f) e7(K) of rank l = 7 and dimension 133;

(g) e8(K) of rank l = 8 and dimension 248;

(h) f4(K) of rank l = 4 and dimension 52;

(i) g2(K) of rank l = 2 and dimension 14.

None of these simple algebras is isomorphic to one from another case or to any
other algebra from the same case. All exist.

Proof. A simple algebra must be of one of these eight types by Theorems
(8.15) and (8.26). (The rank restrictions in the first four classic cases are made
to avoid diagram duplication such as B2 = C2 and A3 = D3). In each case there
is, up to isomorphism, at most one example by Theorem (8.17).
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In the four classical cases, each exists by Examples (8.27), (8.29), and (8.30)
with the given rank and dimension. These results also show that no algebra
from any one classical case is isomorphic to any other from its own case (by
dimension considerations) or from any other case, since all Cartan subalgebras
are conjugate under the corresponding automorphism groups.

The rank 2 algebra g2(K) exists and has dimension 14 by Theorem (8.32).
Leaving aside existence and dimension for the moment, the exceptional alge-

bras e8(K), e7(K), e6(K), and f4(K) all (if they exist) have different dimensions
and so can not in any case be isomorphic to each other by Proposition (8.33).
Furthermore, none is isomorphic to a classical algebra (as mentioned above) or
to g2(K) of dimension 14, since the smallest, namely f4(K), contains two disjoint
subalgebras sl3(K) = a2(K) and so has dimension at least 8 + 8 = 16.

The actual existence and dimensions for the algebras e8(K), e7(K), e6(K),
and f4(K) are contained in (our only unproven result) Theorem (8.34). 2

As mentioned in the proof, the only parts of the theorem that we have not
proven are those from Theorem (8.34). For the following corollary that theorem
is not necessary as Proposition (8.33) suffices.

(8.36). Corollary. Let L be a finite dimensional semisimple Lie algebra over
the algebraically closed field K of characteristic 0. Then all Cartan subalgebras
of L are conjugate under the action of Aut(L).

Proof. By Theorem (8.17) if two Cartan subalgebras of semisimple L
give rise to isomorphic root systems, then the subalgebras are conjugate under
Aut(L). Therefore if L contains two nonconjugate Cartan subalgebras, this
must arise from one of the simple algebras in the theorem being isomorphic to
another simple algebra with a different root system and hence in a different
case. But, as the theorem states, this does not happen. 2

Proof of Theorem (8.16).
Directly after the statement of the theorem we observed that its parts (2),

(3), and (4) are equivalent. Theorem (8.17) was then devoted to proving that
(2) implies (1). Now that we know that all Cartan subalgebras are conjugate via
an automorphism, we cannot have two isomorphic algebras with nonisomorphic
root systems; that is, (1) implies (2). 2

8.6 Problems

(8.37). Problem. Prove: Φ∨ is a root system with simple basis ∆∨ and W(Φ∨) =
W(Φ).

(8.38). Problem. We may consider α-strings in the more general context of abstract
root systems (E,Φ). Let α and β ( 6= ±α) be roots in Φ. Prove that the integers k
for which β + kα is a root are those from an interval [−s, t] with s, t ∈ N and that
(β, α∨) = s− t.

Remark. Compare this with Theorem (8.2).
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(8.39). Problem. Totally positive word or totally negative word is the same as
minimal word.

(8.40). Problem. Highest root. Φ+ −→ Φ−.



Chapter 9
Representations of semisimple
algebras

Again L ( 6= 0) will be a finite dimensional, semisimple Lie algebra over the
algebraically closed field K of characteristic 0. Now we study the representation
theory of L. We take our lead from Chapter 7 by looking at properties satisfied
by finite dimensional irreducible modules and then studying cyclic modules that
are not necessarily finite dimensional or irreducible but do possess some of those
properties.

Starting in Section 9.2 we continue the notation and terminology detailed in
the introduction to Chapter 8.

9.1 Universal enveloping algebras

In Section 4.2 we introduced representation of Lie algebras in extrinsic and
intrinsic form. Starting from that we introduce another point of view.

Let V be an E-space V . For f ∈ N, let V ⊗f be the f th tensor power of
the module V (with V ⊗0 = K). The tensor algebra T(V ) is the associative
E-algebra

T(V ) =
⊕
n∈N

V ⊗n

with multiplication determined by the linear extension of

µ(v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wm) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wm .

If V happens to be the Lie algebra M over E, then its universal enveloping
algebra U(M) is the quotient T(M)/I where I is the ideal in T(M) generated
by all the elements x⊗ y − y ⊗ x− [x, y]1 for x, y ∈M . The construction gives
us a natural representation υM : M −→ U(M)−. Especially U(M)-modules are

107
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M -modules. This correspondence is readily seen to be universal in at least two
senses.

(9.1). Theorem.

(a) If ϕ : M −→ End−E (V ) is a representation of M , then there is a unique
associative algebra morphism ϕV : U(M) −→ EndE(V ) with ϕ = ϕV υM .

(b) The two module categories MMod and U(M)Mod are isomorphic. 2

One advantage is immediate. For associative algebras A, every cyclic A-
module is a quotient of AA. As irreducible modules are always cyclic, every
cyclic and irreducible M - and U(M)-module is a quotient of U(M). This is an
improvement. For instance in Chapter 7 we found that 3-dimensional sl2(K)
has irreducible modules of arbitrarily large finite dimension as well as infinite
dimensional irreducibles. (Among other things, this implies that the universal
enveloping algebra for sl2(K) is infinite dimensional.)

Therefore to study M -modules, we begin with a more detailed study of
U(M).

(9.2). Theorem. (Poincaré-Birkhoff-Witt Theorem) Let the Lie al-
gebra M have the E-basis { vi | i ∈ I } for some totally ordered set (I,≤).

(a) (Weak PBW) The universal enveloping algebra U(M) has as E-spanning
set the collection of all monomials vi1 · · · vin for n ∈ N and ii ≤ · · · ≤ in
(where n = 0 corresponds to the monomial 1).

(b) (Strong PBW) The universal enveloping algebra U(M) has as E-basis the
collection of all monomials vi1 · · · vin for n ∈ N and ii ≤ · · · ≤ in (where
n = 0 corresponds to the monomial 1)

Proof. Weak PBW follows easily by induction from the fact that

vivj = vjvi − [vi, vj ] .

Strong PBW is much harder. There are (at least) two standard proofs. We
prefer that of Serre [Ser06]. (But we do not give it here.) 2

For many applications Weak PBW is enough, but there are places where
Strong PBW is unavoidable.

(9.3). Corollary.

(a) The representation υM : M −→ U(M)− is faithful.

(b) Every Lie algebra has a faithful representation as a linear Lie algebra.

Proof. The first part follows from the Strong PBW Theorem, and the
second part follows from the first. 2

We encountered the second part early in these notes as Theorem (1.6)(a).
As mentioned above, the faithful representation guaranteed by (a) may well be
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infinite dimensional, even when M has finite dimension. For semisimple M ,the
adjoint representation suffices for (b) (and so, by universality, for (a) as well),
since the kernel of the adjoint representation is the solvable ideal Z(M), which
is 0 for semisimple M . This was also noted earlier in Theorem (1.5).

9.2 Finite dimensional modules, highest weights

We return to the notation and terminology detailed in the introduction to Chap-
ter 8.

Recall that a weight module for L is a module V that is spanned by its weight
vectors V wµ or, equivalently by Proposition (8.1)(a), is generated as L-module
by its weight vectors.

(9.4). Proposition. For the finite dimensional cyclic L-module V = Lv with
0 6= v ∈ V wµ , the following are equivalent:

(1) L+v = 0.

(2) µ+ α /∈ ΦV for all α ∈ Φ+.

(3) µ+ δ /∈ ΦV for all δ ∈ ∆.

Proof. Statement (1) implies (2) by Proposition (8.1)(a), and (2) certainly
implies (3). Finally, (3) implies (1) since the subalgebra L+ is generated by the
weight spaces Lδ for δ ∈ ∆ by Theorem (8.2) and Proposition (8.19). 2

For the cyclic L-module V = Lv with 0 6= v ∈ V wλ , if L+v = 0, then λ is
a highest weight, v is a highest weight vector, and the module V is a highest
weight module. In general, for nonzero w in the L-module W , if B+w ≤ Kw,
then the vector w is a maximal vector, so it is a highest weight vector in the
cyclic submodule of W that it generates.

If (λ, δ∨) ∈ Z for all δ ∈ ∆, then λ is an integral weight. By Theorem
(8.3)(a) all roots are integral weights, but there are others. If for all δ ∈ ∆ we
have (λ, δ∨) ≥ 0 then λ is a dominant weight.

(9.5). Theorem. Every finite dimensional L-module V contains a maximal
vector v for some dominant integral weight λ. Especially, if finite dimensional
V is irreducible then V is a weight module generated by a maximal vector v with
dominant integral highest weight λ.

Proof. Every weight in ΦV is integral by (8.1)(d). Choose among the
finitely many members of ΦV a weight λ that maximizes

∑
δ∈∆(λ, δ∨). Then λ

is dominant integral, and a weight vector v for it is maximal. If V is irreducible,
then it is the cyclic module generated by v, so λ is a highest weight. 2

(9.6). Proposition. Let Φ+ = {α1, . . . , αN} for N = |Φ+|. Let V be
a highest weight module generated by the nonzero maximal vector v+ for the
weight λ.
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(a) V is spanned by the various vectors fi1 · · · fij · · · finv+ for n ∈ N and i1 ≤
i2 ≤ · · · ≤ in. This vector belongs to Vλ−

∑n
j=1 αij

.

(b) For every weight µ ∈ ΦV we have dimK(Vµ) <∞. Especially Vλ = Kv+ of
dimension 1.

(c) Every quotient of V is a highest weight module for λ. Every submodule of
V is a weight module.

(d) V has a unique maximal submodule and a unique irreducible quotient.

Proof.

(a) Sketch: This follows from the PBW Theorem (9.2) and Proposition (9.7).
(Weak PBW is actually enough for this.)

(b) For a fixed λ and µ the number of solutions to

µ = λ−
n∑
j=1

αij

is finite, so this follows from (a). Furthermore
∑n
j=1 αij = 0 gives the only

solution when µ = λ.

(c) A quotient of a highest weight module is a highest weight module. A sub-
module of a weight module is a weight module.

(d) V is cyclic, generated by the weight vector v. As V is a weight module,
every proper submodule is contained in

⊕
λ6=µ∈ΦV

Vµ. Thus they generate
the unique maximal proper submodule (still contained in this subspace),
which is then the kernel for the unique irreducible quotient. 2

9.3 Verma modules and weight lattices

Set L− be
⊕

α∈Φ+ L−α, further L+ =
⊕

α∈Φ+ Lα, and B+ = H ⊕L+, all three
subalgebras of L by Theorem (5.11).

The Strong PBW Theorem (9.2)(b) and the Cartan decomposition L =
L− ⊕B+ provide a useful tensor factorization of the universal algebra U(L):

(9.7). Proposition. Then U(L) = U(L−)⊗K U(B+). 2

For each λ ∈ H∗, let the associated 1-dimensional B+- and U(B+)-module
be Kvλ with (h + u)vλ = λ(h)vλ for h ∈ H and u ∈ L+. The Verma module
M(λ) is then U(B+)-module Kv+ induced up to the U(L)- and L-module

M(λ) = U(L)⊗U(B+) Kvλ = U(L−)⊗K Kvλ ,

where we have applied Proposition (9.7).
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(9.8). Theorem.

(a) For λ ∈ H∗, the Verma module M(λ) and its unique irreducible quotient
L(λ) are nonzero highest weight modules for λ. If λ 6= µ then L(λ) and
L(µ) are not isomorphic.

(b) Let V be an L-module generated by the highest weight vector v+ for λ. Then
the map vλ 7→ v+ extends to a surjective map from M(λ) to V . 2

A lattice in the Euclidean space E is the Z-module spanned by some basis.
The root lattice associated with the root system (EL,ΦL) = (E,L) is

ΛR =
∑
α∈Φ

Zα =

l⊕
i=1

Zδi .

The associated integral weight lattice or just weight lattice is

ΛW = {µ ∈ E | (µ, δ∨i ) ∈ Z , 1 ≤ i ≤ l } .

It gets its name from the fact that every weight of a finite dimensional L-module
belongs to the weight lattice by Proposition (8.1)(d). Especially ΛR ≤ ΛW .

A Z-basis for ΛW is provided by the fundamental weights ωi, for 1 ≤ i ≤ l,
defined by

(ωi, δ
∨
i ) = 1 and (ωi, δ

∨
j ) = 0 for i 6= j

so that ΛW = ⊕li=1Zωi. The integral dominant weights or just dominant weights
are then those of Λ+

W = ⊕li=1Nωi .
It is initially of some concern that the root lattice’s natural home isH∗(' Kl)

while the weight lattice is defined within E ' Rl. The next result obviates that
worry by showing that ΛW ≤ EQ = ⊕li=1Qδi, where EQ is a rational subspace
naturally contained in H∗ and in E = K⊗Q EQ, both by definition.

(9.9). Proposition.

(a) ΛW ≤ Z[d−1]⊗Z ΛR ≤ EQ where d = det(Cart ∆).

(b) δi =
∑l
j=1(δi, δ

∨
j )ωj.

Proof. Write each ωi ∈ E as a linear combination of the simple basis
∆ = {. . . , δk, . . . }: ωi =

∑l
k=1 ai,kδk . Then

(ωi, δ
∨
j ) =

( l∑
k=1

ai,kδk, δ
∨
j

)
=

l∑
k=1

ai,k(δk, δ
∨
j ) .

Let the matrix A = (ai,k)i,k and the Cartan matrix C = Cart ∆ = (δk, δ
∨
j )k,j .

From the definition of the fundamental weights we get I = AC hence A = C−1.
Thus by Cramer’s Rule each ai,k belongs to Z[d−1], as claimed.
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Alternatively, when we write δi =
∑l
k=1 ci,kωk we find

(δi, δ
∨
j ) =

( l∑
k=1

ci,kωk, δ
∨
j

)
=

l∑
k=1

ci,k(ωk, δ
∨
j ) = ci,j . 2

As the ci,j are all nonpositive, this implies that simple roots are rarely fun-
damental weights.

(9.10). Theorem.
(Classification of irreducible highest weight modules)

(a) For every λ ∈ H∗, up to isomorphism there is a unique irreducible L-module
L(λ) with highest weight λ. These are nonzero and pairwise nonisomorphic.

(b) If L(λ) is of finite dimension then λ ∈ Λ+
W .

(c) If λ ∈ Λ+
W then L(λ) is of finite dimension.

Proof. (a) This follows directly from Theorem (9.8).
(b) This is contained in Theorem (9.5).
(c) We postpone discussion of this to the next section. 2

So, for instance, when L = sl2(K) = a1(K) where l = 1, we have ∆ = {δ1} =
{2} and ΛR = 2Z. Thus δ∨1 = 1 = ω1 and ΛW = Z ≤ Q ≤ K with Λ+

W = N.
Now compare the current theorem with Theorem (7.21), where we catalogued
the highest weight irreducible sl2(K)-modules—there is (up to isomorphism)
exactly one L+(λ) = L(λ) for every λ ∈ K ' H∗ and it has finite dimension if
and only if λ ∈ N = Λ+

W .

9.4 Tensor products of modules

It is well-known, and easy to check, that if A and B are associative E-algebras
and V and W are, respectively, unital A- and B-modules, then V ⊗E W is
naturally a unital A⊗E B-module via

(a⊗ b)(v ⊗ w) = av ⊗ bw .

Furthermore, if V and W are irreducible, then so is V ⊗E W . (Exercise.)
In the special case A = B, we get representations of A⊗E A from represen-

tations of A. We would hope then to use this to get new representations of A
itself. As A is an algebra, we already have the natural multiplication map

µ : A⊗E A −→ A

but the arrow goes in the wrong direction for us to get A-modules from A⊗EA-
modules. Instead we need a comultiplication

ν : A −→ A⊗E A ;
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that is, an E-algebra map from A into its tensor square A⊗2. Then the A⊗EA-
module V ⊗ W is a ν(A)-module by restriction and so an A-module. This is
unlikely to be irreducible even if V and W are, and to some extent this is the
point: decomposition of the reducible A-module V ⊗ W will often give rise to
new irreducible A-modules.1

This is the case with groups, where the natural embedding of G on the
diagonal of G×G leads via g 7→ g ⊗ g to the group algebra comultiplication

EG −→ E(G×G) ' EG⊗E EG .

Therefore, when V and W are G-modules, V ⊗EW is also naturally a G-module.
Abstraction from these observations leads to the study of Hopf algebras and
related classes of algebras where the representation theory is very rich. Group
algebras are the most fundamental examples of Hopf algebras.

Luckily for us, the universal enveloping algebra of a Lie algebras is also a
Hopf algebra. In particular it has a suitable comultiplication.2

(9.11). Theorem. Let A be a Lie E-algebra. Then the map

A −→ U(A)⊗E U(A)

given by x 7→ x ⊗ 1 + 1 ⊗ x is an injective Lie algebra mapping of A into
(U(A)⊗E U(A))−.

Proof. This is clearly an linear transformation, injective by the PBW
Theorem (9.2). We then check

[x⊗1 + 1⊗ x, y ⊗ 1 + 1⊗ y] =

= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)

= (xy ⊗ 1 + y ⊗ x+ x⊗ y + 1⊗ xy)− (yx⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ yx)

= (xy ⊗ 1 + 1⊗ xy)− (yx⊗ 1 + 1⊗ yx)

= (xy − yx)⊗ 1 + 1⊗ (xy − yx) . 2

The construction can be motivated by first considering the diagonal comul-
tiplication for the group algebra of a Lie group and then translating that into
the Lie algebra context, using derivatives:

exp(tx) 7→ ϕ(t) = exp(tx)⊗ exp(tx)

= (1 + tx+ · · · )⊗ (1 + tx+ · · · )
= 1⊗ 1 + tx⊗ 1 + 1⊗ tx + tx⊗ tx + · · ·
= 1⊗ 1 + t(x⊗ 1 + 1⊗ x) + t2(· · · )

1The trivial comultiplications a 7→ a⊗ 1 and a 7→ 1⊗ a merely recover V and W .
2A Hopf algebra is equipped not only with an associative multiplication and unit but also

with an associative comultiplication (so that several representations can be tensored together)
and counit. It is this last that precludes the comultiplication from being trivial in the sense
of the previous footnote.
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so that
d

dt
ϕ(t)|t=0 = x⊗ 1 + 1⊗ x .

This construction is particularly useful in the context of highest weight mod-
ules.

(9.12). Proposition. Let V be a highest weight L-module generated by the
maximal vector v+ for λ, and let W be a highest weight L-module generated
by the maximal vector w+ for µ. Then in the L-module V ⊗K W , the vector
v+ ⊗ w+ is a maximal vector for the weight λ+ µ.

Proof. For h ∈ H we have

(h⊗ 1 + 1⊗ h)(v+ ⊗ w+) = (h⊗ 1)(v+ ⊗ w+) + (1⊗ h)(v+ ⊗ w+)

= (λ(h)v+ ⊗ w+) + (v+ ⊗ µ(h)w+)

= λ(h)(v+ ⊗ w+) + µ(h)(v+ ⊗ w+)

= (λ(h) + µ(h))(v+ ⊗ w+)

= (λ+ µ)(h) (v+ ⊗ w+) .

For u ∈ L+ we have

(u⊗ 1 + 1⊗ u)(v+ ⊗ w+) = (u⊗ 1)(v+ ⊗ w+) + (1⊗ u)(v+ ⊗ w+)

= (0⊗ w+) + (v+ ⊗ 0) = 0 2

The construction can then be iterated with as (finitely) many tensor products
as one desires.

(9.13). Corollary. Let the dominant weight λ =
∑l
i=1 fiωi ∈ Λ+

W (with
fi ∈ N). Then the L-module

V (λ) = L(ω1)⊗f1 ⊗ · · · ⊗ L(ωi)
⊗fi ⊗ · · · ⊗ L(ωl)

⊗fl

contains a maximal vector for λ. In particular, if the L(ωi) are finite dimen-
sional for 1 ≤ i ≤ l, then L(λ) is finite dimensional. 2

Therefore to prove part (c) of Theorem (9.10) it suffices to construct, for
every simple Lie algebra L of Theorem (8.35) and for each of its fundamen-
tal weights ωi, a finite dimensional irreducible L-module with highest weight
ωi. (Identification with L(ωi) then comes from the uniqueness of Theorem
(9.10)(a).) Such constructions we address (at least for sll+1(K) and so2l(K)) in
the next section.

It must be noted that there are more elegant (and shorter) ways of prov-
ing Theorem (9.10)(c). By Proposition (8.1)(f) the set of weights ΦL(λ) for
the irreducible module L(λ) is invariant under the Weyl group W(Φ). As all
multiplicities are finite (by Proposition (9.6)(b)), the module L(λ) is finite di-
mensional if and only if the weight set ΦL(λ) is finite. This is the beginning of
an argument, carried out almost entirely within the root system Φ, that shows
the number of weights “under” the integral highest weight λ is finite if and only
if λ is dominant integral. See [Eld15].
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9.5 Fundamental modules

For each simple root δi there is a corresponding fundamental weight ωi with
(ωi, δ

∨
i ) = 1 and (ωi, δ

∨
j ) = 0 for i 6= j. The usual convention is to write the

dimension of the fundamental irreducible module L(ωi) next to the node of the
Dynkin diagram corresponding to δi. Thus:(

l+1
1

)
. . .

(
l+1
i

)
. . .

(
l+1
l−1

) (
l+1
l

)
Al (

2l
1

)
. . .

(
2l
i

)
. . .

(
2l
l−2

)
2l−1

2l−1
Dl

As we shall now see, the fundamental irreducible module L(ωi) for L =
sll+1(K) = al(K) is the ith-exterior power ∧iV of the natural module V = Kl+1.
The dimension of ∧iV is thus

(
l+1
i

)
. These irreducible modules for sl2l(K) =

a2l−1(K) remain irreducible and fundamental upon restriction to the split or-
thogonal algebra L = so2l(K) = dl(K) provided 1 ≤ i ≤ l − 2, but the two
remaining fundamental modules for dl(K) come from the associated Clifford al-
gebra, a generalization of the exterior algebra for the natural module K2l. This
pattern maintains—most of the fundamental modules for the simple algebras L
come by restriction from the exterior powers of the associated “natural” module,
usually L(ω1).

If V is a K-space and T(V ) its tensor algebra, then the corresponding exterior
algebra ∧(V ) is the quotient of T(V ) by its ideal generated by all v⊗v for v ∈ V .
As the ideal is homogeneous, the quotient ∧(V ) inherits the N-grading of T(V ):

∧(V ) =
⊕
k∈N
∧k(V ) .

Here ∧k(V ) is the image of V ⊗k. The arguments of the previous section (par-
ticularly those of Proposition (9.12) and its corollary) show it to be a module
for EndK(V ) and End−K (V ).

We shall only be considering the finite dimensional case dimK(V ) = n ∈ Z+.

(9.14). Theorem. Let v1, . . . , vn be a K-basis of V .

(a) ∧k(V ) has dimension
(
n
k

)
with basis consisting of the monomials vi1 · · · vik

for i1 < · · · < ik.

(b) ∧(V ) has dimension 2n with basis consisting of the monomials vi1 · · · vik for
i1 < · · · < ik for 0 ≤ k ≤ n.

Proof. This follows easily since vv = 0 and vw = −wv for v, w ∈ V . 2

(9.15). Theorem. Consider sll+1(K) = al(K). Set V = Kl+1. In the root
system Φ ⊂ Rl+1∩1⊥ let the simple basis of roots be δk = εk−εk+1 for 1 ≤ k ≤ l.
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(a) ωk =
∑k
j=1 εj + ck1 for 1 ≤ k ≤ l with ck = −k(l + 1)−1.

(b) L(ωk) = ∧kV for 1 ≤ k ≤ l.

Proof. (a) Easily (
∑k
j=1 εj , δi) is 1 if k = i and 0 otherwise. The linear

functional
∑k
j=1 εj is not in the weight lattice Rl+1 ∩ 1⊥, but this can be easily

fixed by adding the multiple ck1 for ck = −k(l+ 1)−1, which induces the trivial
functional.

(b) Sketch: Calculating as in the previous section, we find that the basis

vector vi1 · · · vik is a weight vector for the weight
∑k
j=1 εij .

By Proposition (8.1)(f) the Weyl group Sym(l + 1) acts on the set of weights,

so all of the possible weights
∑k
j=1 εij occur for the irreducible quotient L(ωk).

Comparing dimensions, we conclude that L(ωk) = ∧kV . 2

(9.16). Theorem. Consider so2l(K) = dl(K). Set V = K2l. In the root
system Φ ⊂ Rl let the simple basis of roots be δk = εk − εk+1 for 1 ≤ k ≤ l − 1
and δl = εl−1 + εl.

(a) ωk =
∑k
j=1 εj for 1 ≤ k ≤ l − 2, but ωl−1 = 1

2 (−εl + (
∑l−1
j=1 εj)) and

ωl−1 = 1
2 (εl + (

∑l−1
j=1 εj)).

(b) L(ωk) = ∧kV for 1 ≤ k ≤ l − 2.

(c) L(ωk) = C(V )±, for k ∈ {l − 1, l}. These are 2l−1-dimensional submodules
of the Clifford algebra C(V ) of dimension 2l.

Proof. (a) This is easily checked.
(b) Sketch: For 1 ≤ k ≤ l − 2 the fundamental weight (actually, the asso-

ciated linear functionals) remain the same, as do the corresponding modules.
To treat the remaining two fundamental weights precisely requires study of

the Clifford algebra at greater length than possible here. 2

The Weyl group W(Dl) contains W(Al−1) ' Sym(l) as a subgroup, so the
exterior power ∧l−1V remains irreducible, but it is no longer fundamental as
the weight

∑l−1
j=1 εj = ωl−1 + ωl .

The Clifford algebra C(V ) is a generalization of the exterior algebra. It is
the quotient of the tensor algebra T(V ) by the ideal generated by v⊗v−b(v, v)1
for all v ∈ V . Thus the exterior algebra is the Clifford algebra for the trivial
orthogonal form which is identically 0 on V × V . The Clifford algebra also has
dimension 2l with the same monomial basis as the exterior algebra. (Exercise.)

The diagram Dl has an automorphism of order 2 that switches the simple
roots δl−1 and δl and so the fundamental weights ωl−1 and ωl. The corre-
sponding automorphism of dl(K) thus switches the corresponding fundamental
representations. In fact, this graph automorphism is induced by any reflection
of O+

2l(K). Such reflections have determinant −1 and so do not belong to the
group SO+

2l(K). Nevertheless they act on the Clifford algebra, switching the two
modules C(V )+ and C(V )−.



Appendix A
Bilinear forms

A.1 Basics

Let σ be an automorphism of K with fixed field F. For the K-space V , the map
b : V × V −→ K is a σ-sesquilinear form provided it is biadditive and

b(pv, qw) = pb(v, w)qσ

for all v, w ∈ V and p, q ∈ K. The case σ = 1 is that of bilinear forms.

The form is reflexive if

b(v, w) = 0 ⇐⇒ b(w, v) = 0 .

Important examples are the (σ, η)-hermitian forms: those σ-sesquilinear forms
with always

b(v, w) = ηb(w, v)σ

for some fixed nonzero η. Observe that

b(v, w) = ηb(w, v)σ = η(ηb(v, w)σ)σ = ηησb(v, w)σ
2

.

Assuming that b is not identically 0, there are v, w with b(v, w) = 1; so ηησ = 1.
But then for all a ∈ K

a = b(av, w) = b(av, w)σ
2

= aσ
2

,

and σ2 = 1.

For a (σ, η)-hermitian form that is bilinear we have σ = 1, and so 1 = ηησ =
η2, giving η = ±1. The case (σ, η) = (1, 1) is that of symmetric bilinear forms
or orthogonal forms, while (σ, η) = (1,−1) gives alternating forms or symplectic
forms.

117
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For S ⊆ V write S⊥ for the subspace { v ∈ V | b(v, s) = 0 , for all s ∈ S }
and say that V and b are nondegenerate provided its radical

Rad(V, b) = Rad(V ) = Rad(b) = V ⊥

is equal to {0}. If E ≤ R and b is an orthogonal form, we say that b is positive
definite if it has the property

b(x, x) ≥ 0 always and b(x, x) = 0 ⇐⇒ x = 0 .

This is stronger than nondegeneracy.
The form b restricts to a form on each subspace U of V , and U is a nondegen-

erate subspace provided its radical under this restriction is 0; that is, U∩U⊥ = 0.

(1.1). Lemma. For the (Id, η)-hermitian form b : V × V −→ E the map
ρb : w 7→ b(·, w) is a E-homomorphism of V into V ∗ and the map λb : v 7→ b(v, ·)
is a E-homomorphism of V into V ∗. Here ker ρb = V ⊥ = kerλb. 2

(1.2). Lemma. For the nondegenerate (Id, η)-hermitian form b : V × V −→ E
let U be a finite dimensional subspace of V .

(a) The codimension of U⊥ in V is equal to the dimension of U , and U⊥⊥ = U .

(b) The restriction of h to U is nondegenerate if and only if V = U ⊕ U⊥. 2

Write the vector v =
∑
i∈I vixi for the basis X = {xi | i ∈ I } as the column

I-tuple v = (. . . , vi, . . . ). The Gram matrix G = Gχ of the form b is the I × I
matrix (b(xi, xj))i,j , and we have a matrix representation of the form b:

b(v, w) = v>Gw .

If Y is a second basis and A is the I × I base change matrix that takes vectors
written in the basis Y to their corresponding representation in the basis X , then
GY = A>GXA.

(1.3). Corollary. The nondegenerate (Id, η)-hermitian form b : V ×V −→ E
on the finite dimensional space V is nondegenerate if and only if its Gram matrix
is invertible. 2

This point of view makes it clear that if b : V × V −→ E is nondegenerate
and F is and extension field of E, then we have an induced nondegenerate form
bF : (F⊗E V )× (F⊗E V ) −→ F.

A.2 Canonical forms

One natural example of an orthogonal form on V is one that has an orthonormal
basis; that is, the Gram matrix is the identity matrix.

In many situations, particularly over algebraically closed fields, other bases
are of interest. We next define the split forms of orthogonal and symplectic
type:
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For η ∈ {±} = {±1}, the K-space V = Vη = K2l has basis { ei, e−i |
1 ≤ i ≤ l } and is equipped with the split (Id, η)-form b = bη given
by

b(ei, e−i) = 1 , b(e−i, ei) = η , otherwise b(ea, eb) = 0 .

The form is split orthogonal when η = +1 and split symplectic when
η = −1.

The K-space V = Vη = K2l+1 has basis { e0, ei, e−i | 1 ≤ i ≤ l } and
is equipped with the split orthogonal form b given by

b(e0, e0) = 1 , b(ei, e−i) = b(e−i, ei) = 1 , otherwise b(ea, eb) = 0 .

(1.4). Lemma. Consider the (Id, η)-hermitian form b : V ×V −→ E on the E-
space V of dimension 2 with charE 6= 2. Suppose b(x, x) = 0 but x /∈ Rad(V, b).
Then V is nondegenerate, and there is a second vector y with b(y, y) = 0,
b(x, y) = 1, and V = Ex ⊕ Ey. That is, the Gram matrix for b in the basis

{x, y} of V is

(
0 1
η 0

)
. 2

(1.5). Theorem. Consider the nondegenerate symplectic form b : V ×V −→ E
on the finite dimensional E-space V . The form is split.

Proof. For a symplectic for b(x, x) = 0 always. Use the lemma and induc-
tion. 2

(1.6). Theorem. Consider the nondegenerate orthogonal form b : V × V −→
E on the finite dimensional E-space V over the algebraically closed field E of
characteristic not 2.

(a) If dimE(V ) ≥ 2, then V contains nonzero vectors x with b(x, x) = 0.

(b) The form is split.

Proof. The first part allows the second part to be proved by induction
using the lemma. 2
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Appendix B
Finite Groups Generated by
Reflections

Let E be a finite dimensional Euclidean space, and let 0 6= v ∈ E. The linear
transformation

rv : x 7→ x− 2(x, v)

(v, v)
v

is the reflection with center v.

(2.1). Lemma. Let 0 6= v ∈ E.

(a) rv belongs to O(E), the orthogonal group of isometries of E, being the re-
flection in the hyperplane orthogonal to v. In particular rv = rav for all
nonzero scalars a.

(b) If g ∈ O(E) then rgv = rg(v).

(c) If Rvrx = Rv if and only if v ∈ Rx or (v, x) = 0. 2

(2.2). Lemma. Let α and β be independent vectors in the Euclidean space E.
Then 〈rα, rβ〉 is a dihedral group in which the rotation rαrβ generates a normal
subgroup of index 2 and order mα,β (an integer at least two or infinite) and
the nonrotation elements are all reflections of order 2. In particular, the group
〈rα, rβ〉 is finite, of order 2mα,β, if and only if the 1-spaces spanned by α and
β meet at the acute angle π

mα,β
. 2

We are concerned in this appendix with finite subgroups of O(E) generated
by a set { rv | v ∈ ∆ } of reflections (necessarily finite itself).

The Coxeter graph of this reflection set has ∆ as vertex set, with α and β
connected by a bond of strength mα,β − 2 where 〈rα, rβ〉 is dihedral of order
2mα,β , for the positive integer mα,β ≥ 2. In particular, distinct α and β are not
connected if and only if mα,β = 2 if and only if they commute.
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(2.3). Theorem. The Coxeter graph for an irreducible finite group generated
by the l distinct Euclidean reflections for an obtuse basis is one of the following:

Al

BCl

Dl

E6

E7

E8

F4

H3

H4

I2(m)
m− 2

Proof. By Lemma (2.1) the graphs are all connected. We do not provide a
complete proof of the theorem; but we do a proof, typical for these arguments,
of one important property:

Claim: The Coxeter graph is a tree.

Proof. Let C = (v0, v1, . . . , vn−1, vn = v0) be a circuit in the
graph. Normalize so that (vi, vi) = 1 for all i, and let G be the
Gram matrix of C. Then each diagonal entry of G is 1 and in each
row (and column) there are exactly two other nonzero entries. As
the full basis is obtuse, each of these nonzero (vi, vi+1) is negative.
Furthermore by Lemma B-(2.2) above, each of these has absolute
value at least 1

2 . Therefore for

0 6= x =

n∑
i=1

vi = (1, 1, . . . , 1)>

we have
(x, x) = x>Gx ≤ 0 .

As Euclidean (·, ·) is positive definite, this is a contradiction. 2
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Similar arguments then show that the given graphs are the only ones that
are possible. 2
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nondegenerate subspace, 118
normalizer, 46
null identical relation, 9

obtuse basis, 86
octonion algebras, 5
octonions, 4
one-parameter subgroup, 27
opposite algebra, 1
orthogonal forms, 117
orthonormal basis, 118

path connectivity, 34
PBW Theorem, 11
Poincaré-Birkhoff-Witt Theorem, 108
positive definite, 118
positive roots, 84
positive system, 86
product rule, 16
pure imaginary, 4

quadratic form, 4
quadratic Jordan algebras, 12
quaternions, 4
quotient algebra, 37

radical, 39, 118
rank, 47, 83, 86
reflection, 83, 121
reflexive, 117
reflexive forms, 117
regular, 47
Restricted Burnside Problem, 21
root, 49
root lattice, 111
root system, 83, 84
roots, 83

Schur’s Lemma, 40

Second Isomorphism Theorem, 38
self-normalizing, 46
semisimple, 39
Serre’s Theorem, 93
sesquilinear form, 117
short root, 89
simple basis, 86
simple root, 84
simply connected, 34
skew identical relation, 9
smooth, 25
smooth vector field, 19
solvable radical, 39
special Jordan algebras, 11
special linear algebra, 14
spectrum, 74
split, 5
split extension, 41
split forms, 118
Strong PBW, 108
structure constants, 1
subalgebra, 37
symmetric bilinear forms, 117
symplectic forms, 117

tangent space, 29, 30
tensor algebra, 107
Third Isomorphism Theorem, 38
TKK construction, 21
torsion-free, 63
transformation coefficients, 66
triangular decomposition, 14
trivial weight, 49
type f4, 19
type g2, 19

universal enveloping algebra, 107

variety, 2
vector field, 19
Verma module, 70, 110
Virasoro algebra, 20

Weak PBW, 108
weight, 49
weight lattice, 111
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weight module, 64, 109
weight space, 49
weight vector, 49
Weyl group, 83
Weyl’s Theorem, 76
Witt algebra, 18

zero weight, 49
Zorn’s vector matrices, 5
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